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Abstract
Artificial  Neural  Networks  (ANN)  are  used  in  a  variety  of  machine  learning  tasks  such  as  image  
classification and pattern recognition. Training ANN models on large datasets can be time consuming and 
require specialized hardware and processing power. Often, the training is performed on powerful systems, 
and the resultant final trained network can be utilized on small computers and mobile devices to perform 
tasks instantly. The Nintendo Entertainment System (NES) was released in 1985 and featured a 1.79 MHz 
CPU and 2 KB of RAM.  The original program code for games for the NES fit within 32 KB of ROM on  
cartridges. In this work, we create an ANN and train it using the EMNIST hand-drawn digit dataset on a 
desktop computer. This ANN is then ported to the NES utilizing assembly language. The program code and 
pretrained weights are stored to a game cartridge fitting within the bounds of 32 KB. Additionally, a user  
interface is provided for drawing and loading test samples and executing the ANN classification of hand  
drawn digits on a physical NES device from 40 years ago. 
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1. Introduction

Artificial Neural Networks (ANN) are a part of Machine Learning (ML) and are used for several  
different kinds of tasks such as classification and segmentation [1] as well as prediction [2]. The 
applications of ANN are numerous and are often used to solve problems in a wide range of fields 
including science, finance, engineering, agriculture, education, and energy [3]. 

A simple architecture for an ANN may involve three layers known as the input, hidden, and 
output layers [4], though more advanced ANNs like those in Deep Learning (DL) will have several 
different layers [5]. These layers contain nodes with connections from previous layers, a bias and 
weights. Data will feed forward through the network producing an output. The learning process  
involves  updating  these  weights.  One  of  the  most  common  algorithms  for  this  is  known  as 
backpropagation [6].

ANNs typically use the IEEE-754 single or double-precision floating-point format [7].  To perform 
the math required, devices must have a floating-point unit (FPU) along with the usual CPU. Originally 
used for 2D and 3D graphics acceleration for games, Graphics Processing Units (GPU) are now 
commonly used for machine learning [8]. In 2015 Google introduced the Tensor Processing Unit 
(TPU) to increase performance for neural networks and use less power than GPUs [9]. 

The Nintendo Entertainment System (NES) was originally released in North America in 1985 
[10]. The NES featured a Ricoh 2A03 chip that was based on the 8-bit 6502 processor operating at  
1.79 MHz [11]. The NES also had only 2 KB of RAM available. The program (game) code is stored 
within ROM chips on the game cartridges. The original Super Mario Bros. fit within an original  
restriction of 32 KB of program ROM space [12] before the later creation of memory mapper chips. 

In this experimental work, we demonstrate that an ANN is capable of running even with severe 
hardware constraints. We created a simple ANN in the C programming language and trained it on a 
dataset of small images on a modern computer. The program code for the ANN is ported to 6502 
assembly  language  and  includes  the  pretrained  weights  from  the  ANN  model.  By  reducing 
dimensionality of the images and using a small number of hidden nodes we were able to fit within 
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the 32 KB limit. The program code is placed onto a specialized game cartridge and loaded into the 
physical NES hardware. We also developed a user interface (UI) which allows the user to draw images 
as well as load sample dataset images using the NES gamepad. Pressing START executes the ANN 
and displays its classification of the image. 

2. Materials and Methods

2.1. Dataset

The MNIST dataset [13] consists of hand drawn digit (0 – 9) images and is often referred to as the  
“hello world” of neural networks and deep learning [14]. The dimensions of the images are 28x28 
and contain grayscale values ranging from 0 - 255. Examples of the dataset images can be seen in  
Figure 1. The training set contains 60,000 images with the testing set having 10,000. These sets are 
balanced with 6,000 of each digit in the training set and 1,000 of each digit in the testing set. Given  
we are pretraining the neural network on a modern computer, we opted to use the larger EMNIST 
dataset [15] which is an extension of MNIST containing four times the number of images of MNIST. 
This dataset has 240,000 images in the training set and 40,000 in the testing set. These sets are also 
balanced.

Figure 1: Example digit images.

2.2. Preparing the Data

We took  multiple  steps  to  reduce  the  dimensionality  of  the  images  to  work  within  memory 
constraints. First, we changed pixel values from a range of 0 - 255 to be just binary values of 0 or 1.  
Any pixel value less than 128 was changed to 0 with 128 or greater becoming a 1.  Figure 2 shows an 
image with grayscale values and then changed to binary values. Reducing the values to bits allowed 
for 8 pixels to be packed into a single byte. This reduced storage requirements by almost ⅛ for our  
input weight data and loadable test samples.

Figure 2: Left: Original 256 grayscale image. Right: 1-bit binary image.

Our goal was to reduce the image resolution to 20×20 with minimal scaling required. Given that 
the images in the dataset are centered, columns of pixels on the left and right, as well as rows on the 
top and bottom of the image, can be discarded as they contain no information about the digit. This  
can be seen in Figure 3. We discarded rows and columns with 2 or fewer pixels of a value of 1.



Figure 3: Pixel grid indicating candidate rows/columns to be removed.

2.3. Neural Network

Figure 4 shows the configuration of our ANN. The input layer contains the pixel information of the 
current image. With our input images having dimensions 20×20, there will be 400 input nodes. As in 
most neural networks, every input node is connected to every hidden node [16]. Our model uses 16 
hidden nodes. Here, we introduce an optimization. Given our pixel input values are either 0 or 1, and 
these values are multiplied by the weights, input values of 0 can simply be skipped. Additionally, 
with an input value of 1, we can skip the multiplication and just add the weight to the node’s total.  
Every hidden node connects to every output node. There are 10 output nodes, one for each digit (0 – 
9). All of our nodes also have a bias. Originally, the Sigmoid activation function [17] was popular for 
neural networks however we opted to use the Leaky ReLU function  [18] as it  provided better 
performance.

Figure 4: Diagram of our ANN.

With 20×20 input nodes each connected to 16 hidden nodes at 4-bytes per floating-point weight,  
this would use (20×20×16×4) 25,600 bytes of space. Additionally, the 16 hidden nodes connected to  
the 10 output nodes is (16×10×4) 640 bytes. Each of the 16 hidden nodes and 10 nodes have a bias 
input for (16×4 + 10×4) 104 bytes. The stored pretrained weights occupy 26,344 of our total 32,768 
program ROM space leaving 6,424 bytes for our code that runs the user interface and executes the 
ANN to perform the classification.

2.4. Hardware and Tools

While  modern  machine  learning  research  is  typically  developed  in  the  Python  programming 
language using libraries such as PyTorch, Keras, and TensorFlow  [19], our ANN is coded from 
scratch in the C programming language without any of these types of libraries. This allowed for a  
more direct port to the 6502 assembly language required for developing for the NES. After training, 



the weights were exported to a format that could be included by a 6502 assembly compiler. Given 
the NES is an 8-bit processor with no floating point support, in order to port our neural network, we 
used a floating point library developed by Roy Rankin and Steve Wozniak [20]. To run our program 
on a physical NES device, we loaded our program onto an SD card and placed it into a Krikzz 
Everdrive N8 Pro cartridge which can be seen in the left of Figure 5. This cartridge was then placed 
into an original NES from 1985 seen on the right in Figure 5.

Figure 5: Left: Everdrive N8 Pro cartridge. Right: Original 1985 NES.

3. Experiments and Discussion

We trained our ANN on the EMNIST dataset on a desktop computer. We used a learning rate of 0.01, 
an alpha value of 0.01 for LeakyReLU and 5 epochs. The training completed in 21 seconds. Our simple 
ANN achieved a 93.11% accuracy on the EMNIST test set. This number could be higher with a larger 
neural network however for this experiment we needed to stay within the 32 KB limit. The pretrained 
weights along with our program code for the UI and executing the ANN were loaded onto the  
cartridge and NES seen in Figure 5. Our program begins with a basic startup/menu screen seen in 
the left of Figure 6. Pressing START enters the main drawing screen seen on the right in Figure 6. 

Figure 6: Left: Startup screen. Right: Main drawing screen.



The drawing screen provides a 20×20 pixel grid along with instructions. Using the D-PAD will 
move the cursor around the grid. Pressing the B button will toggle the pen (cursor) being down 
(drawing) or up (movement only). Pressing the A button will toggle drawing or erasing mode.

Along with drawing, the user can press the SELECT button to load 10 images of digits (0 – 9) from 
the EMNIST test set. Pressing the START button will execute the ANN and show the classification 
result in under 3 seconds. Figure 7 shows various test images that were loaded and the results after 
running the ANN.

Figure 7: Loaded testing samples from the EMNIST dataset and result from the ANN on the NES.

Even though the ANN was trained on hand drawn style digits, our on-device ANN is also capable 
of recognizing simpler pixel art style images.  Figure 8 shows example digits drawn by ourselves 
which the ANN was able to classify.

Figure 8: Simple pixel images drawn using our UI and the result from the ANN.

4. Conclusion

In this experimental work, we created a basic ANN image classifier which was trained on a modern 
computer  and  then  exported  the  weights  from  the  various  layers.  We  greatly  reduced  the 
dimensionality of the input images and used a small set of hidden nodes in order to fit within a 32 
KB limit. The ANN was ported to assembly language and using the UI, a user can draw or load testing 
images and execute the ANN. This demonstrates the 1985 NES is capable of using a basic ANN with 
pretrained weights to successfully classify digit images.

Future work includes using memory mapper (bank swapping) chips to enable more ROM and 
therefore larger models to be stored. Additional future work includes building a Reinforcement 
Learning model that could be used for game AI on the NES.
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