
Automated Planning with Ontologies under Coherence
Update Semantics (Extended Abstract)*

Stefan Borgwardt
1
, Duy Nhu

1
and Gabriele Röger

2

1Institute of Theoretical Computer Science, Technische Universität Dresden, 01062 Dresden, Germany
2Department of Mathematics and Computer Science, Universität Basel, 4001 Basel, Switzerland

Keywords
planning, coherence update semantics, compilation scheme, experiments, benchmarks

Automated planning is a core area within Artificial Intelligence that describes the development of

a system through the application of actions [3]. A planning task is defined by an initial state, a set

of actions with preconditions and effects on the current state, and a goal condition. States can be

seen as finite first-order (FO) interpretations, and all conditions are specified by FO-formulas that are

interpreted on the current state under closed-world semantics, i.e. absent facts are assumed to be false.

A (ground) action is applicable if its precondition is satisfied in the current state w.r.t. an assignment of

its variables. The objective is to select a sequence of applicable actions to reach the goal, called a plan.

To facilitate expressive reasoning in the standard closed-world planning formalisms, logical theories

under open-world semantics can be added to describe the possible interactions between objects of a

domain of interest. Particularly, we are interested in Description Logics (DLs) and their application in

reasoning about the individual states of a system. The main challenge is to reconcile the open-world

nature of DLs and the closed-world semantics employed in classical planning.

Explicit-input Knowledge and Action Bases (eKABs) combine planning with the description logic

DL-Lite [4]. There, states (ABoxes) are interpreted using open-world semantics w.r.t. a background
ontology (TBox) specifying intensional knowledge using DL-Lite axioms. The background ontology

describes constraints on the state and entails additional facts that hold implicitly. Such a planning

problem can be compiled into the classical planning domain definition language (PDDL) using query

rewriting techniques [4].

Example 1. Consider the following axioms and facts in a blocks world:

on_block ⊑ on, ∃on_block− ⊑ Block, funct on_block,
on_table ⊑ on, ∃on_table− ⊑ Table, Block ⊑ ¬Table,
Block ≡ ∃on, ∃on_block− ⊑ Blocked,

∃on_block ⊑ ¬∃on_table, on_block(𝑏1, 𝑏2), on_table(𝑏3, 𝑡)

Implicitly, we know that 𝑏2 is blocked (Blocked(𝑏2)) since 𝑏1 is on 𝑏2 (on_block(𝑏1, 𝑏2)) and every block
that has another block on top is blocked (∃on_block− ⊑ Blocked). On the other hand, we know that
on_block(𝑏1, 𝑏3) cannot hold, since the on_block relation is functional (funct on_block).

Consider now the action move(𝑥, 𝑦, 𝑧) that moves Block 𝑥 from position 𝑦 to 𝑧. Its precondition is
[on(𝑥, 𝑦)]∧¬[Blocked(𝑥)]∧¬[Blocked(𝑧)], where the atoms in brackets are evaluated w.r.t. the ontology
axioms (epistemic semantics). Its effects consist of

((), [Block(𝑦)], ∅, {¬on_block(𝑥, 𝑦)}),

∗

Full paper accepted at KR’25 [1, 2]

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ stefan.borgwardt@tu-dresden.de (S. Borgwardt); hoang_duy.nhu@tu-dresden.de (D. Nhu); gabriele.roeger@unibas.ch

(G. Röger)

� https://lat.inf.tu-dresden.de/~stefborg/ (S. Borgwardt); https://ai.dmi.unibas.ch/people/roeger/ (G. Röger)

� 0000-0003-0924-8478 (S. Borgwardt); 0009-0003-2220-3263 (D. Nhu); 0000-0002-0092-2107 (G. Röger)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:stefan.borgwardt@tu-dresden.de
mailto:hoang_duy.nhu@tu-dresden.de
mailto:gabriele.roeger@unibas.ch
https://lat.inf.tu-dresden.de/~stefborg/
https://ai.dmi.unibas.ch/people/roeger/
https://orcid.org/0000-0003-0924-8478
https://orcid.org/0009-0003-2220-3263
https://orcid.org/0000-0002-0092-2107
https://creativecommons.org/licenses/by/4.0/deed.en


((), [Table(𝑦)], ∅, {¬on_table(𝑥, 𝑦)}),
((), [Block(𝑧)], {on_block(𝑥, 𝑧)}, ∅),
((), [Table(𝑧)], {on_table(𝑥, 𝑧)}, ∅),

which remove on_block(𝑥, 𝑦) when 𝑦 is entailed to be a Block, add on_table(𝑥, 𝑧) if 𝑧 is a Table, and so
on. Effectively, this action removes on(𝑥, 𝑦) and adds on(𝑥, 𝑧).

For example, the action is applicable for the substitution 𝑥 ↦→ 𝑏1, 𝑦 ↦→ 𝑏2, 𝑧 ↦→ 𝑏3, since on_block
is included in on and neither Blocked(𝑏1) nor Blocked(𝑏3) are entailed. Then, the action would remove
on_block(𝑏1, 𝑏2) and insert on_block(𝑏1, 𝑏3), as Block(𝑏2) and Block(𝑏3) are entailed.

One property of this formalism is that action effects ignore implicit knowledge and only check

whether the subsequent state is consistent with the TBox.

Example 2. The effect of the ground action move(𝑏1, 𝑏2, 𝑏3) is to add on_block(𝑏1, 𝑏3) to the state. In the
eKAB formalism, this would make the state inconsistent, as argued previously.

We could remove on(𝑏1, 𝑏2) to obtain a consistent state. However, since this fact is not explicitly present
in the state (ABox), this operation would not affect the state at all, and [on(𝑏1, 𝑏2)] would continue to hold
due to on_block(𝑏1, 𝑏2).

Moreover, even if we explicitly remove on_block(𝑏1, 𝑏2), we would lose the information that 𝑏2 is a block,
which means that we should add Block(𝑏2) as well.

Example 2 illustrates that actions can cause three types of implicit effects: removing a fact requires

(i) removing all stronger facts and (ii) adding previously implied facts to avoid losing information,

whereas adding a fact requires (iii) removing any conflicting facts to ensure consistency. Addressing

these challenges, the coherence update semantics was introduced for updating an ABox in the presence

of a DL-Lite TBox, where the updated ABox can be computed with a non-recursive Datalog
¬

program

[5]. However, this semantics considers only single-step ABox updates, whereas, for planning, such

implicit effects need to be computed for each action on the way to the goal.

Here, we consider DL-Lite(ℋℱ)
𝑐𝑜𝑟𝑒 [6] (simply DL-Lite in the following) and extend eKAB planning by

applying the coherence update semantics to action effects. We investigate the complexity of the resulting

formalism of ceKABs (coherent eKABs) and introduce a novel compilation into PDDL with derived
predicates by utilising the Datalog

¬
programs for eKAB [7] and coherence semantics [5]. Moreover, we

evaluate the feasibility of our approach in off-the-shelf planning systems and the overhead incurred

compared to the original eKAB semantics.

eKABs with Coherence Update Semantics. An update contains a set of insertion and deletion
operations of ABox assertions. For instance, an update requesting the deletion of on_block(𝑏1, 𝑏2) and

insertion of on_block(𝑏1, 𝑏3) can be represented by 𝒰 = {del(on_block(𝑏1, 𝑏2)), ins(on_block(𝑏1, 𝑏3))}.
The coherence update semantics [5] takes an ABox 𝒜 and computes an updated ABox 𝒜′

that differs

from 𝒜 as little as possible (minimal change property) and is unique up to equivalence w.r.t. 𝒯 . The

effects of the semantics coincide with the implicit effects listed in (i), (ii), and (iii).

Example 3. We express the effect of the action move(𝑏1, 𝑏2, 𝑏3) in Example 1 by the above update 𝒰 . Using
coherence update semantics, we do not have to distinguish the type of 𝑏2 and can simply use del(on(𝑏1, 𝑏2))
instead.

To compute the effects of 𝒰 , a Datalog¬ program ℛu
𝒯 is applied to an initial dataset containing the

assertions from 𝒜 as well as the translated update requests ins_𝑝_request(𝑐⃗) (del_𝑝_request(𝑐⃗)) for each
ins(𝑝(𝑐⃗)) (del(𝑝(𝑐⃗)) in 𝒰 [5]. In our example, we obtain the initial facts on_block(𝑏1, 𝑏2), on_table(𝑏3, 𝑡),
del_on_request(𝑏1, 𝑏2) and ins_on_block_request(𝑏1, 𝑏3).

First, the programℛu
𝒯 translates the requests into direct insertion and deletion instructions:

del_on(𝑥, 𝑦)← on(𝑥, 𝑦), del_on_request(𝑥, 𝑦)
ins_on_block(𝑥, 𝑦)← ¬on_block(𝑥, 𝑦), ins_on_block_request(𝑥, 𝑦)



However, the first rule has no effect since on(𝑏1, 𝑏2) is not in the ABox. Instead, we have to remove
on_block(𝑏1, 𝑏2) since on_block ⊑ on ∈ 𝒯 (cf. (i) from Example 2):

del_on_block(𝑥, 𝑦)← on_block(𝑥, 𝑦), del_on_request(𝑥, 𝑦)

Additionally, adding on_block(𝑏1, 𝑏3) also ensures that on_block(𝑏1, 𝑏2) gets deleted, since otherwise the
functionality of on_block would be violated (cf. (iii)):

del_on_block(𝑥, 𝑦)← on_block(𝑥, 𝑦), ins_on_block_request(𝑥, 𝑧), 𝑦 ̸= 𝑧

Finally, due to ∃on_block− ⊑ Block ∈ 𝒯 , the program retains the information Block(𝑏2) when
on_block(𝑏1, 𝑏2) is deleted, by first deriving ins_block_closure(𝑏2) (cf. (ii)):

ins_block_closure(𝑥)← del_on_block(𝑦, 𝑥), ¬Block(𝑥),
¬ins_block_request(𝑥), ¬del_block_request(𝑥)

This is then translated into an insertion operation if there are no conflicting requests that would cause an
inconsistency (recall that Block ⊑ ¬Table ∈ 𝒯 ):

ins_block(𝑥)← ins_block_closure(𝑥),¬ins_table_request(𝑥)

In summary, the above rules derive ins_on_block(𝑏1, 𝑏3), del_on_block(𝑏1, 𝑏2), and ins_block(𝑏2).
In addition, the programℛu

𝒯 checks whether the same tuple is requested to be added to on_block and
removed from on, as this is forbidden by the coherence semantics:

incompatible_update()← ins_on_block_request(𝑥, 𝑦), del_on_request(𝑥, 𝑦)

For planning, we lift the coherence update semantics to apply it to all actions in a planning problem.

Our ceKAB semantics retains the favourable behaviours of the epistemic eKAB semantics for action

conditions and of the coherence update semantics for single-step updates of DL-Lite ABoxes. In

particular, it is possible to rewrite all operations into Datalog
¬

, and therefore into classical planning

with derived predicates, in polynomial time.

A Polynomial Compilation Scheme for ceKABs. A compilation scheme translates a ceKAB

planning task to a PDDL task s.t. a plan for the ceKAB exists iff a plan for the PDDL exists. Additionally,

if the translation is polynomially bounded in the size of the eKAB task, then the compilation scheme is

polynomial. We develop a polynomial compilation scheme by extending the known eKAB-to-PDDL

compilation from [7].

Deciding Plan Existence for ceKABs. The coherence plan existence problem decides whether a

plan exists for a DL-Lite ceKAB task. We study the complexity of the problem by means of a result by

Erol et al. [8] on the plan existence problem for classical planning (PDDL without derived predicates),

which the authors showed to be ExpSpace-complete. By our polynomial compilation scheme and a

reduction in the other direction (PDDL-to-ceKAB), we can show that the same holds for the coherence

plan existence problem.

Experimental Evaluation. We conduct a range of experiments to evaluate the feasibility of our

compilation and its performance compared to the pure eKAB semantics [7]. Our benchmark collection

consists of 159 instances from the classical planning Blocks benchmark paired with an external ontology,

and the existing eKAB benchmarks for DL-Lite from [7]. We modify some of the benchmarks s.t. all

benchmarks have plans under both eKAB and ceKAB semantics.

We use Downward Lab [9] to conduct experiments with the Fast Downward planning system [10].

Our main focus is satisficing planning using greedy best-first search [11] with the FF heuristic [12],

as well as the more aggressive variant ̃︀FF provided by Fast Downward, which provides less heuristic



guidance, but is faster to compute. Considering the other extreme, we also experiment with the blind

heuristic that simply assigns 1 to non-goal states and 0 to goal states.

On most of the benchmarks, we observe that ̃︀FF significantly outperforms FF in terms of memory

and CPU time due to the combinatorial explosion in the computation of the FF heuristic. In many

benchmark instances, heuristic search does not perform better than blind search, which indicates a weak

support for derived predicates in the heuristics in general. Compared to the original eKAB-to-PDDL

compilation [7], supporting coherence update semantics imposes extra strain on the planning system.

In future work, we will try to extend ceKABs to support more expressive ontologies, and improve the

planning performance by simplifying the Datalog
¬

programs used in the compilations or by developing

heuristics that better support the specific structure of the resulting derived predicates.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

in grant 540204715 and by the Swiss National Science Foundation (SNSF) as part of the project “Practical

Planning with Ontologies” (PPO).

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] S. Borgwardt, D. Nhu, G. Röger, Automated planning with ontologies under coherence update

semantics, in: Proceedings of the 22nd International Conference on Principles of Knowledge

Representation and Reasoning, KR 2025, November 11-17, 2025. To appear.

[2] S. Borgwardt, D. Nhu, G. Röger, Automated planning with ontologies under coherence update

semantics (extended version), 2025. arXiv:2507.15120.

[3] M. Ghallab, D. S. Nau, P. Traverso, Automated planning - theory and practice, Elsevier, 2004.

[4] D. Calvanese, M. Montali, F. Patrizi, M. Stawowy, Plan synthesis for knowledge and action bases,

in: S. Kambhampati (Ed.), Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, IJCAI/AAAI Press, 2016, pp.

1022–1029. URL: http://www.ijcai.org/Abstract/16/149.

[5] G. De Giacomo, X. Oriol, R. Rosati, D. F. Savo, Instance-level update in DL-Lite ontologies through

first-order rewriting, J. Artif. Intell. Res. 70 (2021) 1335–1371. doi:10.1613/JAIR.1.12414.

[6] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J.

Artif. Intell. Res. 36 (2009) 1–69. doi:10.1613/JAIR.2820.

[7] S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Krötzsch, B. Nebel, M. Steinmetz, Expressivity of

planning with horn description logic ontologies, in: Thirty-Sixth AAAI Conference on Artificial

Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelli-

gence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,

EAAI 2022 Virtual Event, February 22 - March 1, 2022, AAAI Press, 2022, pp. 5503–5511. URL:

https://doi.org/10.1609/aaai.v36i5.20489. doi:10.1609/AAAI.V36I5.20489.

[8] K. Erol, D. S. Nau, V. S. Subrahmanian, Complexity, decidability and undecidability results for

domain-independent planning, Artif. Intell. 76 (1995) 75–88. doi:10.1016/0004-3702(94)
00080-K.

[9] J. Seipp, F. Pommerening, S. Sievers, M. Helmert, Downward Lab, https://doi.org/10.5281/zenodo.

790461, 2017.

[10] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191–246. doi:10.
1613/JAIR.1705.

http://arxiv.org/abs/2507.15120
http://www.ijcai.org/Abstract/16/149
http://dx.doi.org/10.1613/JAIR.1.12414
http://dx.doi.org/10.1613/JAIR.2820
https://doi.org/10.1609/aaai.v36i5.20489
http://dx.doi.org/10.1609/AAAI.V36I5.20489
http://dx.doi.org/10.1016/0004-3702(94)00080-K
http://dx.doi.org/10.1016/0004-3702(94)00080-K
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
http://dx.doi.org/10.1613/JAIR.1705
http://dx.doi.org/10.1613/JAIR.1705


[11] J. E. Doran, D. Michie, Experiments with the graph traverser program, Proceedings of the Royal

Society A 294 (1966) 235–259.

[12] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic search, J.

Artif. Intell. Res. 14 (2001) 253–302. doi:10.1613/JAIR.855.

http://dx.doi.org/10.1613/JAIR.855

