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Abstract
We study the problem of fitting ontologies and constraints to positive and negative examples that take the form

of a finite relational structure. As ontology and constraint languages, we consider the description logics ℰℒ
and ℰℒℐ as well as several classes of tuple-generating dependencies (TGDs): full, guarded, frontier-guarded,

frontier-one, and unrestricted TGDs as well as inclusion dependencies. We pinpoint the exact computational

complexity, design algorithms, and analyze the size of fitting ontologies and TGDs. We also investigate the related

problem of constructing a finite basis of concept inclusions / TGDs for a given set of finite structures.
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In a fitting problem, one is given a set of positive and negative examples, each of which takes the form

of a logical structure, and the task is to produce a logical formula that is satisfied by every positive

example and refuted by every negative example. Problems of this form play a fundamental role in

several applications. A prime example is the classic paradigm of query by example, also known as query

reverse engineering [1, 2, 3]. In that case, the positive and negative examples are database instances and

the formula to be constructed is a database query. In concept learning in description logics (DLs) [4, 5, 6],

the examples are ABoxes and the formula sought is a DL concept to be used as a building block in an

ontology. We remark that fitting problems are intimately connected to PAC learning by the fundamental

theorem of computational learning theory. A third example application is entity comparison [7, 8]

where the examples are knowledge graphs and one wants to find a formula that takes the form of a

SPARQL query.

This extended abstract is a summary of our recent work, in which we study fitting problems that

aim to support the construction of ontologies and database integrity constraints [9]. We investigate (i)

ontologies formulated in the DLs ℰℒ, ℰℒℐ , or an existential-rule language, and (ii) database constraints

taking the form of tuple-generating dependencies (TGDs). In ℰℒ and ℰℒℐ , an ontology is a set of concept

inclusions (CIs), each of which can be translated into an equivalent TGD. Moreover, ‘existential rule’

and ‘TGD’ refer to the same thing, so from now on we speak of TGDs also in the context of ontologies.

From our perspective there is in fact no difference between an ontology and a set of constraints: any

set of TGDs can be used as an ontology when an open world semantics is adopted and as a set of

constraints under a closed world semantics. As constraint / ontology languages we consider ℰℒ- and

ℰℒℐ-CIs, their extensions with ⊥, unrestricted TGDs, and the following restricted classes of TGDs: full

(FullTGD), guarded (GTGD), frontier-guarded (FGTGD), and frontier-one (F1TGD), as well as inclusion

dependencies (IND).

Let us be more precise about the fitting problems that we study. In our setting the examples are finite

relational structures that we refer to as instances. An instance 𝐼 is a finite set of facts, where a fact

𝑅(𝑎1, . . . , 𝑎𝑛) consists of an 𝑛-ary relation symbol 𝑅 and values 𝑎1, . . . , 𝑎𝑛. The active domain of 𝐼
is the set of all values that occur in any fact of 𝐼 . A pointed instance is a pair (𝐼, 𝑎̄), consisting of an

instance 𝐼 and a finite tuple of values 𝑎̄. In the DL case, the considered instances may only contain facts
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using unary and binary relation symbols. Let ℒ be one of the TGD classes mentioned above (including

ℰℒ(ℐ)-CIs). Further let (P,N) be a pair of finite sets of instances, henceforth called a fitting instance.

We say that an ℒ-ontology 𝒪 fits (P,N) if 𝑃 |= 𝒪 for all 𝑃 ∈ P and 𝑁 ̸|= 𝒪 for all 𝑁 ∈ N. For a single

ℒ-TGD 𝜌, fitting (P,N) is defined in exactly the same way. The induced decision problems of fitting
ℒ-ontology existence and fitting ℒ-TGD existence ask whether a given (P,N) admits a fitting ℒ-ontology

or a fitting ℒ-TGD. We also consider the corresponding construction problems, where the goal is to

construct a fitting ℒ-ontology or a fitting ℒ-TGD for (P,N), if one exists.

Example 1. Consider the instances 𝑃 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎)}, 𝑁 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑐), 𝑅(𝑐, 𝑎)}. Then
({𝑃}, {𝑁}) has no fitting ℰℒℐ-CI, but it has fitting GTGDs such as

𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥).

Now let 𝑁 ′ = 𝑁 ∪ {𝑅(𝑏, 𝑎), 𝑅(𝑐, 𝑏), 𝑅(𝑎, 𝑐)}. Then ({𝑃}, {𝑁 ′}) has no fitting GTGD. But it has fitting
FGTGDs such as

𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑧) ∧𝑅(𝑧, 𝑥) → 𝑅(𝑥, 𝑥).

Example 2. Having ⊥ or not makes a difference. Let 𝑃 = {𝑅(𝑎, 𝑏)}, 𝑁 = {𝑅(𝑎, 𝑎)}. Then ∃𝑅.∃𝑅.⊤ ⊑
⊥ fits ({𝑃}, {𝑁}), but ({𝑃}, {𝑁}) has no fitting ℰℒℐ-ontology.

All negative claims in Examples 1 and 2 are a consequence of the semantic characterizations for

fitting ℒ-TGD existence established in [9]. The characterization for ℰℒ⊥ and ℰℒℐ⊥ is explicitly stated

in Theorem 1 below.

How are fitting ontologies and fitting TGDs related? The following is an immediate consequence of

the definition of fitting and the semantics of ontologies and TGDs.

Lemma 1. Let (P,N) be a fitting instance. Then there is an ℒ-ontology that fits (P,N) if and only if for
every 𝑁 ∈ N, there is an ℒ-TGD that fits (P, {𝑁}).

Hence, if (P,N) admits a fitting ℒ-ontology, it admits one with at most |N| TGDs.

The problem of fitting an ontology to a given set of examples turns out to be closely related to a

problem that has been studied in the area of description logic and is known as finite basis construction

[10, 11, 12]. There, one fixes an ontology language ℒ and is given as input a finite instance 𝐼 and the task

is to produce an ℒ-ontology 𝒪 such that 𝐼 |= 𝜌 if and only if 𝒪 |= 𝜌, for all ℒ-TGDs 𝜌. We generalize

this problem to a finite set H of input instances. The following lemma connects finite basis construction

with fitting ℒ-ontology existence. Informally, it states that a finite basis of the positive examples is a

canonical candidate for a fitting ℒ-ontology.

Lemma 2. Let (P,N) be a fitting instance and let 𝒪P be a finite ℒ-basis of P. Then 𝒪P fits (P,N) if and
only if (P,N) has a fitting ℒ-ontology.

If finite ℒ-bases always exists, we can thus solve the ℒ-ontology fitting problem for any (P,N) by

constructing 𝒪P and checking whether it fits the input examples. This approach in fact often yields

decidability and tight upper complexity bounds.

We first consider the DLs ℰℒ and ℰℒℐ as well as their extensions with the ⊥ concept. We reprove the

existence of finite bases for ℰℒ, already known from [13, 10], and simultaneously prove that finite bases

exist also for ℰℒℐ which to the best of our knowledge is a new result. In contrast to the proofs from

[13, 10], our proofs are direct in that they do not rely on the machinery of formal concept analysis. The

constructed bases are of double exponential size, but can be succinctly represented in single exponential

size by structure sharing. We also show that these size bounds are tight, both for ℰℒ and for ℰℒℐ . We

obtain from this an ExpTime upper bound for the fitting existence problem for ℰℒ- and ℰℒℐ-ontologies.

In order to obtain lower complexity bounds, we provide a semantic characterization of fitting ℰℒ- and

ℰℒℐ-CI existence in terms of simulations and direct products. Let ℒ ∈ {ℰℒ, ℰℒℐ}. For unary pointed

instances (𝐼, 𝑎) and (𝐽, 𝑏) we write (𝐼, 𝑎) ⪯ℒ (𝐽, 𝑏) iff there exists an ℒ-simulation from 𝐼 to 𝐽 that

contains the pair (𝑎, 𝑏). Recall that an ℰℒ-simulation preserves concept names and the existence of



role-successors, whereas an ℰℒℐ-simulation must in addition preserve role-predecessors, reflecting

inverse roles. For a non-empty finite set H of instances with pairwise disjoint active domains, we use⨄︀
H to denote the instance

⋃︀
H. When the domains of the instances in H are not pairwise disjoint,

we assume that renaming is used to achieve disjointness before forming

⨄︀
H. We next present the

characterization for fitting ℰℒ⊥- and ℰℒℐ⊥-CI existence.

Theorem 1. Let ℒ ∈ {ℰℒ, ℰℒℐ}. Let (P,N) be a fitting instance where N = {𝑁1, . . . , 𝑁𝑘} and let
𝑃 =

⨄︀
P. Then no ℒ⊥-concept inclusion fits (P,N) if and only if for all 𝑎̄ = (𝑎1, . . . , 𝑎𝑘) ∈ ∆

∏︀
N, the

following condition is satisfied:

𝑆𝑎̄ = {(𝑃, 𝑏) | (
∏︁

N, 𝑎̄) ⪯ℒ (𝑃, 𝑏)} is non-empty and
∏︁

𝑆𝑎̄ ⪯ℒ (𝑁𝑖, 𝑎𝑖) for some 𝑖 ∈ [𝑘].

An extended version of Theorem 1, also covering the cases of ℰℒ and ℰℒℐ without ⊥ is provided

in [9]. The semantic characterization gives rise to an algorithm for fitting ℰℒ(ℐ)-CI existence and opens

up an alternative path to algorithms for fitting ℰℒ(ℐ)-ontology existence. It also enables us to prove

lower complexity bounds and we in fact show that all four problems are ExpTime-complete. The proof

of the theorem is constructive in the sense that it also yields an algorithm for fitting CI and fitting

ontology construction. Regarding fitting ontology existence and construction, Lemma 1 yields a simple

reduction to the CI fitting case that gives the desired results. We also prove tight bounds on the sizes of

fitting CIs and fitting ontologies, which are identical to the size bounds on finite bases described above.

We next turn to TGDs. For guarded TGDs, we implement exactly the same program described above

for ℰℒ(ℐ), but obtain different complexities. We show that finite GTGD-bases always exist and establish

a tight single exponential bound on their size. Succinct representation does not help to reduce the size.

We give a characterization of fitting GTGD existence and fitting GTGD-ontology existence in terms of

products and homomorphisms, show that fitting GTGD existence and fitting GTGD-ontology existence

is coNExpTime-complete, and give a tight single exponential bound on the size of fitting GTGDs and

GTGD-ontologies. The coNExpTime upper bound may be obtained either via finite bases or via the

semantic characterization.

For the remaining classes of TGDs, the approach via finite bases fails: for the frontier-guarded,

frontier-one, and full case, we prove that finite bases need not exist. For inclusion dependencies, finite

bases trivially exist but approaching fitting via this route does not result in an optimal upper complexity

bound. For unrestricted TGDs, the existence of finite bases is left open.

Theorem 2. For ℒ ∈ {FGTGD, F1TGD, FullTGD}, there exist instances that have no finite ℒ-basis.

Example 3. Consider the instance 𝐼 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎)}. It has no finite FGTGD- and no finite F1TGD-
basis. For every 𝑛 ≥ 1, consider the frontier-one TGD

𝜌𝑛 =
⋀︁

𝑖∈[𝑛−1]

𝑅(𝑥𝑖, 𝑥𝑖+1) ∧𝑅(𝑥𝑛, 𝑥1) → 𝑅(𝑥1, 𝑥1).

The TGD 𝜌𝑛 expresses that if 𝑥1 lies on a cycle of length 𝑛, then 𝑥1 has a reflexive loop. We have 𝐼 |= 𝜌𝑛
for all odd 𝑛 because (i) a cycle homomorphically maps to 𝐼 if and only if it is of even length and (ii) 𝐼
contains no reflexive loops. Note that the rule bodies of the TGDs 𝜌𝑛 with 𝑛 odd get larger with increasing
𝑛. Intuitively, this means that also the rule bodies of any finite FGTGD-basis of 𝐼 must be of unbounded
size, which means that there is no finite FGTGD-basis.

We may, however, still approach fitting existence in a direct way or via a semantic characterization.

For inclusion dependencies (IND), we use direct arguments to show that fitting IND existence and fitting

IND-ontology existence is NP-complete, and that the size of fitting IND-ontologies is polynomial. For

all remaining cases, we establish semantic characterizations in terms of products and homomorphisms

and then use them to approach fitting existence. In this way, we prove the following. Fitting ontology

existence and fitting TGD existence are coNExpTime-complete for TGDs that are frontier-guarded

or frontier-one. For full TGDs, fitting TGD existence is coNExpTime-complete and fitting ontology



existence is in Σ𝑝
2 and DP-hard. In the case of unrestricted TGDs, both problems are coNExpTime-hard

and we prove a co2NExpTime upper bound for fitting ontology existence and a co3NExpTime upper

bound for fitting TGD existence. We also show tight single exponential size bounds for fitting TGDs

and ontologies in the case of frontier-guarded and frontier-one TGDs. We do the same for fitting full

TGDs while if there is a fitting FullTGD-ontology, then there is always one of polynomial size. For

unrestricted TGD and TGD-ontology fittings, we give a single exponential lower bound and a triple (for

TGDs) and double (for ontologies) exponential upper bound on the size.
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