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1. Introduction

The Guarded Fragment (GF) of first-order logic (FO), introduced by Andréka et al. [1], generalizes
modal and description logics (DLs) to higher-arity relational vocabularies. Over the past 25 years,
GF has become the canonical first-order fragment that balances expressive power with attractive
model-theoretic properties, such as the finite model property [2], preservation theorems [3], and robust
decidability under various extensions involving fixed-point operators [4] or query languages [5]. Since
classical (polyadic) multi-modal and description logic formulæ embed naturally into GF via standard
translations, this fragment serves as a versatile logical framework central to both theoretical studies
and applications in KR and databases.
However, not all widely-used families of modal and description logics (DLs) are expressible within the
scope ofGF, as it cannot express properties such as transitivity or equivalence of relations. Consequently,
translating transitive description logics like those from the 𝒮 family of DLs or modal logics interpreted
over equivalence frames including S5, into the guarded fragment is not directly possible. To overcome
this limitation, Ganzinger et al. [6] initiated the study of semantically-constrained guards, an extension
of GF allowing certain relations—confined to guards—to be interpreted with additional semantic
constraints, notably transitivity or equivalence. This direction spurred intensive research, yielding
several positive results, notably the 2ExpTime-completeness of GF extended with (conjunctions of)
transitive guards (consult the works of Szwast&Tendera [7], Kazakov [8] and Kieroński&Rudolph [9]),
as well as the two-variable fragment of GF augmented by transitive or equivalence closures of binary
guards, established by Michaliszyn and his co-authors [10, 11]. Check Tendera’s survey [12] for a
comprehensive overview. On the negative side, natural extensions of GF with equality (GF≈), intended
to capture popular description logics from the 𝒮ℛ family, turned out to be undecidable. Examples
include GF≈ with exponentiation (regular expressions that are compositions of the same letter) [13] or
associative compositional axioms [8]. The decidability status of these logics without equality ≈ is still
open. Consequently, there is no known decidable extension of GF with semantically-constrained guards
captures propositional dynamic logic (PDL) and its generalizations such as the 𝒵 family [14] of DLs,
PDL with intersection and converse (ICPDL) [15], or its higher-arity extensions of DLs like 𝒟ℒℛ [16].

2. Our Contributions

We introduce and study a novel logic called RGF, which extends (equality- and constant-free) GF
by allowing ICPDL-programs as guards (cf. Def. 1). Our main result establishes that Sat(RGF) is
2ExpTime-complete, matching the complexity of plain GF and ICPDL. This also lifts decidability to
several logics where it was previously known only in their two-variable case. Our proof employs a fusion

technique, reducing Sat(RGF) to instances of the satisfiability problem in plain GF or two-variable
RGF, which is in turn solvable via an encoding to ICPDL.
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Theorem 1. The satisfiability problem for RGF is 2ExpTime-complete. ◀

We further address two questions: (i) Is the query entailment problem decidable for RGF? (ii) Is
there an expressive fragment of RGF of complexity lower than 2ExpTime? We answer question (i)
negatively, showing undecidability of conjunctive query entailment even for two-variable fluted GF
with a single transitive guard, substantially strengthening prior results of Gottlob et al. [17, Thm. 1] on
entailment of unions of conjunctive queries over GF2 with transitive guards in three ways: our logic is
more restricted (belongs to the so-called fluted fragment), our queries do not use disjunction (we use
conjunctive queries rather than the unions thereof), and our proof is also applicable to the finite-model
scenario (which remained open).

Theorem 2. Both finite and general CQ entailment problems are undecidable for RGF, already for its

fluted two-variable fragment with a single transitive guard. ◀

By fluted formulæ we mean index-normal formulae (on any branch of its syntax tree, the 𝑖-th
quantifier bounds precisely 𝑥𝑖) where any atom 𝛼(𝑥̄) in the scope of a quantifier bounding 𝑥𝑛 (but not
𝑥𝑛+1), the sequence 𝑥̄ is a suffix of the sequence 𝑥1, 𝑥2, . . . , 𝑥𝑛. Our undecidability transfers to 𝒜ℒ𝒞
extended with unqualified existential restrictions with intersection of the form ∃(r ∩ s).⊤, inclusion
axioms of the form r ⊆ s ∪ t, and a single transitivity statement.

For (ii) we conduct a thorough case analysis, pinpointing when subfragments of RGF admit lower
complexity than 2ExpTime. We conclude that a novel forward variant of GF extended with transitive
closure is the largest (in a natural sense) ExpSpace-complete fragment of RGF.

Theorem 3 (Simplified statement). The satisfiability problem for the forward subfragment RGF with

the set of operators restricted to {·+, ·*, ?} is ExpSpace-complete. The inclusion of other operators makes

already the fluted two-variable fragment of RGF 2ExpTime-hard. ◀

3. Our Motivations

We explain our motivations behind the study of the GF with regular guards in the form of a Q&A.
¬ Why the guarded fragment (GF)?
Because GF is the canonical extension of modal and description logics to the setting of higher-arity rela-
tions [18], heavily investigated in the last 25 years. GF is not only well-behaved both computationally [2]
and model-theoretically [19], but is also robust under extensions like fixed points [4] or semantically-
constrained guards [12]. It was studied also in the setting of knowledge representation in multiple
recent papers [20, 21, 22, 23, 24].
¬ Do we generalize any previously studied logics?
Yes, many of them. First, as GF encodes (via the standard translation, see e.g. Section 2.6.1 of Baader’s
textbook 2017) multi-modal and description logics [18], our logic also encodes (via an analogous
translation) ICPDL and its subfragments such as 𝒜ℒ𝒞reg or 𝒮ℛℐ (Horrocks et al. 2006). There also
exists a natural translation from (counting-free fragment of) 𝒟ℒℛreg (Calvanese et al. 2008) to RGF.
Second, there is a long tradition of studying GF extended with semantically-constrained guards [12],
i.e. distinguished relations (available only as guards) interpreted as transitive (Ganzinger et al. 1999)
or equivalence [27] relations, or as transitive [10] or equivalence (Kieroński et al. 2017) closures of
another relation (that may also appear only as a guard). As one can simulate transitive or equivalence
relation R with S+ and (S ∪ S−)* for a fresh relation S, our logic strictly extends all of the mentioned
logics. Moreover, the mentioned papers concerning transitive and equivalence closures only focused
on the extensions of GF2 (two-variable GF), and hence our logic lifts them (without ≈) to the case of
full GF and provides the tight complexity bound. Other ideas concern GF with exponentiation (regular
expressions that are composition of the same letter) [13] or associative compositional axioms [8] (i.e.
axioms R ∘ S ⊆ T where R, S,T occurring only in guards). Both of them can be easily simulated in
our framework. Finally, GF with conjunctions of transitive relations in guards [8] can be expressed in
RGF by employing ∩ operator. All of this makes RGF a desirable object of study.



¬ Are there any closely related but incomparable logics?
The closest logic is the Unary Negation Fragment [28] with regular-path expressions [29]UNreg, together
with its very recent generalizations with transitive closure operators [30] and guarded negation [31]. All
of these logics share 2ExpTime complexity of their (formula) satisfiability problem, but their expressive
powers are incomparable. Indeed, RGF is not able to express conjunctive queries, while the other logics
cannot express that R*-reachable elements are B-connected. Yet another related logic is GNFPup by
Benedikt et al. 2016, which extends the guarded (negation) fragment [33] with fixed-point operators
with unguarded parameters. The syntax of GNFPup is complicated, but the logic seems to embed
ICPDL. Unfortunately, according to our understanding, such an encoding leads to a non-constant
“pdepth” of the resulting formulæ, leading to a non-elementary fragment of the logic. The expressive
powers of GNFPup and RGF are again incomparable and the separating examples are as before.

4. Our Logic
We work with structures over a fixed countably-infinite equality- and constant-free relational signature
Σ := ΣFO ·∪ ΣR , where all predicates in ΣR , called regular predicates, are binary. By mutual induction,
we define both RGF-programs and RGF-formulæ.

Definition 1 (RGF). RGF-programs are given by the grammar:

𝜋, 𝜌 ::= B | B̄ | 𝜋∘𝜌 | 𝜋∪𝜌 | 𝜋∩𝜌 | 𝜋* | 𝜋+ | 𝜙?,

where B ∈ ΣR and 𝜙 is an RGF-formula with a sole free variable. An RGF-guard 𝜗 for a formula 𝜙 is

either an atom over ΣFO or 𝜋(𝑥𝑦) for some RGF-program 𝜋, such that free variables of 𝜗 include all free

variables of 𝜙. The set RGF of RGF-formulæ is defined with the grammar:

𝜙,𝜙′ ::= A(𝑥̄) | ¬𝜙 | 𝜙 ∧ 𝜙′ | ∃𝑥𝜙(𝑥) | ∃𝑥̄(𝜗 ∧ 𝜙),

where A ∈ ΣFO and 𝜗 is an RGF-guard for 𝜙. The semantics of RGF-programs is:

Name Syntax of 𝜋 Semantics 𝜋A of 𝜋 in a structure A

Test / Predicate 𝜙? / B {(a, a) | A |= 𝜙[a]} / Binary relation
Converse operator 𝜋̄ {(b, a) | (a,b) ∈ 𝜋A}
Concatenation 𝜋∘𝜌 {(a, c) | ∃b.(a,b) ∈ 𝜋A ∧ (b, c) ∈ 𝜌A}
Union / Intersection 𝜋∪𝜌 / 𝜋∩𝜌 𝜋A ∪ 𝜌A / 𝜋A ∩ 𝜌A

Kleene star/plus 𝜋* / 𝜋+
⋃︀∞

𝑖=0(𝜋
𝑖)A /

⋃︀∞
𝑖=1(𝜋

𝑖)A,
where 𝜋0 := ⊤? and 𝜋𝑖+1 := (𝜋𝑖) ∘ 𝜋.

◀

Our logic generalizes a plethora of extensions of GF with semantically-constrained guards (consult
the introduction). For instance, transitive and equivalence relations in guards can be simulated in
RGF using R+ and (R ∪ R̄)* for a fresh binary relation R. Hence, GF+TG, the extension of GF with
transitive guards, is a fragment of RGF. We explain our design choices.

¬ Why is the signature separated, i.e. Σ := ΣFO ·∪ ΣR?
To ensure that binary predicates from ΣR appear only in guards; otherwise, even the two-variable
guarded fragment with transitivity is undecidable [6, Th. 2].
¬ Why is the equality symbol ≈ excluded from Σ?
Its inclusion makes our logic undecidable, already for GF2 with compositional axioms [8, Th. 5.3.1],
conjunctions of transitive guards [8, Th. 5.3.2], or exponentiation [13, Th. 3.1].
¬ Why are constant symbols excluded from Σ?
They are expected to preserve decidability, especially given that the key theorem of 2ExpTime-
completeness of ICPDL [34, Th. 3.28] extends to Hybrid ICPDL.



5. Future Work
Future work may proceed along two directions. One promising path is to extend the ICPDL-based
guards to more expressive formalisms, such as linear Datalog or non-binary transitive closure opera-
tors. This would help eliminate the asymmetry between the binary nature of regular guards and the
higher-arity relations allowed in GF. The alternative path is to tackle the finite satisfiability problem for
RGF. This problem is very challenging—even for minimal fragments of ICPDL like LoopPDL—and
has resisted resolution for over 40 years, indicating that significant breakthroughs and new tech-
niques will be required. A more pragmatic direction is to study fragments of RGF with the FMP
(the finite model property). While formulæ like ∀𝑥1∃𝑥2R(𝑥1𝑥2) combined with either ¬∃𝑥1R+(𝑥1𝑥1)
or ∀𝑥1𝑥2(R+(𝑥1𝑥1) → B(𝑥1𝑥2) ∧ ¬B(𝑥2𝑥1)) destroy the FMP by enforcing infinite, non-loopable
R-chains, one may hope that fluted RGF retains it. With similar counter-examples we show:

Lemma 1. For the set of allowed operators Op being either {·+, ?}, {·+, ·*}, {·+, ·̄}, or {·+, ∘} we have

that the fluted RGF with the operators in programs restricted to these from Op does not have the finite

model property. ◀

We can already prove that FRGF[·+] has the FMP and we are currently trying to extend our ap-
proach to FRGF[·+,∩,∪]. More details are coming soon!
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