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Abstract
The chase is a fundamental algorithm with ubiquitous uses in database theory. Given a database and a set of

existential rules (aka tuple-generating dependencies), it iteratively extends the database to ensure that the rules

are satisfied in a most general way. This process may not terminate, and a major problem is to decide whether it

does. This problem has been studied for many chase variants, which differ by the conditions under which a rule

is applied to extend the database. Surprisingly, the complexity of the universal termination of the restricted (aka

standard) chase is not fully understood. We close this gap by placing universal restricted chase termination in

the analytical hierarchy. This higher hardness is due to the fairness condition, and we propose an alternative to

reduce the hardness of universal termination.
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1. The Problem of Restricted Chase Termination and Fairness

In this extended abstract of [1], we summarise our findings and outline the problem of fairness for

restricted chase termination. We give an overview of the levels of undecidability for various chase

termination problems including our novel results that we obtain for CTKrest
∀ and CTRrest

∀ .

The chase is a bottom-up materialisation procedure that computes a universal model (a model that

can be homomorphically embedded into all other models) for a knowledge base (KB), consisting of an

(existential) rule set and a database.

Example 1. Consider the KB 𝒦1 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Bicycle(𝑏)} and Σ contains:

∀𝑥.Bicycle(𝑥) → ∃𝑦.HasPart(𝑥, 𝑦) ∧ Wheel(𝑦) ∀𝑥, 𝑦.HasPart(𝑥, 𝑦) → IsPartOf(𝑦, 𝑥)

∀𝑥.Wheel(𝑥) → ∃𝑦.IsPartOf(𝑥, 𝑦) ∧ Bicycle(𝑦) ∀𝑥, 𝑦.IsPartOf(𝑥, 𝑦) → HasPart(𝑦, 𝑥)

Then, {Bicycle(𝑏), HasPart(𝑏, 𝑡), IsPartOf(𝑡, 𝑏), Wheel(𝑡)} is a universal model of 𝒦.

Although there are many variants of the chase, they all implement a similar strategy. Namely, they

start with the database and then, in a step-by-step manner, extend this structure with new atoms to

satisfy the rules in the input rule set in a most general way. Since none of these variants are guaranteed

to terminate (some KBs do not even admit finite universal models), it is only natural to wonder about

their respective halting problems [2, 3, 4, 5, 6, 7]. Despite intensive efforts, some results have remained

open. Specifically, prior research has established tight bounds for the major classes of chase terminating

KBs and rule sets, except for the following:

• The class CTKrest
∀ of all KBs that only admit finite restricted chase sequences.

• The class CTRrest
∀ containing a rule set Σ if ⟨Σ, 𝐷⟩ ∈ CTKrest

∀ for every database 𝐷.
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Figure 1: Three Different Restricted Chase Sequences for the KB 𝒦1 from Example 1

Our main contribution is to show that both classes are Π1
1-complete, a surprising result given that these

are significantly harder than the corresponding classes for other chase variants [7].

The restricted chase differs from other variants in that it introduces new terms to satisfy existential

quantifiers in rules only if these are not already satisfied by existing terms. Because of this, the order

of rule applications impacts termination. The KB 𝒦1 from Example 1 admits both finite and infinite

restricted chase sequences; some of these are represented in Fig. 1, where atoms are numbered to denote

the step at which they were introduced.

CTKrest
∀ has been claimed to be recursively enumerable (RE) in [7], probably with the following

procedure in mind: given an input KB, compute all of its restricted chase sequences in parallel, and halt

and accept if all of them are finite. Alas, this strategy does not work as there are terminating input KBs

that admit infinitely many finite sequences that are of increasing length.

Example 2. Consider the KB 𝒦2 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Real(𝑎), E(𝑎, 𝑐), E(𝑐, 𝑏), Real(𝑐),
E(𝑏, 𝑏), Brake(𝑏)} and Σ is the rule set that contains all of the following:

∀𝑥, 𝑦, 𝑧.Real(𝑥) ∧ E(𝑥, 𝑦) ∧ Real(𝑦) ∧ Brake(𝑧) → ∃𝑣.E(𝑦, 𝑣) ∧ E(𝑣, 𝑧) ∧ Real(𝑣)

∀𝑥.Brake(𝑥) → Real(𝑥)

For any 𝑘 ≥ 1, there is a restricted chase sequence of 𝒦2 that yields the (finite) universal model 𝐷 ∪
{E(𝑐, 𝑡1)} ∪ {E(𝑡𝑖, 𝑡𝑖+1) | 𝑖 < 𝑘} ∪ {E(𝑡𝑖, 𝑏), Real(𝑡𝑖) | 𝑖 ≤ 𝑘} ∪ {Real(𝑏)} of 𝒦2. Such a sequence is
obtained by applying the first rule 𝑘 consecutive times and then applying the second one once to derive
Real(𝑏). After this application, the first rule is satisfied and the restricted chase halts.

The KB 𝒦2 in the previous example is in CTKrest
∀ because of fairness. This is a built-in condition in

the definition of all chase variants that guarantees that the chase yields a model of the KB by requiring

that, if a rule is applicable at some point during the computation of a sequence, then this rule must be

eventually satisfied. Hence, the second rule in 𝒦2 must sooner or later be applied in all restricted chase

sequences and thus, all such sequences are finite.

An issue with fairness is that it is not finitely verifiable, i.e. we cannot see if fairness is violated after

a finite number of steps, intuitively because a necessary rule application might still occur later. With

a stronger condition, e.g., demanding that possible rule applications are performed in a breadth-first

manner, we could detect violations after a finite number of steps. In fact, in [1, Section 6], we show that

such a condition lands CTKrest
∀ in RE by computing chase sequences in parallel as sketched above.

The KB in Example 2 uses a technique called the emergency brake, initially proposed by Krötzsch et al.

in [8]. The idea is to connect every term in the chase to a special term (the constant 𝑏 in this example)

that is not “Real” and acts as a “Brake”. Eventually, this term becomes “Real” because of fairness, all

existential restrictions are satisfied, and the restricted chase halts. The emergency brake allows to grow

the chase for an arbitrary number of steps whilst guaranteeing its termination. By activating infinite

sequences of emergency brakes, we emulate the eternal recurrence often displayed by Π1
1-complete

problems and thus define the reductions that lead to our main results.

2. Summary of Levels of Undecidability for Chase Termination

All decision problems related to chase termination are undecidable. However, these are complete for

different classes within the arithmetical and analytical hierarchies, as summarised in Table 1.



KB Rule Set
Sometimes Always Sometimes Always

Oblivious RE-complete [6] RE-complete [3, 5]
Restricted RE-complete [6] Π1

1-complete Π0
2-complete [7] Π1

1-complete
Core RE-complete [6] Π0

2-complete [7]

Table 1
Undecidability status of the main decision problems related to chase termination; the results presented without
citations refer to our main contributions [1].

For the oblivious chase, application order is irrelevant, therefore CTKobl
∃ = CTKobl

∀ and CTRobl
∃ =

CTRobl
∀ . For the core chase, by Deutsch et al., CTKcore

∃ = CTKcore
∀ and CTRcore

∃ = CTRcore
∀ . To understand

why CTKobl
∃ (resp. CTKrest

∃ or CTKcore
∃ ) is recursively enumerable (RE), consider the following procedure:

given some input KB, compute all of its oblivious (resp. restricted or core) chase sequences in parallel

and accept as soon as you find a finite one. Deutsch et al. proved that CTKrest
∃ is RE-hard. More precisely,

they defined a reduction that takes a machine 𝑀 as input and produces a KB 𝒦 as output such that 𝑀
halts on the empty word if and only 𝒦 is in CTKrest

∃ ; see Theorem 1 in [6].

Deutsch et al. also proved that CTKcore
∃ is RE-hard. More precisely, they showed that checking if a KB

admits a universal model is undecidable; see Theorem 6 in [6]. Moreover, they proved that the core

chase is a procedure that halts and yields a finite universal model for an input KB if this theory admits

one; see Theorem 7 of the same paper. Therefore, the core chase can be applied as a semi-decision

procedure for checking if a KB admits a finite universal model.

Marnette proved that CTRobl
∃ is in RE. More precisely, he showed that a rule set Σ is in CTRobl

∃ if and

only if the KB ⟨Σ, 𝐷⋆
Σ⟩ is in CTKobl

∃ where 𝐷⋆
Σ = {P(⋆, . . . , ⋆) | P ∈ Preds(Σ)} is the critical instance

and ⋆ is a special fresh constant; see Theorem 2 in [5].

Gogacz and Marcinkowski proved that CTRobl
∃ is RE-hard. More precisely, they presented a reduction

that takes a 3-counter machine 𝑀 as input and produces a rule set Σ such that 𝑀 halts on 𝜀 if and

only if ⟨Σ, 𝐷⋆
Σ⟩ is in CTKobl

∃ ; see Lemma 6 in [3]. Hence, 𝑀 halts on the 𝜀 and only if Σ is in CTRobl
∃

by Theorem 2 in [5]. Furthermore, Bednarczyk et al. showed that this hardness result holds even over

single-head binary rule sets; see Theorem 1.1 in [2].

CTRrest
∃ is in Π0

2, since we can give semi-decision procedure when equipped with an oracle for CTKrest
∃

by iterating over all databases. The argument for CTRcore
∃ being in Π0

2 is analogous. Grahne and Onet

proved that CTRrest
∃ and CTRcore

∃ are Π0
2-hard by reducing from the universal termination problem of

word rewriting systems.

Our Contribution In [1, Section 4], we argue that CTKrest
∀ is Π1

1-complete. This contradicts Theo-

rem 5.1 in [7], which states that CTKrest
∀ is RE-complete. Specifically, it is claimed that this theorem

follows from results in [6], but the authors of that paper only demonstrate that CTKrest
∀ is undecid-

able without proving that it is in RE. Before our completeness result, the tightest lower bound was

proven by Carral et al., who proved that this class is Π0
2-hard; see Proposition 42 in [4]. We obtain

Π1
1-completeness by reduction to and from the following complete problem based on [9]: Decide if a

given non-deterministic Turing machine (NTM) 𝑀 is non-recurring through 𝑞𝑟 on some word 𝑤⃗, i.e., if

every non-deterministic run of 𝑀 on 𝑤⃗ features 𝑞𝑟 only finitely often. The high level intuition is that

recurrence of 𝑞𝑟 resembles the fairness condition from the chase. For membership, we compute the

chase with a NTM keeping track of possible rule applications for each step 𝑖 in 𝑅𝑖. We keep a counter 𝑗
and visit 𝑞𝑟 whenever 𝑅𝑗 is satisfied and increase 𝑗 in this case. For hardness, we construct a rule set

based on a given NTM and enforce termination with the emergency brake technique except in cases

where 𝑞𝑟 is visited recurringly by always creating a new brake when 𝑞𝑟 is visited.

We also show in [1, Section 5] that CTRrest
∀ is Π1

1-complete using similar reductions as for the CTKrest
∀

case. This contradicts Theorem 5.16 in [7], where it is stated that this class is Π0
2-complete. The error in

the upper-bound of this theorem arose from the assumption that CTKrest
∀ is in RE, which, as previously

discussed, is not the case. Regarding the lower bound, they consider an extended version of this class



of rule sets where they allow the inclusion of a single “denial constraint”; i.e. an implication with an

empty head that halts the chase if the body is satisfied during the computation of a chase sequence.

They prove that the always restricted halting problem for rule sets is Π0
2-hard if one such constraint is

allowed. Our results imply that we do not need to consider such an extension to obtain a higher lower

bound.
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