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Abstract
Extending a set of facts with every fact that can be derived based on a set of rules is called materialization.

Incremental approaches, like Delete/Rederive (DRed) and Backward/Forward (B/F), allow for efficient adaptations

of materialized datasets whenever the original set of facts changes due to an update. To effectively deal with

streams of updates, we previously extended DRed with marking, where we directly take a look at the next

available update in the stream and utilize this insight to prevent repeated rule applications. In this work, we

apply this idea on B/F by using marks to indicate and find facts that are deleted by the next update, which enables

us to determine facts that need to be checked for some alternative derivation without considering rules for that.

An evaluation with both synthetic and real test data demonstrates the marking approach’s potential to reduce

processing time compared to classical B/F.
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1. Introduction

A possible way to accelerate query answering for description logic ontologies with large ABoxes is the

transformation into Datalog [1], where we can utilize optimized reasoners, like RDFox [2], to improve

the performance [3]. Answering queries in Datalog is often facilitated by computing the so-called

materialization, where we extend a set of facts with all its entailed facts based on a set of rules, so that

every implicit derivable fact is directly accessible. Materialization from scratch can be time-consuming,

which is why we typically use incremental materialization maintenance algorithms, like Delete/Rederive
(DRed) [4] or Backward/Forward (B/F) [5], to efficiently deal with updates to a materialized dataset.

While such incremental algorithms only handle one update at a time, DRed with Marking [6] presents

an extension that directly works with a whole stream of updates. When we process an update with this

marking approach, we already take a look at the next available update from the stream and mark facts

in the dataset that are affected by a deletion or insertion of the next update. If such a marked fact is

involved in a current rule application, we can infer that the derived fact is affected by the next update

too and has to be marked as well. This way, we can reduce the number of rule applications that are

usually necessary to process the next update, since the markings already provide us with some facts

that are relevant for our computations, and, thus, improve the performance of our algorithm.

In this work, we extend B/F with marking and show its potential to reduce processing time compared

to classical B/F. The remaining parts start with defining Datalog and materialization maintenance in

Section 2, before we discuss related work in Section 3. The formalization of B/F with Marking is in

Section 4, followed by an evaluation in Section 5. We conclude in Section 6.

2. Basics and Preliminaries

As done for DRed with Marking [6], we formally define Datalog [1] based on countable, disjoint sets of

predicates, constants, and variables. A term is a constant or a variable. An atom has the form 𝑝(𝑡1, . . . , 𝑡𝑘),
where 𝑝 is a 𝑘-ary predicate and each 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑘, is a term. If an atom does not contain variables,

it is ground. A fact is a ground atom and a dataset is a finite set of facts. A Datalog rule 𝑟 is a logical

implication of the form 𝐵1, . . . , 𝐵𝑘 → 𝐻 where 𝐵1, . . . , 𝐵𝑘 are called body atoms, and 𝐻 is a head
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atom. We use body(𝑟) and head(𝑟) to denote the set of body atoms and the head atom of 𝑟, respectively.

A rule is safe if variables that appear in the head also appear in a body atom. A Datalog program is a

finite set of safe rules. Predicates that occur in the head of a rule are called intensional (IDB) predicates;

all other predicates are extensional (EDB).

A substitution 𝜎 is a partial mapping from variables to constants. For 𝛼 a term, an atom, a rule, or a

set of rules, 𝛼𝜎 is the result of replacing each occurrence of a variable 𝑥 in 𝛼 on which 𝜎 is defined with

𝜎(𝑥). If 𝑟 is a rule and 𝜎 is a substitution mapping all variables of 𝑟 to constants, then 𝑟𝜎 is an instance of

𝑟. We say that a set of facts 𝑆 instantiates a rule 𝑟 if there exists a substitution 𝜎 such that body(𝑟)𝜎 = 𝑆.

Given a Datalog program 𝑃 and a dataset 𝐼 , we define 𝜌(𝑃, 𝐼) = {𝑟𝜎 | 𝑟 ∈ 𝑃, 𝑆 ⊆ 𝐼, body(𝑟)𝜎 = 𝑆}
as the set of all rule instances that can be created by instantiating rules in 𝑃 with subsets of 𝐼 . A

fact is called derivable if it appears as head in a rule instance of 𝜌(𝑃, 𝐼). For a program 𝑃 , we define

𝑃 (𝐼) =
⋃︀

𝑟∈𝜌(𝑃,𝐼){head(𝑟)}.

2.1. Materialization Maintenance

Let 𝐸 be a finite dataset of explicit facts. Then, let 𝐼0 = 𝐸; for each 𝑖 ≥ 1, let 𝐼𝑖 = 𝐼𝑖−1∪𝑃 (𝐼𝑖−1), and let

𝐼𝑛 = 𝐼𝑛+1 for some 𝑛 ≥ 1. The set 𝐼𝑛 is the materialization of 𝑃 w.r.t. 𝐸, denoted as mat(𝑃,𝐸). Let 𝐸−

and 𝐸+
be finite datasets with 𝐸− ⊆ 𝐸, 𝐸 ∩𝐸+ = ∅, and 𝐸+ ∪𝐸− ̸= ∅. The tuple 𝑈 = (𝐸−, 𝐸+) is

called an update for 𝐸, where 𝐸−
denotes the facts explicitly deleted from 𝐸, and 𝐸+

the facts explicitly

added to 𝐸, respectively. Applying the update 𝑈 on 𝐸 leads to the updated dataset 𝐸′ = (𝐸 ∖𝐸−)∪𝐸+
.

We allow only EDB predicates in updates. Accordingly, a fact is implicit if it has an IDB predicate, and

explicit if it has an EDB predicate. This is w.l.o.g. as we can replace a 𝑘-ary IDB predicate 𝑝 that is to be

used in an update by a new 𝑘-ary predicate 𝑝′ and add rules of the form 𝑝(𝑡1, . . . , 𝑡𝑘)→ 𝑝′(𝑡1, . . . , 𝑡𝑘)
such that 𝑝 becomes an EDB predicate (see, e.g., [7]).

Materialization maintenance is the task of computing the updated materialization mat(𝑃, (𝐸0 ∖𝐸−)∪
𝐸+) for a given materialization mat(𝑃,𝐸0) and an update 𝑈 = (𝐸−, 𝐸+). Let 𝑈̂ = ⟨𝑈1, 𝑈2, . . .⟩, with

|𝑈̂ | ≥ 1, denote a stream of updates for a dataset 𝐸0, where for each 𝑈𝑖 = (𝐸−
𝑖 , 𝐸

+
𝑖 ) ∈ 𝑈̂ , we have

𝐸−
𝑖 ⊆ 𝐸𝑖−1 and 𝐸𝑖−1 ∩ 𝐸+

𝑖 = ∅, resulting in 𝐸𝑖 = (𝐸𝑖−1 ∖ 𝐸−
𝑖 ) ∪ 𝐸+

𝑖 . For a stream of updates 𝑈̂ ,

materialization maintenance leads to a stream of materialized datasets ⟨mat(𝑃,𝐸1),mat(𝑃,𝐸2), ...⟩
where each 𝐸𝑖 corresponds to an 𝑈𝑖 ∈ 𝑈̂ .

3. Related Work

As we combine the main idea of Delete/Rederive with Marking [6] with Backward/Forward [5], these

algorithms serve as main references for our work and are described in more detail below. In addition,

other improvements to DRed and B/F as well as to the well-known counting approach [4] are presented

by Motik et al. [8], while Hu et al. [9] describe combined algorithms. Related to the processing of

streams, Terdjimi et al. [10] present a tag-based approach that allows for fast re-insertions of deleted

facts without repeating rule applications, while Ren and Pan [11] describe a truth maintenance system

to handle update streams for ℰℒ++
ontologies. DynamiTE [12] performs materialization in parallel

for RDF streams and IMaRS [13, 14] utilizes window-based expiration times for efficient incremental

adaptations. Unlike Delete/Rederive with Marking, however, all of these approaches only consider one

update at a time.

3.1. Delete/Rederive with Marking

DRed with Marking [6] extends the classical Delete/Rederive algorithm [4] in order to more efficiently

deal with streams of updates, where changes to the materialized dataset might appear faster than they

can be processed. The general procedure is still as in the classical algorithm, consisting of the three

sequential overdeletion, rederivation, and insertion phases: Given a materialized dataset 𝐼 = mat(𝑃,𝐸)
and an update 𝑈 = (𝐸−, 𝐸+), the overdeletion phase removes every fact from 𝐼 that occurs in 𝐸−

or

that can be derived by means of such a deleted fact. Even though this procedure ensures that we delete



every fact that is not derivable anymore in the updated materialization, it might also falsely remove

facts which still have some alternative derivation that is not affected by any deletion. This problem is

solved in the subsequent rederivation phase, where we re-add all facts that can still be derived based on

the remaining facts. After that, we insert 𝐸+
and compute every new derivable fact in the insertion

phase to obtain a correctly updated materialization.

Classically, DRed only focuses on one update during its processing. The expanded algorithm, on the

other hand, also tries to integrate the next update of the stream into the current processing as soon as it

is available. This is achieved by marking facts in the dataset that are changed by the next update. In

particular, a fact is marked negatively if it is deleted by the next update, whereas a currently deleted

fact is marked positively if it is re-added. When such a marked fact is involved in some rule application,

then we also mark the derived implicit fact if certain conditions hold. This way, we are able to directly

determine some of the fact changes related to the next update and, thus, reduce the number of rule

applications that would usually be necessary to process the next update. Concretely, we avoid cases

where a rule instance has to be considered again for the next update as illustrated in the following

example:

Example 1. Assume we have a rule 𝑝1(𝑥), 𝑝2(𝑥)→ 𝑞(𝑥) and two consecutive updates 𝑈𝑎 = (∅, {𝑝2(𝑐)})
and 𝑈𝑏 = ({𝑝1(𝑐)}, ∅), which we sequentially apply on a dataset 𝐼 = {𝑝1(𝑐)}. When we process 𝑈𝑎, we
directly take a look at the next update 𝑈𝑏 and (negatively) mark the fact 𝑝1(𝑐) in 𝐼 , since it will be deleted
by 𝑈𝑏. After adding 𝑝2(𝑐) to 𝐼 , we can apply the rule to derive 𝑞(𝑐), which will be marked too, because its
derivation depends on 𝑝1(𝑐) that is deleted by the next update, as indicated by the mark. Once we finish
the processing of 𝑈𝑎 and move on to 𝑈𝑏, we can directly see that 𝑞(𝑐) is affected by some deletion due to its
mark, without the need to apply the rule again.

3.2. Backward/Forward

The Backward/Forward algorithm [5] was originally introduced as a way to deal with the inherent

inefficiency of DRed where falsely deleted facts have to be rederived. While the computation of new

derivable facts due to insertions is done as in DRed, the B/F algorithm directly checks if a deleted fact has

an alternative derivation, which does not include any deleted facts, to prevent a potential (over)deletion

along with the needed rederivation of its consequences.

To find an alternative derivation for some fact 𝐹 , first, backward chaining is applied to determine

facts that would be needed to derive 𝐹 . In detail, we look for rule instances that have 𝐹 as head and

then recursively check if we can “prove” the facts in the rule instance’s body, where a fact is considered

to be “proven” if it either is explicit (and not deleted) or can be derived entirely by proven facts. To

ensure termination in the presence of recursive derivation cycles, each fact is only checked once during

backward chaining. For the proving of implicit facts, we perform forward chaining by applying rules

on already proven facts. If a fact has been checked during backward chaining and was also derived

during forward chaining, then it is proven and we keep it, otherwise it has to be deleted.

Example 2. Assume we have three rules 𝑝1(𝑥), 𝑝2(𝑥)→ 𝑞(𝑥), 𝑝3(𝑥)→ 𝑞(𝑥), and 𝑞(𝑥)→ 𝑟(𝑥), and an
update 𝑈 = ({𝑝1(𝑐)}, ∅), which we apply on a materialized dataset 𝐼 = {𝑝1(𝑐), 𝑝2(𝑐), 𝑝3(𝑐), 𝑞(𝑐), 𝑟(𝑐)}.
Since 𝑞(𝑐) can be derived by the deleted 𝑝1(𝑐) based on the first rule, we check if it has an alternative
derivation. Using backward chaining, we match 𝑞(𝑐) to the head of the second rule, which then tells us to
check 𝑝3(𝑐) in the rule’s body next. Since 𝑝3(𝑐) is explicit (as it cannot be derived by any rule), it is directly
“proven” and, hence, can be applied for forward chaining with the second rule to derive and, thus, “prove”
the previously checked 𝑞(𝑐) too. Accordingly, 𝑞(𝑐) (and its consequence 𝑟(𝑐)) must not be deleted.

The reason why this combination of backward and forward chaining often performs better than

DRed is that instead of traversing (and deleting) the facts which can be derived based on a checked

fact ({𝑟(𝑐)} in Example 2), B/F goes through the facts that potentially support the derivation of the

checked fact ({𝑝3(𝑐)} in Example 2), where the latter set of facts is usually smaller. Nevertheless, there

still exist cases where B/F can be slower than DRed, for example, when alternative derivations and,

thus, rederivations are rare.



4. B/F with Marking

The general idea of the marking approach is that we first mark explicit facts in the dataset which are

changed by the next update, and then pass these marks on to implicit facts during rule applications

in order to determine further changes that are relevant for the next update. The evaluation of DRed

with Marking [6] showed that positive marks, i.e., cases where a currently deleted fact is re-added by

the next update, are quite rare and, hence, do not notably contribute to the performance gain of the

marking approach. Therefore, we only focus on negative marks for B/F, i.e., situations where facts are

deleted by the next update.

An implicit fact is affected by some deletion if there exists a rule instance that has the implicit fact as

head and contains a deleted fact in its body. Accordingly, if we have a rule instance that contains at

least one marked fact in its body, we may simply mark the head too, as already illustrated in Example 1.

In DRed, the overdeletion phase removes every fact that is affected by some deletion, which is why we

can also use implicit facts there to propagate marks to other derived facts. In contrast to this, deletions

in B/F are accurate, in the sense that we only remove a fact from the dataset when we are sure that it

cannot be derived anymore. Accordingly, a marked implicit fact should only be used to mark another

fact if we can guarantee that the former cannot be derived anymore due to the next update. As this

knowledge can generally not be obtained before actually processing the next update, we may only use

marked explicit facts, for which we definitely know that they will be deleted, to mark other facts in B/F.

The computation of marked implicit facts can be done for B/F both during the forward chaining

process where we try to prove that a fact is still derivable, and when we determine new derivable facts

based on insertions. By looking for marked implicit facts once the processing of the current update is

completed, we can directly obtain some facts that have to be checked for alternative derivations when

the next update is processed, without the need to first search for appropriate rule instances that tell us

that those facts are affected by some deletion.

With the inclusion of the next update in our processing, one might think that we are also able to

re-use some of the “proven” facts, and thus avoid repeated backward/forward chaining, by excluding

marked proved facts for which we know that they are not derivable in the next update. However, this

does generally not work, since markings do usually not cover every fact that has to be deleted for the

next update: on the one hand, because we do not allow implicit facts to pass on marks, and on the other

hand, since updates might be introduced with a delay, so that some proven facts might not be marked

even though they are affected by a deletion.

4.1. Algorithm

The formal description of Backward/Forward extended with marking is presented in Algorithm 1.

Here, we use three functions getNext(𝑈̂ ), which returns the next update in the stream 𝑈̂ if one is

available, getLast(𝑆), which returns the most recently added fact from the set 𝑆, and getMarked(𝑆),

which returns the set of marked facts from 𝑆. Additionally, we assume two procedures mark(𝑆) and

ummark(𝑆), which add and remove marks for the facts in the given set 𝑆, respectively. The input of

Algorithm 1 consists of a Datalog program 𝑃 , a (possibly empty) materialized dataset 𝐼 = mat(𝑃,𝐸0),
and a stream of updates 𝑈̂ = ⟨𝑈1 = (𝐸−

1 , 𝐸
+
1 ), 𝑈2 = (𝐸−

2 , 𝐸
+
2 ), ...⟩. The algorithm’s output is a

stream of materialized datasets ⟨mat(𝑃,𝐸1),mat(𝑃,𝐸2), ...⟩ with 𝐸𝑖 = (𝐸𝑖−1 ∖ 𝐸−
𝑖 ) ∪ 𝐸+

𝑖 for 𝑖 ≥ 1,

where each dataset refers to an update in 𝑈̂ . Note that we only work with one program 𝑃 , i.e., we do

not deal with changes to the set of rules. The algorithm’s correctness is shown in Appendix A.

One difference to the original B/F algorithm is that we conduct our computations in a big loop to

allow the continuous processing of a whole stream of updates. At the beginning of each iteration, we

check if there is a current update 𝑈1 to be processed, as well as a next update 𝑈2 that occurs directly

after 𝑈1 in the stream. As in DRed with Marking, we consider at most two updates at the same time

to keep the marking computations simple. In general, an immediate access to updates is not always

possible due to delays in the stream. If we do not have a current update 𝑈1, we wait until one is available

(cf. line 5).



Algorithm 1 B/F with Marking

Input: Datalog program 𝑃 , materialized dataset 𝐼 , stream of updates 𝑈̂
Output: stream of materialized datasets

1: 𝑈1 = (𝐸−
1 , 𝐸

+
1 )← null; 𝑈2 = (𝐸−

2 , 𝐸
+
2 )← null; phase← 1;

2: 𝐶 ← ∅; 𝐷 ← ∅; 𝑉 ← ∅; 𝑊 ← ∅; 𝑌 ← ∅
3: repeat
4: if 𝑈1 = null then
5: repeat 𝑈1 ← getNext(𝑈̂ ) until 𝑈1 ̸= null

6: 𝐷 ← 𝐸−
1

7: if 𝑈2 = null then
8: 𝑈2 ← getNext(𝑈̂ )

9: if 𝑈2 ̸= null then mark((𝐼 ∪ 𝐸+
1 ) ∩ 𝐸−

2 )

10: if phase = 1 then ◁ DELETIONS

◁ a) Forward chaining with proven facts

11: if ∃𝑟 ∈ 𝜌(𝑃, 𝐼) : body(𝑟) ⊆ 𝑉 and head(𝑟) ̸∈ 𝑉 ∪ 𝑌 then
12: if ∃𝐹 ∈ body(𝑟) : 𝐹 is explicit and marked then mark({head(𝑟)})
13: if head(𝑟) ∈𝑊 then
14: 𝑉 ← 𝑉 ∪ {head(𝑟)}; 𝐶 ← 𝐶 ∪ {head(𝑟)}; 𝑊 ←𝑊 ∖ {head(𝑟)}
15: else if head(𝑟) ∈ 𝐶 then 𝑉 ← 𝑉 ∪ {head(𝑟)}
16: else 𝑌 ← 𝑌 ∪ {head(𝑟)}

◁ b) Backward chaining with waiting facts

17: else if 𝐹 ← getLast(𝑊 ) ̸= null then
18: if 𝐹 is explicit and 𝐹 ̸∈ 𝐸−

1 , or 𝐹 ∈ 𝑌 then
19: 𝑉 ← 𝑉 ∪ {𝐹}; 𝐶 ← 𝐶 ∪ {𝐹}; 𝑊 ←𝑊 ∖ {𝐹}
20: else if ∃𝑟 ∈ 𝜌(𝑃, 𝐼) : body(𝑟) ∩𝐷 = ∅ and body(𝑟) ∖ (𝑊 ∪ 𝐶) ̸= ∅ and head(𝑟) = 𝐹
21: then𝑊 ←𝑊 ∪ (body(𝑟) ∖ (𝑊 ∪ 𝐶))
22: else 𝐶 ← 𝐶 ∪ {𝐹}; 𝑊 ←𝑊 ∖ {𝐹}

◁ c) Determine facts affected by deletion

23: else if ∃𝑟 ∈ 𝜌(𝑃, 𝐼) : body(𝑟) ∩𝐷 ̸= ∅ and head(𝑟) ̸∈𝑊 ∪ 𝐶 then
24: 𝑊 ←𝑊 ∪ {head(𝑟)}

◁ d) Delete facts that cannot be proven

25: else if (𝐶 ∖ 𝑉 ) ̸⊆ 𝐷 then 𝐷 ← 𝐷 ∪ (𝐶 ∖ 𝑉 )
◁ e) Finish deletions and prepare insertions

26: else 𝐼 ← (𝐼 ∖𝐷) ∪ 𝐸+
1 ; phase← 2

27: if phase = 2 then ◁ INSERTIONS

◁ f) Add new derivable facts

28: if ∃𝑟 ∈ 𝜌(𝑃, 𝐼) : head(𝑟) ̸∈ 𝐼 then
29: if ∃𝐹 ∈ body(𝑟) : 𝐹 is explicit and marked then mark({head(𝑟)})

30: 𝐼 ← 𝐼 ∪ {head(𝑟)}
◁ g) Prepare next update processing

31: else
32: 𝐶 ← ∅; 𝐷 ← 𝐸−

2 ; 𝑉 ← ∅; 𝑊 ← getMarked(𝐼) ∖ 𝐸−
2 ; 𝑌 ← ∅; unmark(𝐼)

33: write 𝐼 to output; 𝑈1 ← 𝑈2 ; 𝑈2 ← null; phase← 1

34: until 𝑈̂ ends and 𝑈1 = null

For the next update 𝑈2, however, we only look once per iteration, before we continue with the

processing of 𝑈1 to avoid any stagnation (cf. line 8). When a next update has been found, we directly

use it to mark explicit facts that are in the dataset or added by the current update but also deleted by

the next update (see line 9). To ensure a fast integration of the next update once it is available, we apply



at most one rule in each iteration as indicated by the existential quantifiers in lines 11, 20, 23, and 28.

Note that despite the usage of the set 𝜌(𝑃, 𝐼) in those lines, we do not have to determine every possible

rule instance at once, but instead can compute them gradually as needed.

The remaining operations in the algorithm are separated into a deletion and an insertion phase based

on a phase variable (cf. lines 10 and 27), which is updated once the computations for a phase are finished

(cf. lines 26 and 33). Similarly to the original B/F algorithm, we use various sets in the deletion phase to

indicate that a fact is “completely checked” (𝐶), “deleted” (𝐷), “proven” (𝑉 ), “waiting to be completely

checked” (𝑊 ), or “delayed” (𝑌 ), i.e., proven but not checked yet. The deletion phase can be further

divided into five blocks (a–e) and the insertion phase into two (f–g), as indicated by the comments on

the right-hand side of Algorithm 1. Note that the order of the blocks in the algorithm is based on their

priority and does not necessarily represent their appearance during processing. We use the following

example as starting point to describe the functionality of the different sets and blocks:

Example 3. Assume we have four rules 𝑝1(𝑥), 𝑝2(𝑥) → 𝑞(𝑥), 𝑝3(𝑥) → 𝑞(𝑥), 𝑞(𝑥) → 𝑟(𝑥), and
𝑞(𝑥), 𝑝4(𝑥)→ 𝑠(𝑥), and two consecutive updates 𝑈𝑎 = ({𝑝1(𝑐)}, {𝑝4(𝑐)}) and 𝑈𝑏 = ({𝑝4(𝑐)}, ∅), which
we sequentially apply on a materialized dataset 𝐼 = {𝑝1(𝑐), 𝑝2(𝑐), 𝑝3(𝑐), 𝑞(𝑐), 𝑟(𝑐)}. During the first loop
iteration in Algorithm 1, we assign 𝑈𝑎 to 𝑈1 and set 𝐷 = {𝑝1(𝑐)}, before we assign 𝑈𝑏 to 𝑈2 and then
mark the fact 𝑝4(𝑐).

Since the sets 𝑉 and 𝑊 are initially empty, but 𝐷 is not, we begin with block c), where we determine
facts that are affected by a deletion. For that, we search for rule instances where the body contains some

deleted fact from 𝐷 and the head has not been checked yet (see line 23), in which case the head is added

to the set of waiting facts 𝑊 (see line 24). In our example, we use the rule instance 𝑝1(𝑐), 𝑝2(𝑐)→ 𝑞(𝑐)
with 𝑝1(𝑐) ∈ 𝐷 to add 𝑞(𝑐) to 𝑊 .

Due to 𝑞(𝑐) ∈𝑊 , we apply block b) in the next iteration, where we process facts that are waiting to

be checked for a deletion-free derivation. For the implicit fact 𝑞(𝑐), we do this by applying backward
chaining based on the rule instance 𝑝3(𝑐)→ 𝑞(𝑐), where the body does not contain any deleted fact

from 𝐷 but still consists of some facts that were not checked yet, so that they may be added to 𝑊 for

future processing (see lines 20 and 21). In particular, we only add facts to 𝑊 if they do not already occur

in 𝑊 ∪𝐶 to guarantee termination for recursive derivation cycles. As in the original B/F algorithm, we

perform backward chaining in a depth-first manner by always selecting the most recently added fact

from 𝑊 (see line 17). Accordingly, we continue in the next iteration with the new fact 𝑝3(𝑐). Because

𝑝3(𝑐) is explicit and not deleted, it is regarded as “proven” and added to the set 𝑉 . Thus, we do not

need to process it any further and move it from 𝑊 to the set of completed facts 𝐶 (cf. lines 18 and 19).

With 𝑝3(𝑐) ∈ 𝑉 , the next iteration starts with block a), which is responsible for the forward chaining
segment of B/F, where we derive facts entirely with proven facts from 𝑉 (cf. line 11). In addition, the

derived fact is marked if the body of the applied rule contains a marked explicit fact (see line 12). Using

the rule 𝑝3(𝑥) → 𝑞(𝑥), we derive and, thus, prove the fact 𝑞(𝑐), which is also added to 𝑉 as it has

already been checked during backward chaining and, hence, occurs in 𝑊 (or 𝐶), based on lines 13 to 15.

Prioritizing forward over backward chaining facilitates a quick proving of facts which were considered

during backward chaining, so that we can prevent their further processing in block b) by removing

them from 𝑊 (see line 14). With 𝑞(𝑐) in 𝑉 , we then also derive 𝑟(𝑐) based on the rule 𝑞(𝑥)→ 𝑟(𝑥) in

the next iteration, but since 𝑟(𝑐) does not occur in 𝑊 or 𝐶 , it is added to the set of delayed facts 𝑌 (see

line 16), so that it may directly be proven should it later appear during backward chaining (cf. lines 18

and 19).

At this point in our example, we computed every derivable fact from 𝑉 , the set 𝑊 is empty, we

considered every rule instance that contains a fact from 𝐷, and every checked fact has been proven,

i.e., 𝐶 = 𝑉 . Therefore, we can only apply block e), where we remove the facts in 𝐷 from the

materialized dataset 𝐼 and add the new explicit facts 𝐸+
1 of the current update 𝑈1, resulting in 𝐼 =

{𝑝2(𝑐), 𝑝3(𝑐), 𝑞(𝑐), 𝑟(𝑐), 𝑝4(𝑐)}, before we adapt the phase variable to continue with the insertion phase

(see line 26).

In the first block f) of the insertion phase, we repeatedly add every fact to the dataset that is not present

yet, but occurs as head in a rule instance (see lines 28 and 30). In our case, we use 𝑞(𝑐), 𝑝4(𝑐)→ 𝑠(𝑐) to



add 𝑠(𝑐) to the dataset. Furthermore, we also mark the derived fact 𝑠(𝑐) due to the marked explicit fact

𝑝4(𝑐) in the rule body (cf. line 29). Once we cannot add any new fact, we end the insertion phase in

block g) by writing the now fully updated materialized dataset to the output stream and prepare the

processing of the next update in lines 32 and 33: we empty the sets 𝐶 , 𝑉 , and 𝑌 to reset the proven

facts, initialize 𝐷 with the explicitly deleted facts of the next update, and use the set of marked implicit

facts as starting point for 𝑊 . In our example, we get 𝐼 = {𝑝2(𝑐), 𝑝3(𝑐), 𝑞(𝑐), 𝑟(𝑐), 𝑝4(𝑐), 𝑠(𝑐)} with

𝐷 = {𝑝4(𝑐)} and 𝑊 = {𝑠(𝑐)}.
Unlike the processing of the first update, the second one now begins with block b) as 𝑊 is not empty.

More specifically, we can directly prevent rule applications in block c), where we only consider a rule

instance if the head does not already occur in 𝑊 or 𝐶 (see line 23). Accordingly, the initialization of 𝑊
based on marked facts is how we improve the performance of B/F in the end. Since 𝑠(𝑐) ∈𝑊 is neither

explicit nor in 𝑌 , and there is no rule instance without any body fact in 𝐷 which has 𝑠(𝑐) as head, the

fact is moved to 𝐶 based on line 22.

Because 𝑉 and 𝑊 are empty, and 𝑠(𝑐) occurs in 𝐶 but not in 𝑉 , we apply block d) next. At this

point, we know that facts which were checked but could not be proven do not possess any alternative

derivation and, hence, have to be deleted, which is why we add them to 𝐷, so that we may determine

further facts affected by deletions in the following iterations (cf. line 25). Since 𝑠(𝑐) cannot be matched

to any body atom in our rules, we cannot perform block c) and instead move on to block e), where the

deleted facts are removed from the dataset, leading to 𝐼 = {𝑝2(𝑐), 𝑝3(𝑐), 𝑞(𝑐), 𝑟(𝑐)}. As 𝑈𝑏 does not

insert new facts, we then finish with block g).

5. Evaluation

Extending DRed with marking allowed us to reduce the CPU time that is needed to process a stream of

updates by about 25% in average in the conducted evaluation [6]. For the B/F algorithm, we expect less

improvement in the performance. The first reason is that marks are only computed based on explicit

facts, which might lead to fewer marked implicit facts and, thus, a smaller reduction of rule applications.

In addition, the main effort of B/F usually lies in the backward and forward chaining of the deletion

phase, whereas determining what facts are affected by a deletion is comparatively simple. To see if the

marking approach can still improve B/F despite those limitations, we conducted the same evaluation as

for DRed with Marking.

5.1. Test Data

The evaluation involves two synthetic and one real test case. In the synthetic ones, we work with a

graph represented by a set of directed edges, where randomly generated updates appropriately add

and delete the same number of edges. In one case, we use a Datalog program 𝑃trans, which computes

(transitive) paths in the graph, and in the other one a program 𝑃seq, where predicates are repeatedly

renamed to create simple sequences of rule applications. In particular, 𝑃trans allows for many alternative

derivations, which is often an advantage for B/F compared to DRed, while facts in 𝑃seq can only be

derived in one specific way, which is usually less optimal for B/F.

The real test case is inspired by a task in autonomous driving, where we reason about dynamically

loaded map data. Given a GPS track, we load map data within a radius of 50𝑚 around each GPS position

and then generate a stream of updates, which states how the map data changes between the sequential

GPS positions. The map data focuses on specific types of ways, for which Datalog rules are utilized

to compute connections and their transitive relations. The exact rules of each program are listed in

Appendix B.



Table 1
Test measurements for the synthetic data with 𝑃𝑡𝑟𝑎𝑛𝑠

time reduction inser-
[in seconds] [in %] deletions backward forward tions marks

size old new old new old new old new both ex. im.

10 42.48 39.17 7.8 1,603 447 11,253 14,447 18,777 19,001 545 480 991
20 38.55 35.68 7.4 3,046 594 10,468 13,199 15,373 15,516 2,912 960 2,277
30 38.64 35.57 7.9 5,146 1,100 10,206 11,856 11,154 11,224 7,288 1,399 4,153
40 41.35 40.17 2.9 4,755 682 10,834 13,036 12,560 12,612 6,575 1,816 4,069
50 43.60 45.09 -3.4 3,778 360 11,514 14,441 15,060 15,096 4,570 2,215 3,660
60 45.78 48.51 -6.0 3,227 213 11,842 15,254 16,518 16,547 3,327 2,604 3,428
70 48.34 52.76 -9.1 2,724 161 11,919 16,054 17,780 17,796 2,158 2,973 3,085
80 50.04 55.76 -11.4 2,584 126 11,863 16,323 18,169 18,183 1,782 3,293 3,078

5.2. Test Execution and Results

We performed the evaluation by extending the implementation of DRed with Marking, which is available

online
1
. The tested update streams are created with Java, while Constraint Handling Rules [15] based

on SWI-Prolog
2

are used to implement both the original and our extended B/F algorithm. For a more

efficient implementation, we slightly adapted Algorithm 1 to allow more than one rule application in a

loop iteration once the next update 𝑈2 has been provided.

During the tests, we measured the time spent by the CPU to process the whole stream, along with

the number of applied rules in the different phases of the algorithm. For our extended B/F approach, we

additionally counted the number of marked facts. The following results were obtained on a Windows 11

PC with an AMD Ryzen 7 3700X 3.59 GHz CPU and 16 GB RAM, using SWI-Prolog 9.3.15 with a 4 GB

stack.

5.2.1. Synthetic Data Results

For the synthetic tests, we computed average values from three runs based on different random seeds

and five repetitions. Every stream included exactly 50 updates, where the first one added 100 facts

to an empty dataset, for which the materialization was first completed before any other update was

considered. Each test run processed eight update streams, where the update size, i.e., the number of

both added and deleted facts, increased evenly from 10 to 80. The maximum number of nodes in the

graph was set to 20 for 𝑃trans and to 100 for 𝑃seq.

Table 1 shows the results for 𝑃trans, where “old” refers to classical B/F and “new” to B/F with marking,

respectively. Furthermore, “deletions” presents the number of rule applications for line 23 in Algorithm 1,

“backward” for line 20, “forward” for line 11, and “insertions” for line 28. As indicated by the “reduction”

column, the marking approach can both decrease and increase the processing time. Nevertheless, this

may still be seen as an improvement, because B/F is generally suited for smaller updates [8], all of

which benefit in our test.

The reason for the performance gain is provided by the “deletions” column, which shows a greatly

reduced number of rule applications. For larger updates, however, this does not suffice as more facts in

an update also mean more marking-related overhead. In addition, the ratio of marked implicit facts

(“im.”) to marked explicit facts (“ex.”) is lower than for smaller updates, while the number of performed

deletion rules in the original B/F is also relatively small for larger updates, thus further hindering the

gain of the marking approach. Moreover, the number of applied rules during backward and forward

1

https://github.com/M-Illich/dred-mark-eval

2

https://www.swi-prolog.org/

https://github.com/M-Illich/dred-mark-eval
https://www.swi-prolog.org/


Table 2
Test measurements for the synthetic data with 𝑃𝑠𝑒𝑞

time reduction
[in seconds] [in %] deletions backward forward insertions marks

size old new old new both both both ex. im.

10 10.32 8.73 15.4 1,960 1,480 0 0 2,360 480 480
20 18.69 15.68 16.1 3,920 2,960 0 0 4,317 960 960
30 28.59 23.33 18.4 5,880 4,440 0 0 6,265 1,440 1,440
40 43.14 34.60 19.8 7,827 5,910 0 0 8,228 1,917 1,917
50 64.62 52.67 18.5 9,709 7,332 0 0 10,173 2,377 2,377
60 107.12 85.82 19.9 11,588 8,744 0 0 12,129 2,844 2,844
70 152.29 120.46 20.9 13,457 10,147 0 0 14,069 3,311 3,311
80 220.44 177.29 19.6 15,283 11,516 0 0 16,005 3,767 3,767

Table 3
Test measurements for the real data

time reduction
[in seconds] [in %] deletions backward forward insertions marks

old new old new old new old new both ex. im.

𝑡𝑟𝑎𝑐𝑘0 114.58 106.22 7.3 859 754 4,329 4,400 3,299 3,299 4,638 910 70
𝑡𝑟𝑎𝑐𝑘1 20.57 20.29 1.4 684 544 2,697 2,733 2,317 2,317 2,653 1,208 119
𝑡𝑟𝑎𝑐𝑘2 10.46 10.24 2.2 558 400 1,484 1,479 1,206 1,206 1,704 1,017 137

chaining is actually higher with marking, especially for larger updates, which may be explained by

the change of order in which facts are checked for alternative derivations in line 17 of Algorithm 1,

due to the initialization of the set 𝑊 based on marked implicit facts in line 32. The impact of the facts’

processing order on the number of performed rules is also the reason why the number of marked

implicit facts does generally not match with the number of prevented deletion rules. For example, a fact

might be already proven during the processing of another fact, before we determine that it is affected

by a deletion.

The results for 𝑃𝑠𝑒𝑞 are in Table 2. Due to the lack of alternative derivations, we cannot apply any

rules during the backward and forward chaining parts, which is why the prevention of rule applications

indicated in the “deletions” column has a higher influence on the performance improvement than for

𝑃𝑡𝑟𝑎𝑛𝑠 (see “reduction” column), although 𝑃𝑡𝑟𝑎𝑛𝑠 could decrease the number of deletion rules much

more. In particular, even the larger updates did benefit from the marking approach. For the same reason,

the number of marked implicit facts equals the number of prevented deletion rules now.

5.2.2. Real Data Results

For the real test, we used predefined GPS tracks (𝑡𝑟𝑎𝑐𝑘0, 𝑡𝑟𝑎𝑐𝑘1, 𝑡𝑟𝑎𝑐𝑘2) to generate three streams

consisting of 55, 83, and 114 updates that add/delete around 18/17, 14/14, and 9/8 facts on average,

and 172/114, 152/167, and 65/74 facts at maximum, respectively. The results in Table 3 lead to similar

conclusions as the synthetic tests, with an overall better performance for the marking approach (see

“reduction” column) due to a decreased number of rule applications related to “deletions”. While the

undesired increase of applied backward chaining rules is much smaller than for 𝑃𝑡𝑟𝑎𝑛𝑠, so is the number

of marked implicit facts, especially in proportion to the explicit ones, which is why we mainly obtain

small time improvements.



6. Conclusion

We extended the Backward/Forward algorithm with marking as done previously for Delete/Rederive.

During the processing of an update, we directly take a look at the next available one and mark facts that

are deleted by this next update. With those marked explicit facts, we can already determine some facts

that have to be checked for alternative derivations during the processing of the next update, without the

need to apply rules for that. An evaluation based on both synthetic and real data tests showed that the

marking approach can accelerate the processing time, although improvements are often small. Future

work may involve further optimizations, like integrating heuristics to specify the processing order of

facts to prevent additional rule applications during backward and forward chaining, for instance.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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A. Algorithm – Correctness

We show correctness of Algorithm 1 in a similar way to DRed with Marking. First, we prove that the

algorithm works correctly if the stream only consists of a single update, and then show that the marking-

related computations do not have any influence on both the current update’s and the next update’s

dataset. For the following, we define that given two sequential updates 𝑈𝑎 and 𝑈𝑏, the “processing of

𝑈𝑎” refers to loop iterations in Algorithm 1 where 𝑈1 = 𝑈𝑎 and 𝑈2 = 𝑈𝑏, while the “processing of 𝑈𝑏”

refers to the subsequent, continuing iterations where 𝑈1 = 𝑈𝑏. Furthermore, we say that a “derivation

path” for a fact 𝐹 is a sequence of rule instances 𝑟1, ..., 𝑟𝑛, where body(𝑟1) only contains explicit facts,

head(𝑟𝑛) = 𝐹 , and head(𝑟𝑖) ∈ body(𝑟𝑖+1) for 1 ≤ 𝑖 < 𝑛.

Let 𝐼 = mat(𝑃,𝐸) be the initial dataset and 𝐼 ′ = mat(𝑃,𝐸′) be the correctly adapted dataset with

𝐸′ = (𝐸 ∖𝐸−)∪𝐸+
for an update 𝑈 = (𝐸−, 𝐸+). We prove the correct processing of a single update

by showing that the algorithm’s deletion phase removes every fact from 𝐼 ∖ 𝐼 ′, while the insertion

phase adds every new derivable fact from 𝐼 ′ ∖ 𝐼 , respectively. For the deletion phase, we first show the

following claims related to Algorithm 1:

Claim 1. A fact 𝐹 is added to the set 𝑊 if and only if it is also added to the set 𝐶 .

Proof. (⇒) When a fact 𝐹 occurs in 𝑊 , it will eventually be selected in line 17. If 𝐹 satisfies the

conditions in line 18, it will be added to 𝐶 in the next line. The second condition, in line 20, can only be

satisfied for a limited number of times due to the finite number of rule instances and the prevention of

repetitions as the consequence of this operation contradicts its condition. Hence, 𝐹 will eventually be

added to 𝐶 based on line 22. The only way to prevent the selection of 𝐹 in line 17 is its removal from

𝑊 . Whenever we remove a fact from 𝑊 in lines 14, 19, and 22, however, we also add the fact to 𝐶 .

(⇐) We only add a fact 𝐹 to 𝐶 in lines 14, 19, and 22, which can only be visited when 𝐹 is also in

𝑊 (see lines 13 and 17).

Claim 2. A fact 𝐹 is added to the set 𝑉 if and only if 𝐹 ∈ 𝐶 ∩ 𝐼 ′.

Proof. (⇒) A fact 𝐹 is only added to 𝑉 in lines 14 and 19, where 𝐹 is also added to 𝐶 , or in line 15,

which already requires that 𝐹 ∈ 𝐶 . The conditions for the former additions are that 𝐹 is explicit and

not in 𝐸−
, or that 𝐹 can be derived by proven facts from 𝑉 . We show that 𝐹 ∈ 𝑉 ⇒ 𝐹 ∈ 𝐼 ′ by

induction:

As base case, we consider the initial situation where 𝑉 is empty, so that we can only add explicit

facts that are not in 𝐸−
and, thus, still in 𝐸′ ⊆ 𝐼 ′. As induction step, we consider the case where we

add 𝐹 by deriving it from facts in 𝑉 . By our hypothesis, every fact from 𝑉 is also in 𝐼 ′, so that the facts

derived from 𝑉 have to be in 𝐼 ′ too.

(⇐) If a fact 𝐹 occurs in 𝐶 ∩ 𝐼 ′, it was also processed as part of 𝑊 based on Claim 1. If 𝐹 is explicit,

it cannot be in 𝐸−
due to 𝐹 ∈ 𝐼 ′, so that it will be added to 𝑉 in line 19. We show that an implicit 𝐹 is

added to 𝑉 by induction over the length of 𝐹 ’s derivation paths in 𝐼 ∩ 𝐼 ′, because implicit facts in 𝐶
are based on rule instances from 𝜌(𝑃, 𝐼):
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For the base case, we assume that 𝐹 has a derivation path of length 1, which means that there exists

a rule instance 𝑟 with head(𝑟) = 𝐹 and body(𝑟) ⊆ 𝐸 ∩𝐸′
. Since 𝐹 was processed as part of 𝑊 and is

not explicit, we can apply 𝑟 in line 20 to add every body fact to 𝑊 . These body facts are in 𝐸 ∩𝐸′
, so

that they will be added to 𝑉 in line 19 during the following algorithm iterations. Hence, we can also

apply 𝑟 in line 11 and, thus, add 𝐹 to 𝑉 as well.

For the induction step, we assume that 𝐹 has a (shortest) derivation path of length 𝑛+1. Accordingly,

there exists a rule instance 𝑟 with head(𝑟) = 𝐹 , where every fact in body(𝑟) has a (shortest) derivation

path of length ≤ 𝑛. Due to 𝐹 ∈ 𝐼 ′, we also have body(𝑟) ⊆ 𝐼 ′. By Claim 1, 𝐹 occurred in 𝑊 , in which

case we can apply 𝑟 in line 20 to add body(𝑟) to 𝑊 and, hence, to 𝐶 . Thus, we have body(𝑟) ⊆ 𝐶 ∩ 𝐼 ′

and consequently body(𝑟) ⊆ 𝑉 based on our hypothesis. This allows us to apply 𝑟 in line 11 and, thus,

add 𝐹 to 𝑉 .

With the above claims, we can show the correct behavior of the deletion phase:

Claim 3. A fact 𝐹 is added to the set 𝐷 if and only if 𝐹 ∈ 𝐼 ∖ 𝐼 ′.

Proof. (⇒) If 𝐹 ∈ 𝐷 and 𝐹 is explicit, then 𝐹 ∈ 𝐸−
(cf. line 6) and, thus, 𝐹 ∈ 𝐼 ∖ 𝐼 ′. For the case that

𝐹 is implicit, we know that 𝐹 ∈ 𝐶 and 𝐹 ̸∈ 𝑉 based on line 25. By Claim 2, this also requires that

𝐹 ̸∈ 𝐼 ′. Since the algorithm only works with rule instances from 𝜌(𝑃, 𝐼), we also have 𝐶 ⊆ 𝐼 , and

hence 𝐹 ∈ 𝐼 ∖ 𝐼 ′.
(⇐) If 𝐹 ∈ 𝐼 ∖ 𝐼 ′ and 𝐹 is explicit, it has to appear in 𝐸−

and, thus, in 𝐷 based on line 6. For the

case that 𝐹 is implicit, we use a proof by induction over the derivation path length of 𝐹 :

For the base case, we assume that 𝐹 has a derivation path of length 1, which means that there is a

rule instance 𝑟, where head(𝑟) = 𝐹 and every fact from body(𝑟) is explicit. Since 𝐹 ∈ 𝐼 ∖ 𝐼 ′, the body

has to contain a fact from 𝐸−
, otherwise 𝐹 would still be derivable in 𝐼 ′. Initially, we have 𝐷 = 𝐸−

,

so that we can apply 𝑟 in line 23 and add 𝐹 to 𝑊 in the next line. By Claim 1, 𝐹 will be added to 𝐶 too.

Because 𝐹 ̸∈ 𝐼 ′, we get 𝐹 ̸∈ 𝑉 by Claim 2, so that 𝐹 is added to 𝐷 based on line 25.

For the induction step, we assume that 𝐹 has a (shortest) derivation path of length 𝑛+1. Accordingly,

there exists a rule instance 𝑟 with head(𝑟) = 𝐹 , where every fact in body(𝑟) has a (shortest) derivation

path of length ≤ 𝑛. Due to 𝐹 ∈ 𝐼 ∖ 𝐼 ′, we have body(𝑟) ∩ (𝐼 ∖ 𝐼 ′) ̸= ∅. By our hypothesis, we then get

body(𝑟) ∩𝐷 ̸= ∅, so that we can apply 𝑟 in line 23 to add 𝐹 to 𝑊 and, consequently, to 𝐶 by Claim 1.

Due to 𝐹 ̸∈ 𝐼 ′, we get 𝐹 ̸∈ 𝑉 by Claim 2, so that 𝐹 will be added to 𝐷 based on line 25.

Next, we show the correct behavior of the algorithm’s insertion phase:

Claim 4. Let 𝐼* be the updated dataset 𝐼 of line 26, and 𝐸* the corresponding set of explicit facts. When
we reach line 33, we have 𝐼 = mat(𝑃,𝐸*).

Proof. As long as phase = 2, we repeatedly look for rule instances in 𝐼 where the head is not yet

present, and add this head to 𝐼 (cf. lines 28 and 30). Accordingly, we extend 𝐼 with 𝑃 (𝐼), as defined in

Section 2. Repeating this until the dataset does not change anymore, i.e., once we cannot add any new

fact, will eventually lead to 𝐼 = mat(𝑃,𝐸*) as defined in Section 2.1.

Based on this, we can now prove that the algorithm correctly processes a single update:

Lemma 1 (Single update). Given a Datalog program 𝑃 , a materialized dataset 𝐼 = mat(𝑃,𝐸0), and a
stream of updates 𝑈̂ = ⟨𝑈⟩ with 𝑈 = (𝐸−, 𝐸+), Algorithm 1 returns as output a stream ⟨mat(𝑃,𝐸1)⟩
with 𝐸1 = (𝐸0 ∖ 𝐸−) ∪ 𝐸+.

Proof. By Claim 3, we obtain 𝐷 = mat(𝑃,𝐸0) ∖mat(𝑃,𝐸1) once we cannot extend 𝐷 any further, in

which case line 26 is executed and every fact that cannot be derived anymore in mat(𝑃,𝐸1) is deleted.

In the same line, we also add 𝐸+
to 𝐼 , so that we eventually obtain 𝐼 = mat(𝑃,𝐸1) once we reach

line 33, based on Claim 4.



Knowing that Algorithm 1 works correctly in the classical way, where we do not take a look at the

next update, we next show that the marking-related computations do not interfere with the computation

of the dataset. First, we consider the case for the current update 𝑈1:

Lemma 2 (No influence on current dataset). Given two sequential updates 𝑈𝑎 and 𝑈𝑏 from 𝑈̂ in
Algorithm 1, the marks that are computed due to 𝑈𝑏 during the processing of 𝑈𝑎 do not influence the
dataset 𝐼 that is returned at the end of processing 𝑈𝑎.

Proof. The procedures mark, unmark and the function getMarked do neither add nor remove facts.

The only cases where a marked fact is required as a condition to perform some operation are in lines 12

and 29, where we just mark a fact and, thus, do not change the dataset.

To prove that the dataset of the next update 𝑈2 will not be affected by the markings either, we first

show the following claim:

Claim 5. The order in which we add facts to the set 𝑊 does not have an influence on the dataset 𝐼 that is
returned at the end of an update’s processing.

Proof. Lines 20 and 23 do not specify what rule we may choose if several ones are applicable, so that the

order in which we add facts to 𝑊 can be different each time we use the algorithm. Based on Lemma 1,

however, we know that the algorithm still produces the correct materialized dataset.

Now, we can prove the following lemma:

Lemma 3 (No influence on next dataset). Given two sequential updates 𝑈𝑎 and 𝑈𝑏 from 𝑈̂ in Algorithm 1,
the marks that are computed due to 𝑈𝑏 during the processing of 𝑈𝑎 do not influence the dataset 𝐼 that is
returned at the end of processing 𝑈𝑏.

Proof. Marked facts influence the next update’s processing based on the initialization of the set 𝑊 in

line 32. Here, we only add implicit facts (by removing 𝐸−
2 ), which can only be marked in lines 12 and 29.

In both cases, we mark the head of a rule instance, where the body contains a marked explicit fact.

Based on line 9, we only mark explicit facts that occur in 𝐸−
2 . Since we use 𝐸−

2 to initialize the set 𝐷
when we prepare the next update’s processing in line 32, we could apply those rule instances in line 23

during the next update’s processing if we would start with an empty set 𝑊 . This means that every fact

that we add to 𝑊 in line 32 based on markings, would also be added to 𝑊 if we processed the next

update in the classical way, where we consider each update alone, without any marking. By Claim 5,

changing the order of fact additions to 𝑊 based on its initialization does not affect the resulting dataset,

so that we obtain the same dataset 𝐼 at the end as if we would process the next update alone, which is

correct based on Lemma 1.

Combining the above lemmas, we can show correctness of Algorithm 1 as follows:

Theorem 1. Given a Datalog program 𝑃 , a materialized dataset 𝐼 = mat(𝑃,𝐸0), and a stream of
updates 𝑈̂ = ⟨𝑈1, 𝑈2, ...⟩, Algorithm 1 returns as output a stream ⟨mat(𝑃,𝐸1),mat(𝑃,𝐸2), ...⟩ with
𝐸𝑖 = (𝐸𝑖−1 ∖ 𝐸−

𝑖 ) ∪ 𝐸+
𝑖 for each 𝑈𝑖 = (𝐸−

𝑖 , 𝐸
+
𝑖 ) ∈ 𝑈̂ .

Proof. We prove this by induction: As base case, we have the first update 𝑈1 ∈ 𝑈̂ , for which the

algorithm correctly computes mat(𝑃,𝐸1) based on Lemmas 1 and 2. In the induction step, we consider

two sequential updates 𝑈𝑖, 𝑈𝑖+1 ∈ 𝑈̂ . By hypothesis, we get the correct result for 𝑈𝑖. By Lemma 3,

the related computations do not affect the result of 𝑈𝑖+1, so that we also obtain the correct dataset

mat(𝑃,𝐸𝑖+1) by hypothesis.



B. Evaluation – Datalog Programs

edge(𝑥, 𝑦) → path(𝑥, 𝑦)
edge(𝑥, 𝑦), path(𝑦, 𝑧) → path(𝑥, 𝑧)

(a) Rules for Datalog program 𝑃trans

edge(𝑥, 𝑦) → edge1(𝑥, 𝑦)
edge1(𝑥, 𝑦) → edge2(𝑥, 𝑦)
edge2(𝑥, 𝑦) → edge3(𝑥, 𝑦)
edge3(𝑥, 𝑦) → edge4(𝑥, 𝑦)

(b) Rules for Datalog program 𝑃seq

Figure 1: Rules for the Datalog programs used in synthetic data tests

nextInWay(𝑥, 𝑦1, 𝑧1), nextInWay(𝑥, 𝑦2, 𝑧2), 𝑛𝑒𝑞(𝑧1, 𝑧2) → connection(𝑧1, 𝑧2)
nextInWay(𝑥, 𝑦1, 𝑧1), nextInWay(𝑥2, 𝑥, 𝑧2), 𝑛𝑒𝑞(𝑧1, 𝑧2) → connection(𝑧1, 𝑧2)
nextInWay(𝑥1, 𝑦, 𝑧1), nextInWay(𝑦, 𝑦2, 𝑧2), 𝑛𝑒𝑞(𝑧1, 𝑧2) → connection(𝑧1, 𝑧2)
nextInWay(𝑥1, 𝑦, 𝑧1), nextInWay(𝑥2, 𝑦, 𝑧2), 𝑛𝑒𝑞(𝑧1, 𝑧2) → connection(𝑧1, 𝑧2)

connection(𝑥, 𝑦), connection(𝑦, 𝑧) → connection(𝑥, 𝑧)

with 𝑛𝑒𝑞(𝑥, 𝑦) := 𝑥 ̸= 𝑦

Figure 2: Rules for the Datalog program used in real data tests

The atom nextInWay(𝑥, 𝑦, 𝑧) states that the node 𝑥 is followed by the node 𝑦 on the way 𝑧.
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