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Abstract
This extended abstract summarizes our KR’25 paper [1], where we introduce a declarative rule-based framework

for specifying and computing a priority relation between conflicting facts. As the expressed preferences may

contain undesirable cycles, we consider the problem of determining when a set of preference rules always yields

an acyclic relation, and we also explore a pragmatic approach that extracts an acyclic relation by applying various

cycle removal techniques. As a step towards an end-to-end system for querying inconsistent knowledge bases, we

present a preliminary implementation and experimental evaluation of the framework, which employs answer set

programming to evaluate the preference rules, apply the desired cycle resolution techniques to obtain a priority

relation, and answer queries under prioritized-repair semantics.
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1. Introduction

Inconsistency-tolerant semantics are a well-established approach to querying data inconsistent

w.r.t. some constraints, both in the relational database and ontology-mediated query answering settings

(cf. recent surveys [2, 3]). Such semantics typically rely on (subset) repairs, defined as maximal subsets

of the data consistent w.r.t. the constraints. The most well-known, called the AR semantics in the KR

community and corresponding to consistent query answering in the database community, considers

that a Boolean query holds true if it holds in every repair. The more cautious IAR semantics amounts to

querying the repairs intersection, and the less cautious brave semantics only requires that the query

holds in some repair.

Since an inconsistent dataset may have a lot of repairs, several notions of preferred repairs have been

proposed in the literature, to restrict the possible worlds considered to answer queries, for example by

taking into account some information about the reliability of the data [4, 5, 6, 7, 8]. In particular, since its

introduction by [9], the framework of prioritized databases, in which a (binary acyclic) priority relation
between conflicting facts is used to define three kinds of optimal repairs, has attracted attention, with

numerous theoretical results [10, 11, 12, 13], and an implementation [14]. However, the crucial question

of obtaining the priority relation was left unaddressed, preventing the adoption of this framework in

practice. Indeed, it is not realistic to expect users to manually input a binary relation between the facts.

2. Specifying Priority Relations via Rules

We propose a framework for specifying a priority relation between conflicting facts. We use preference

rules to state that, when some conditions are satisfied, a fact should generally be preferred to another
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fact. The rule conditions may naturally refer to the presence (or absence) of facts in the dataset. However,

typically we may also want to exploit information about the facts themselves (e.g. the date they were

added), provided in metadata.

Example 1. Consider a DL knowledge base 𝒦ex = (𝒟ex, 𝒯ex) about a university. The ontology expresses
that associate and full professors (APr and FPr) are faculty members (Fac) and clerical staff workers
(Cleric) are administrative staff workers (Adm). Moreover, one cannot be both an associate and a full
professor, or an administrative staff worker and a faculty member.

𝒯ex = {APr ⊑ Fac,FPr ⊑ Fac,APr ⊑ ¬FPr, ∃Teach ⊑ Fac,Cleric ⊑ Adm,Adm ⊑ ¬Fac}
𝒟ex = {APr(𝑎),FPr(𝑎),Cleric(𝑎),Adm(𝑎),Teach(𝑎, 𝑐),Adm(𝑏),APr(𝑏)}

We associate to 𝒦ex a meta-database ℳex = (idex,ℱex), where idex is a function that associates an iden-
tifier to each fact of 𝒟ex: idex(APr(𝑎)) = 1, idex(FPr(𝑎)) = 2, idex(Cleric(𝑎)) = 3, idex(Adm(𝑎)) = 4,
idex(Teach(𝑎, 𝑐)) = 5, idex(Adm(𝑏)) = 6, idex(APr(𝑏)) = 7, and ℱex records the year that facts have
been added to the university database:

{Date(1, 2014),Date(2, 2025),Date(3, 2013), <(2013, 2014), <(2013, 2025), <(2014, 2025)}.

We then define the following preference rules.

Date(𝑥1, 𝑦1)∧Date(𝑥2, 𝑦2)∧<(𝑦2, 𝑦1)→pref(𝑥1, 𝑥2)

𝑥1 = id(FPr(𝑦)) ∧ 𝑥2 = id(APr(𝑦)) → pref(𝑥1, 𝑥2)

𝑌 ⊑ Adm ∧ 𝑍 ⊑ Fac ∧ ¬(∃𝑧Teach(𝑦, 𝑧)) ∧ 𝑥1 = id(𝑌 (𝑦)) ∧ 𝑥2 = id(𝑍(𝑦))→ pref(𝑥1, 𝑥2)

The first rule states a general preference for keeping more recently added facts. The second one states if we
have both FPr(𝑝) and APr(𝑝), we prefer to keep FPr(𝑝), capturing the domain knowledge that associate
professors are promoted into full professors. The third rule states that if a person is declared to belong both
to a subclass of Adm and a subclass of Fac, but there is no Teach-fact for the person in the dataset, then the
Adm-related facts are deemed more reliable. Observe that it uses ontology axioms with variables in order
to simplify rule formulation (avoiding the need to write separate rules for every pair of subclasses of Adm
and Fac). These three preference rules induce the following preferences over the facts of 𝒟ex, designated by
their identifiers:

{pref(2, 1), pref(2, 3), pref(1, 3), pref(6, 7)}.

Given a set of preference rulesΣ, let≻Σ be the binary relation over facts obtained from the preferences

over facts induced by Σ, restricted to facts that appear together in some conflict (minimal set of facts

inconsistent with the logical theory 𝒯 ). This relation may still fail to be a priority relation if it contains

a cycle, as priority relations are required to be acyclic. We explore two complementary approaches to

tackling this issue: identifying preference rules which are guaranteed to yield an acyclic relation, and

employing different methods to extract an acyclic sub-relation from ≻Σ.

Checking acyclicity of preference rules We show that, given a logical theory 𝒯 , the problem of

deciding whether a set of preference rules Σ yields an acyclic ≻Σ for every dataset and meta-database

is undecidable in general. However, for DL-Lite ontologies and preference rules whose bodies are

essentially conjunctive queries, this problem is in coNP.

Resolving cycles to get a priority relation Ideally the preference ruleset Σ would always yield an

acyclic ≻Σ, but this cannot be assumed in general. Furthermore, cycles can naturally arise when users

create rules that capture different criteria, e.g. prefer more recent facts and prefer facts from more

trusted sources. To ensure acyclicity in such cases, one would need to create more complex rules whose

bodies consider different combinations of the criteria, making rules much harder for users to specify

and understand. We thus advocate a pragmatic approach: give users free rein to specify preferences

as they see fit, then apply cycle resolution techniques to extract a suitable acyclic sub-relation should

any cycles arise. To allow for a more fine-grained specification of the preferences, we assume that Σ is



partitioned into priority levels Σ1, . . . ,Σ𝑛, so that a preference induced by a preference rule from Σ𝑖 is

considered more important than one induced by a preference rule from Σ𝑗 with 𝑗 > 𝑖, and will thus be

preferably kept in the cycle elimination process. Given two facts 𝛼 and 𝛽 such that 𝛼 ≻Σ 𝛽, we denote

by level(𝛼, 𝛽) the minimal index 𝑖 such that 𝛼 ≻Σ𝑖 𝛽. We consider four cycle resolution techniques:

• Going up (≻𝑢
): Let ≻𝑢:= ∅ and 𝑖 := 1. Then while ≻𝑢∪≻Σ𝑖 is acyclic, let ≻𝑢:=≻𝑢∪≻Σ𝑖 and

increment 𝑖.

• Going down (≻𝑑
): Let ≻𝑑:=≻Σ and 𝑖 := 𝑛. Then while ≻𝑑

is cyclic, let ≻𝑑:=≻𝑑 ∖{(𝛼, 𝛽) |
level(𝛼, 𝛽) = 𝑖, (𝛼, 𝛽) is in a cycle w.r.t. ≻𝑑} and decrement 𝑖.

• Refined going up (≻𝑟𝑢
): Let ≻𝑟𝑢:=≻Σ1 , then remove every (𝛼, 𝛽) that occurs in a cycle w.r.t.

≻Σ1 . Then for 𝑖 = 2 to 𝑛, add to ≻𝑟𝑢
all pairs (𝛼, 𝛽) such that level(𝛼, 𝛽) = 𝑖 and (𝛼, 𝛽) does

not belong to any cycle w.r.t. ≻𝑟𝑢∪≻Σ𝑖 .

• Grounded (≻𝑔
): Let ≻𝑔:= ∅. Then until a fixpoint is reached, add to ≻𝑔

all pairs (𝛼, 𝛽) such

that 𝛼 ≻Σ 𝛽 and for every cycle 𝑐 of ≻Σ containing (𝛼, 𝛽), either there is (𝛾, 𝛿) ∈ 𝑐 such that

level(𝛼, 𝛽) < level(𝛾, 𝛿), or there is (𝛾, 𝛿) ∈ 𝑐 such that ≻𝑔 ∪{(𝛾, 𝛿)} is cyclic.

We relate these cycle removal strategies to notions that have been proposed in the literature to

select a single consistent set of facts from a knowledge base whose dataset is partitioned into priority

levels [15, 12], and show that ≻𝑢⊆≻𝑑⊆≻𝑔
and ≻𝑢⊆≻𝑑⊆≻𝑟𝑢

, and that each of these relations can be

computed in polynomial time from the relations ≻Σ𝑖 .

3. ASP Implementation and Experiments

We implement our approach using answer set programming (ASP) [16, 17] to evaluate the preference

rules, apply the desired cycle resolution techniques to obtain a priority relation, and answer queries

under optimal repair-based semantics (AR, IAR or brave semantics based on Pareto- or completion-

optimal repairs), towards an end-to-end system for querying inconsistent knowledge bases. Our system

takes as input logic programs representing the input, and computes the query answers under the chosen

semantics w.r.t. ≻𝑥
for the chosen 𝑥 ∈ {𝑢, 𝑑, 𝑟𝑢, 𝑔}. All building blocks can be encoded into ASP

programs that a Python program combines and passes to the ASP solver clingo [18] to check whether

the resulting program has a stable model. However, we found more efficient in practice to split the

computation into several steps and implement some of them in Python. Our approach applies to any

logical theory 𝒯 such that:

1. there exists a set Inc(𝒯 ) of rules of the form 𝑞 → ⊥ with 𝑞 a Boolean CQ, such that for every

dataset 𝒟, (𝒟, 𝒯 ) |= ⊥ iff there exists 𝑞 → ⊥ ∈ Inc(𝒯 ) such that 𝒟 |= 𝑞; and

2. for every CQ 𝑞(𝑥⃗) there exists a set Rew(𝑞, 𝒯 ) of rules of the form 𝑞′(𝑥⃗) → 𝑞(𝑥⃗) with 𝑞′ a CQ

such that for every 𝒟 s.t. (𝒟, 𝒯 ) ̸|= ⊥ and tuple 𝑎⃗, (𝒟, 𝒯 ) |= 𝑞(𝑎⃗) iff there exists 𝑞′(𝑥⃗) → 𝑞(𝑥⃗) ∈
Rew(𝑞, 𝒯 ) s.t. (𝒟, 𝒯 ) |= 𝑞′(𝑎⃗).

These conditions are fulfilled, e.g., when 𝒯 is a set of denial constraints (then, Inc(𝒯 ) = 𝒯 and

Rew(𝑞, 𝒯 ) = {𝑞 → 𝑞}), or when 𝒯 is a DL-Lite ontology. Regarding preference rules, we handle rules

whose bodies are CQs with negation and comparison operators. We expect that the KB 𝒦 = (𝒟, 𝒯 ),
meta-database ℳ = (id,ℱ), preference rules Σ = Σ1 ∪ · · · ∪ Σ𝑛, and query 𝑞 are all given as ASP

programs.

Our main goal is to compare the different approaches to obtaining a priority relation from preferences

rules, in terms of run time and size of the priority relation. We also compare our ASP implementation

of the optimal repair-based semantics with orbits, the existing SAT-based implementation. We use the

CQAPri benchmark [19], a synthetic benchmark adapted from LUBM
∃
20 [20] to evaluate inconsistency-

tolerant query answering over DL-Lite KBs. We also consider its extension with two priority relations

given by the orbits benchmark [14] for the comparison with orbits, and add a denial constraint to

experiment with non-binary conflicts. For the meta-data, we randomly generate facts of the form

date(id(𝛼), 𝑛), source(id(𝛼), 𝑘) and reliability(𝑘,𝑚). We define four preference rules which



express that one prefers more recent facts, facts with a more reliable source, FPr(𝑦) over APr(𝑦) facts,

and APr(𝑦) over GrSt(𝑦) facts, and partition the rules in one, two or three priority levels.

We were not able to compute ≻𝑟𝑢
even on the simplest case because it overflows the number of

atoms clingo can handle. However, we managed to compute the other priority relations for almost all

small datasets (>75K) and several medium size datasets (>463K), even in cases with a large proportion

of facts in conflict. Interestingly, on all instances for which we computed them, ≻𝑔
never compares

more than 5% more pairs of facts than ≻𝑑
, while ≻𝑢

is often reduced to the empty relation. From a

computational point of view, ≻𝑑
is significantly faster to compute than ≻𝑔

and ≻𝑢
. This indicates

that ≻𝑑
may be a good method to use in practice. Regarding the computation of optimal repair-based

semantics, our system is by far slower than orbits. However, we note that we manage to answer some

queries under AR and brave semantics based on completion-optimal repairs when orbits runs out of

time or memory.
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