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Abstract
Recent work on quantitative approaches to explaining query answers employs responsibility measures to assign
scores to facts in order to quantify their respective contributions to obtaining a given answer. This extended
abstract summarizes our KR 2025 paper on the complexity of computing such responsibility scores in ontology-
mediated query answering, focusing on a very recently introduced family of Shapley-value-based responsibility
measures defined in terms of weighted sums of minimal supports.
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The question of how to explain query answers has received significant attention in both the database
and ontology settings. Qualitative notions of explanation, based e.g. on minimal supports or proofs, have
been more extensively explored, in particular in the ontology setting, cf. [1, 2, 3, 4, 5]. However, there
has been recent interest in quantitative notions of explanation based upon responsibility measures, which
assign scores to the dataset facts to quantify their respective contributions to obtaining a given answer.
Prior work on responsibility measures for query answers has predominantly focused on the so-called
‘drastic Shapley value’ [6, 7, 8, 9, 10, 11, 12, 13]. This measure, which originates from cooperative game
theory, was motivated by the appealing theoretical characterization of the Shapley value as being the
only wealth distribution mechanism respecting certain guarantees, known as ‘Shapley axioms’ [14].

Unfortunately, the computation of the drastic Shapley value is generally intractable (#P-hard in
data complexity), even in the absence of ontologies and for very simple (conjunctive) queries [6, 11].
Furthermore, it has recently been argued in [15] that: (i) not all Shapley axioms yield desirable properties
when translated into the query answering setting, and (ii) the genuinely desirable properties for
responsibility measures of query answers do not pinpoint a single best score function. In light of this,
[15] has very recently proposed a family of responsibility measures, based on weighted sums of minimal
supports (WSMS), where the score of a fact is defined as a weighted sum of the sizes of the query’s
minimal supports containing it. The cited work shows that WSMS satisfy several desirable properties
and that they enjoy more favourable computational properties compared to the drastic Shapley value in
the database setting. Furthermore, it has been proven that WSMS can also be defined as the Shapley
value of suitable cooperative games.

The positive results for WSMS in the database setting motivate us to investigate the complexity of
computing WSMS responsibility scores in the more challenging setting of ontology-mediated query
answering (OMQA) [16, 17, 18]. For this first study of WSMS in the OMQA setting, we focus on
description logic (DL) ontologies [19], paying particular attention to DLs of the DL-Lite family [20],
which are the most commonly adopted in OMQA, due to their favourable computational properties. We
thus consider ontology-mediated queries (OMQs) of the form (𝒯 , 𝑞), where 𝒯 is formulated in a DL and
𝑞 is a conjunctive query (CQ) or atomic query (AQ).

In what follows, we introduce the considered responsibility measures and briefly summarize the
obtained results. We assume familiarity with basic notions in databases, DLs, and OMQA.
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Responsibility Measures for Query Answers

Although we shall be interested in employing responsibility measures to quantify the contribution
of facts to obtaining an answer 𝑎⃗ to a query 𝑞(𝑥⃗), it will actually be more convenient to consider the
equivalent task of quantifying contributions to satisfying the associated Boolean query 𝑞(𝑎⃗) (obtained
by instantiating the free variables 𝑥⃗ of 𝑞 with 𝑎⃗).

We shall further focus on monotone Boolean queries, defined in the database setting as queries 𝑞 such
that 𝒟1 |= 𝑞 ⇒ 𝒟2 |= 𝑞 whenever 𝒟1 ⊆ 𝒟2. Such queries notably include the class of homomorphism-
closed queries, which covers most well-known classes of OMQs. Note that a natural qualitative approach
to explaining why a monotone Boolean query 𝑞 holds in a database 𝒟 is to consider the set MS𝑞(𝒟) of
minimal supports of 𝑞 in 𝒟, defined as the inclusion-minimal subsets 𝒟′ ⊆ 𝒟 such that 𝒟′ |= 𝑞.

Our focus will be on providing quantitative explanations in the form of responsibility measures, which
are functions that assign a score to every fact in the data, reflecting their contributions to making the
query hold. Such measures have been formally defined, in the database setting, as ternary functions 𝜑
that take as input a database 𝒟, a (Boolean) query 𝑞 and a fact 𝛼 ∈ 𝒟, and output a numerical value. As
this definition is extremely permissive, [15, §4.1] identifies a set of desirable properties that 𝜑 ought
to satisfy. While the formal definitions are rather technical and outside the scope of this paper, these
properties intuitively state: (Sym-db) if two facts are interchangeable w.r.t. the query, they should have
equal responsibility; (Null-db) if a fact 𝛼 ∈ 𝒟 is irrelevant in the sense that 𝑆∪{𝛼} |= 𝑞 iff 𝑆 |= 𝑞 for all
𝑆 ⊆ 𝒟, then 𝜑(𝒟, 𝑞, 𝛼) = 0, otherwise 𝜑(𝒟, 𝑞, 𝛼) > 0; and (MS1) (resp. (MS2)) all other things being
equal, a fact that appears in smaller (resp. more) minimal supports should have higher responsibility.

The notions of responsibility measures and minimal supports straightforwardly translate into the
OMQA setting: take the ABox as the database and use an OMQ (𝒯 , 𝑞) for the query.

Shapley-Based Responsibility Measures

The responsibility measures considered in our work are based on the Shapley value. Originally defined
in [14], it takes as input a cooperative game consisting of a finite set 𝑃 of players and a wealth function
𝜉 : 2𝑃 → Q that assigns a value to each coalition (ie, set) of players, with 𝜉(∅) = 0. The Shapley value
then assigns to each player 𝑝 ∈ 𝑃 a value Sh(𝑃, 𝜉, 𝑝) that should be seen as a ‘fair share’ of the total
wealth 𝜉(𝑃 ) of the game that should be awarded to a player 𝑝 based upon the respective contributions
of all players.

To obtain a responsibility measure from the Shapley value, one needs to model the input instance
(𝒟, 𝑞) as a cooperative game (𝑃, 𝜉). The set 𝑃 contains the elements that will receive a score, hence it
should naturally be the set 𝒟 itself. As for the wealth function, it must assign a numerical score to every
database, reflecting in some way the satisfaction of the query. Formally, one needs to provide a wealth
function family Ξ⋆ which associates a wealth function 𝜉⋆𝑞 with each query 𝑞. A responsibility measure
can be straightforwardly obtained by applying the Shapley value to the game (𝒟, 𝜉⋆𝑞 ): 𝜑(𝒟, 𝑞, 𝛼) :=
Sh(𝒟, 𝜉⋆𝑞 , 𝛼).

The first wealth function family that was considered in the literature is Ξdr, defined by: 𝜉dr
𝑞 (𝒟) := 1

if 𝒟 |= 𝑞 and 0 otherwise [6], which gives rise to the drastic Shapley value Sh(𝒟, 𝜉dr
𝑞 , 𝛼). In fact, Ξdr

was until recently the only wealth function used to define Shapley-based responsibility measures for
Boolean queries. Very recently, however, a new family of responsibility measures called weighted sums
of minimal supports (WSMSs) has been defined as:

𝜑𝑤
wsms(𝒟, 𝑞, 𝛼) :=

∑︁
𝑆∈MS𝑞(𝒟)

𝛼∈𝑆

𝑤(|𝑆|, |𝒟|)

based upon some weight function 𝑤 : N × N → Q [15]. It has been shown that all such measures
can be equivalently defined via the Shapley value: for every weight function 𝑤, there exists a wealth
function family Ξ𝑤 such that 𝜑𝑤

wsms(𝒟, 𝑞, 𝛼) = Sh(𝒟, 𝜉𝑤𝑞 , 𝛼) [15, Proposition 4.4].
The wealth function family Ξms := Ξ𝑤 induced by the inverse weight function 𝑤 : (𝑛, 𝑘) ↦→ 1/𝑛 is of

particular interest as its wealth function 𝜉ms
𝑞 (𝒟) is simply the number of minimal supports for 𝑞 in 𝒟,
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Figure 1: Left: Example KB about a recipe from [21]. Arrows represent role assertions and box labels (e.g. Fish)
indicate concept assertions. Right: Values of Sh(𝒟, 𝜉⋆𝑞 , ·) for assertions in the example KB.

which constitutes a very natural measure of how ‘robust’ the entailment 𝒟 |= 𝑞 is. Observe however
that the weight function 𝑤 can be adjusted to suit the needs of particular settings by giving more or
less weight to the size of the minimal supports relative to their numbers (intuitively tuning the relative
importance of (MS1) and (MS2)).

The Shapley values obtained from Ξdr and from Ξ𝑤 (for any positive and non-decreasing 𝑤) yield
responsibility measures that satisfy the properties (Sym-db)–(MS2) [15, Propositions B.1 and B.2]. As
the following example illustrates, however, these measures do not always coincide, as the properties do
not identify a unique ‘reasonable’ responsibility measure.

Example 1. Consider the DL-Litecore KB (𝒜, 𝒯 ) whose TBox 𝒯 contains the following axioms:

∃hasIng.FishBased ⊑ FishBased, hasGrnsh ⊑ hasIng,Seafood ⊑ FishBased,Fish ⊑ FishBased

and whose ABox 𝒜 is depicted in Figure 1. We take the query 𝑞 := FishBased(𝑐𝑎𝑛𝑐𝑎𝑙𝑎𝑖𝑠𝑒𝑆𝑜𝑙𝑒). There
are 3 minimal supports for the OMQ 𝑄 := (𝒯 , 𝑞) in 𝒜: {𝑓1, 𝑓2}, {𝑓3, 𝑓4, 𝑓5} and {𝑓3, 𝑓6, 𝑓7}. Although
the properties (Sym-db)–(MS2) enforce many conditions, they do not restrict the relative values of 𝑓1
and 𝑓3. Indeed, we can observe in Figure 1 that Sh(𝒟, 𝜉dr𝑞 , 𝑓1) > Sh(𝒟, 𝜉dr𝑞 , 𝑓3), but Sh(𝒟, 𝜉ms

𝑞 , 𝑓1) <
Sh(𝒟, 𝜉ms

𝑞 , 𝑓3). Note for example that Sh(𝒟, 𝜉ms
𝑞 , 𝑓3) = 1/3+ 1/3 since 𝑓3 is in two minimal supports, both

of size 3, and hence each contributing 1/3.

Following [15], for any wealth function family Ξ⋆ and class 𝒞 of queries, we denote by SVC⋆
𝒞 the

problem of computing Sh(𝒟, 𝜉⋆𝑞 , 𝛼) given any database 𝒟, fact 𝛼 ∈ 𝒟, and query 𝑞 ∈ 𝒞. We also
consider the problem SVC⋆

𝑞 associated with a single fixed query 𝑞. Our focus in this paper will be on
the case Ξ⋆ = Ξ𝑤 for some weight function 𝑤, in particular Ξms, in which case we will speak of WSMS
computation. Moreover, we shall study these tasks in the OMQA setting, so 𝒞 will be a class (ℒ,𝒬) of
OMQs, and 𝑞 will be a particular OMQ 𝑄.

Summary of Contributions

Our results show that the good computational behaviour of WSMS in the database setting [15] ex-
tends to some relevant classes of OMQs. This is in sharp contrast to the intractability of the drastic
Shapley measure considered in the database [6, 11] and ontology [13] settings. More precisely, WSMS
computation is tractable in data complexity for UCQ̸=-rewritable OMQs:

Theorem 1. SVC𝑤
𝑄 ∈ FP for every tractable weight function 𝑤 and every Boolean OMQ 𝑄 that is

UCQ̸=-rewritable. In particular, SVC𝑤
(DL-Liteℛ,UCQ) enjoys FP data complexity.

We show in fact that WSMS computation for such OMQs can be implemented using relational database
systems via simple SQL queries.

We also identify DL constructs that render WSMS computation intractable. In particular, we show
that the data complexity becomes #P-hard for classes of OMQs capturing reachability:



Theorem 2. Let 𝑤 be a reversible tractable weight function, and ℒ be any DL that can express the axiom
∃𝑟.𝐴 ⊑ 𝐴. Then, there exists an OMQ 𝑄 ∈ (ℒ,AQ) such that SVC𝑤

𝑄 is #P-hard.

Furthermore, the presence of concept conjunction, present in lightweight DLs like as ℰℒ and Horn
dialects of DL-Lite, leads to #P-hardness in combined complexity, again already for AQs.

For common DL-Lite dialects that do not admit conjunction, we obtain tractable combined complexity
for OMQs based upon atomic queries. Furthermore, by means of careful analysis, we are able to identify
classes of structurally restricted conjunctive queries that admit tractable WSMS computation, via
reduction to the atomic case. We omit the formal definition of interaction-free OMQs, but intuitively
they disallow undesirable interactions between query atoms and suitably generalize the self-join-free
condition employed in the database setting.

Theorem 3. Let 𝑤 be a tractable weight function and 𝒞 be a subclass of interaction-free OMQs from
(DL-Liteℛ,CQ) such that {𝑞 | (𝒯 , 𝑞) ∈ 𝒞} has bounded treewidth. Then SVC𝑤

𝑄 is in FP for combined
complexity.

The preceding theorem cannot be obtained by simply rewriting the OMQ and applying results from
the database setting (indeed, there are no known tractability results for UCQs). Instead, it is necessary
to exploit properties of canonical models of DL-Liteℛ KBs. It is an interesting open question whether
Theorem 3 can be extended to linear existential rule ontologies.
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