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Abstract

Extending a set of facts with every fact that can be derived based on a set of rules is called materialization.
Incremental approaches, like Delete/Rederive (DRed) and Backward/Forward (B/F), allow for efficient adaptations
of materialized datasets whenever the original set of facts changes due to an update. To effectively deal with
streams of updates, we previously extended DRed with marking, where we directly take a look at the next
available update in the stream and utilize this insight to prevent repeated rule applications. In this work, we
apply this idea on B/F by using marks to indicate and find facts that are deleted by the next update, which enables
us to determine facts that need to be checked for some alternative derivation without considering rules for that.
An evaluation with both synthetic and real test data demonstrates the marking approach’s potential to reduce
processing time compared to classical B/F.

Keywords

materialization, incremental reasoning, stream processing

1. Introduction

A possible way to accelerate query answering for description logic ontologies with large ABoxes is the
transformation into Datalog [1], where we can utilize optimized reasoners, like RDFox [2], to improve
the performance [3]. Answering queries in Datalog is often facilitated by computing the so-called
materialization, where we extend a set of facts with all its entailed facts based on a set of rules, so that
every implicit derivable fact is directly accessible. Materialization from scratch can be time-consuming,
which is why we typically use incremental materialization maintenance algorithms, like Delete/Rederive
(DRed) [4] or Backward/Forward (B/F) [5], to efficiently deal with updates to a materialized dataset.

While such incremental algorithms only handle one update at a time, DRed with Marking [6] presents
an extension that directly works with a whole stream of updates. When we process an update with this
marking approach, we already take a look at the next available update from the stream and mark facts
in the dataset that are affected by a deletion or insertion of the next update. If such a marked fact is
involved in a current rule application, we can infer that the derived fact is affected by the next update
too and has to be marked as well. This way, we can reduce the number of rule applications that are
usually necessary to process the next update, since the markings already provide us with some facts
that are relevant for our computations, and, thus, improve the performance of our algorithm.

In this work, we extend B/F with marking and show its potential to reduce processing time compared
to classical B/F. The remaining parts start with defining Datalog and materialization maintenance in
Section 2, before we discuss related work in Section 3. The formalization of B/F with Marking is in
Section 4, followed by an evaluation in Section 5. We conclude in Section 6.

2. Basics and Preliminaries

As done for DRed with Marking [6], we formally define Datalog [1] based on countable, disjoint sets of
predicates, constants, and variables. A term is a constant or a variable. An atom has the form p(t1, ..., ),
where p is a k-ary predicate and each ¢;, 1 < i < k, is a term. If an atom does not contain variables,
it is ground. A fact is a ground atom and a dataset is a finite set of facts. A Datalog rule r is a logical
implication of the form By, ..., By — H where By, ..., By, are called body atoms, and H is a head
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atom. We use body(r) and head(r) to denote the set of body atoms and the head atom of r, respectively.
A rule is safe if variables that appear in the head also appear in a body atom. A Datalog program is a
finite set of safe rules. Predicates that occur in the head of a rule are called intensional (IDB) predicates;
all other predicates are extensional (EDB).

A substitution o is a partial mapping from variables to constants. For « a term, an atom, a rule, or a
set of rules, oo is the result of replacing each occurrence of a variable  in & on which o is defined with
o(x). If ris arule and o is a substitution mapping all variables of r to constants, then ro is an instance of
r. We say that a set of facts S instantiates a rule r if there exists a substitution o such that body(r)o = S.
Given a Datalog program P and a dataset I, we define p(P,I) = {ro | r € P,S C I,body(r)c = S}
as the set of all rule instances that can be created by instantiating rules in P with subsets of 1. A
fact is called derivable if it appears as head in a rule instance of p(P, I). For a program P, we define

P(I) = U,ep(pr){head(r)}.

2.1. Materialization Maintenance

Let E be a finite dataset of explicit facts. Then, let Iy = E; foreachi > 1,let I; = I,_jUP(I;_1),and let
I, = I,,11 for some n > 1. The set [, is the materialization of P w.r.t. F, denoted as mat(P, E'). Let E~
and E be finite datasets with E~ C E, ENE" =(,and E* UE~ # (. Thetuple U = (K, E™) is
called an update for E, where E~ denotes the facts explicitly deleted from E, and E™ the facts explicitly
added to F, respectively. Applying the update U on F leads to the updated dataset £/ = (E\ E~)UE™.
We allow only EDB predicates in updates. Accordingly, a fact is implicit if it has an IDB predicate, and
explicit if it has an EDB predicate. This is w.l.o.g. as we can replace a k-ary IDB predicate p that is to be
used in an update by a new k-ary predicate p’ and add rules of the form p(t1,. .., tx) = p'(t1, ..., tx)
such that p becomes an EDB predicate (see, e.g., [7]).

Materialization maintenance is the task of computing the updated materialization mat(P, (Ey\ E~)U
E) for a given materialization mat(P, Ey) and an update U = (E—, E*). Let U = (U}, Uy, .. .), with
\U| > 1, denote a stream of updates for a dataset Ey, where for each U; = (E;, Ef) c U, we have
E- CFE;_i1and E;_1 N Ej = (), resulting in E; = (E;—1 \ E; ) U E;r For a stream of updates U,
materialization maintenance leads to a stream of materialized datasets (mat(P, E1), mat(P, E2), ...)
where each E; corresponds to an U; € U.

3. Related Work

As we combine the main idea of Delete/Rederive with Marking [6] with Backward/Forward [5], these
algorithms serve as main references for our work and are described in more detail below. In addition,
other improvements to DRed and B/F as well as to the well-known counting approach [4] are presented
by Motik et al. [8], while Hu et al. [9] describe combined algorithms. Related to the processing of
streams, Terdjimi et al. [10] present a tag-based approach that allows for fast re-insertions of deleted
facts without repeating rule applications, while Ren and Pan [11] describe a truth maintenance system
to handle update streams for £ ontologies. DynamiTE [12] performs materialization in parallel
for RDF streams and IMaRS [13, 14] utilizes window-based expiration times for efficient incremental
adaptations. Unlike Delete/Rederive with Marking, however, all of these approaches only consider one
update at a time.

3.1. Delete/Rederive with Marking

DRed with Marking [6] extends the classical Delete/Rederive algorithm [4] in order to more efficiently
deal with streams of updates, where changes to the materialized dataset might appear faster than they
can be processed. The general procedure is still as in the classical algorithm, consisting of the three
sequential overdeletion, rederivation, and insertion phases: Given a materialized dataset [ = mat(P, F)
and an update U = (E~, E™), the overdeletion phase removes every fact from I that occurs in £~ or
that can be derived by means of such a deleted fact. Even though this procedure ensures that we delete



every fact that is not derivable anymore in the updated materialization, it might also falsely remove
facts which still have some alternative derivation that is not affected by any deletion. This problem is
solved in the subsequent rederivation phase, where we re-add all facts that can still be derived based on
the remaining facts. After that, we insert £+ and compute every new derivable fact in the insertion
phase to obtain a correctly updated materialization.

Classically, DRed only focuses on one update during its processing. The expanded algorithm, on the
other hand, also tries to integrate the next update of the stream into the current processing as soon as it
is available. This is achieved by marking facts in the dataset that are changed by the next update. In
particular, a fact is marked negatively if it is deleted by the next update, whereas a currently deleted
fact is marked positively if it is re-added. When such a marked fact is involved in some rule application,
then we also mark the derived implicit fact if certain conditions hold. This way, we are able to directly
determine some of the fact changes related to the next update and, thus, reduce the number of rule
applications that would usually be necessary to process the next update. Concretely, we avoid cases
where a rule instance has to be considered again for the next update as illustrated in the following
example:

Example 1. Assume we have a rule p1(x), p2(x) — q(x) and two consecutive updates U, = (0}, {p2(c)})
and Uy, = ({p1(c)}, D), which we sequentially apply on a dataset I = {p1(c)}. When we process U,, we
directly take a look at the next update Uy, and (negatively) mark the fact p1(c) in I, since it will be deleted
by Uy. After adding p2(c) to I, we can apply the rule to derive q(c), which will be marked too, because its
derivation depends on p1(c) that is deleted by the next update, as indicated by the mark. Once we finish
the processing of U, and move on to Uy, we can directly see that q(c) is affected by some deletion due to its
mark, without the need to apply the rule again.

3.2. Backward/Forward

The Backward/Forward algorithm [5] was originally introduced as a way to deal with the inherent
inefficiency of DRed where falsely deleted facts have to be rederived. While the computation of new
derivable facts due to insertions is done as in DRed, the B/F algorithm directly checks if a deleted fact has
an alternative derivation, which does not include any deleted facts, to prevent a potential (over)deletion
along with the needed rederivation of its consequences.

To find an alternative derivation for some fact F, first, backward chaining is applied to determine
facts that would be needed to derive F'. In detail, we look for rule instances that have F' as head and
then recursively check if we can “prove” the facts in the rule instance’s body, where a fact is considered
to be “proven” if it either is explicit (and not deleted) or can be derived entirely by proven facts. To
ensure termination in the presence of recursive derivation cycles, each fact is only checked once during
backward chaining. For the proving of implicit facts, we perform forward chaining by applying rules
on already proven facts. If a fact has been checked during backward chaining and was also derived
during forward chaining, then it is proven and we keep it, otherwise it has to be deleted.

Example 2. Assume we have three rules pi(x), p2(z) — q(x), ps(z) — q(x), and ¢(z) — r(z), and an
update U = ({p1(c)}, D), which we apply on a materialized dataset I = {p1(c),p2(c),p3(c),q(c),r(c)}.
Since q(c) can be derived by the deleted pi(c) based on the first rule, we check if it has an alternative
derivation. Using backward chaining, we match q(c) to the head of the second rule, which then tells us to
check p3(c) in the rule’s body next. Since p3(c) is explicit (as it cannot be derived by any rule), it is directly
“proven” and, hence, can be applied for forward chaining with the second rule to derive and, thus, “prove”
the previously checked q(c) too. Accordingly, q(c) (and its consequence r(c)) must not be deleted.

The reason why this combination of backward and forward chaining often performs better than
DRed is that instead of traversing (and deleting) the facts which can be derived based on a checked
fact ({r(c)} in Example 2), B/F goes through the facts that potentially support the derivation of the
checked fact ({p3(c)} in Example 2), where the latter set of facts is usually smaller. Nevertheless, there
still exist cases where B/F can be slower than DRed, for example, when alternative derivations and,
thus, rederivations are rare.



4. B/F with Marking

The general idea of the marking approach is that we first mark explicit facts in the dataset which are
changed by the next update, and then pass these marks on to implicit facts during rule applications
in order to determine further changes that are relevant for the next update. The evaluation of DRed
with Marking [6] showed that positive marks, i.e., cases where a currently deleted fact is re-added by
the next update, are quite rare and, hence, do not notably contribute to the performance gain of the
marking approach. Therefore, we only focus on negative marks for B/F, i.e., situations where facts are
deleted by the next update.

An implicit fact is affected by some deletion if there exists a rule instance that has the implicit fact as
head and contains a deleted fact in its body. Accordingly, if we have a rule instance that contains at
least one marked fact in its body, we may simply mark the head too, as already illustrated in Example 1.
In DRed, the overdeletion phase removes every fact that is affected by some deletion, which is why we
can also use implicit facts there to propagate marks to other derived facts. In contrast to this, deletions
in B/F are accurate, in the sense that we only remove a fact from the dataset when we are sure that it
cannot be derived anymore. Accordingly, a marked implicit fact should only be used to mark another
fact if we can guarantee that the former cannot be derived anymore due to the next update. As this
knowledge can generally not be obtained before actually processing the next update, we may only use
marked explicit facts, for which we definitely know that they will be deleted, to mark other facts in B/F.

The computation of marked implicit facts can be done for B/F both during the forward chaining
process where we try to prove that a fact is still derivable, and when we determine new derivable facts
based on insertions. By looking for marked implicit facts once the processing of the current update is
completed, we can directly obtain some facts that have to be checked for alternative derivations when
the next update is processed, without the need to first search for appropriate rule instances that tell us
that those facts are affected by some deletion.

With the inclusion of the next update in our processing, one might think that we are also able to
re-use some of the “proven” facts, and thus avoid repeated backward/forward chaining, by excluding
marked proved facts for which we know that they are not derivable in the next update. However, this
does generally not work, since markings do usually not cover every fact that has to be deleted for the
next update: on the one hand, because we do not allow implicit facts to pass on marks, and on the other
hand, since updates might be introduced with a delay, so that some proven facts might not be marked
even though they are affected by a deletion.

4.1. Algorithm

The formal description of Backward/Forward extended with marking is presented in Algorithm 1.
Here, we use three functions GETNEXT(U ), which returns the next update in the stream U if one is
available, GETLAST(S), which returns the most recently added fact from the set S, and GETMARKED(SS),
which returns the set of marked facts from S. Additionally, we assume two procedures MARK(.S) and
UMMARK(S), which add and remove marks for the facts in the given set S, respectively. The input of
Algorithm 1 consists of a Datalog program P, a (possibly empty) materialized dataset I = mat(P, Ey),
and a stream of updates U = (U = (Ey,Ef"),Us = (Ey, EJ),...). The algorithm’s output is a
stream of materialized datasets (mat(P, Ey), mat(P, Es), ...) with E; = (FE;_1 \ E; ) U E; fori > 1,
where each dataset refers to an update in U. Note that we only work with one program P, i.e., we do
not deal with changes to the set of rules. The algorithm’s correctness is shown in Appendix A.

One difference to the original B/F algorithm is that we conduct our computations in a big loop to
allow the continuous processing of a whole stream of updates. At the beginning of each iteration, we
check if there is a current update U; to be processed, as well as a next update Us that occurs directly
after U; in the stream. As in DRed with Marking, we consider at most two updates at the same time
to keep the marking computations simple. In general, an immediate access to updates is not always
possible due to delays in the stream. If we do not have a current update Uy, we wait until one is available
(cf. line 5).



Algorithm 1 B/F with Marking

Input: Datalog program P, materialized dataset I, stream of updates U
Output: stream of materialized datasets

. Uy = (Ey,Ef") + nul; Uy = (Ey , E5 ) + null; phase < 1;

2C—0:; D0V —0;W—0Y 10

3: repeat
4: if U7 = null then
5: repeat U; < GETNEXT(U) until U, # null
6 D« E
7. if Uz = null then
8: U, + GeTNEXT(U)
9: if Uy # null then mark((1 U Ef") N E5)
10:  if phase = 1 then > DELETIONS
> a) Forward chaining with proven facts
11: if 3r € p(P,I) : body(r) C V and head(r) ¢ V UY then
12: if 3F € body(r) : F is explicit and marked then MaRk({ head(r)})
13: if head(r) € W then
14: V « VU{head(r)}; C + C U {head(r)}; W <~ W \ {head(r)}
15: else if head(r) € C then V < V U {head(r)}
16: else Y < Y U {head(r)}
> b) Backward chaining with waiting facts
17: else if ' < GeTLAST(W') # null then
18: if F'is explicitand F' € |, or F' € Y then
19: V«—VU{F}5C«+ CU{FhEZW <« W\ {F}
20: else if 3r € p(P,I) : body(r) N D = ( and body(r) \ (W U C) # () and head(r) = F
21: then W < W U (body(r) \ (W UC))
22: else C « CU{F}; W« W\ {F}
> ¢) Determine facts affected by deletion
23: else if 3r € p(P,I) : body(r) N D # () and head(r) € W U C then
24: W < W U {head(r)}
> d) Delete facts that cannot be proven
25: elseif (C\V)Z DthenD < DU (C\V)
> e) Finish deletions and prepare insertions
26: else I < (I\ D)U E; phase < 2
27:  if phase = 2 then > INSERTIONS
> f) Add new derivable facts
28: if 3r € p(P,I) : head(r) ¢ I then
29: if 3F' € body(r) : F is explicit and marked then mark({head(r)})
30: I < TU{head(r)}
> g) Prepare next update processing
31: else
32: C <« 0;D <« E;;V < 0; W < GetMARKED(]) \ E5; Y < (; unmark(])
33: write I to output; Uy <— Us ; Uz < null; phase < 1

34: until U ends and U1 = null

For the next update U, however, we only look once per iteration, before we continue with the
processing of U to avoid any stagnation (cf. line 8). When a next update has been found, we directly
use it to mark explicit facts that are in the dataset or added by the current update but also deleted by
the next update (see line 9). To ensure a fast integration of the next update once it is available, we apply



at most one rule in each iteration as indicated by the existential quantifiers in lines 11, 20, 23, and 28.
Note that despite the usage of the set p(P, I) in those lines, we do not have to determine every possible
rule instance at once, but instead can compute them gradually as needed.

The remaining operations in the algorithm are separated into a deletion and an insertion phase based
on a phase variable (cf. lines 10 and 27), which is updated once the computations for a phase are finished
(cf. lines 26 and 33). Similarly to the original B/F algorithm, we use various sets in the deletion phase to
indicate that a fact is “completely checked” (C), “deleted” (D), “proven” (V), “waiting to be completely
checked” (W), or “delayed” (Y), i.e., proven but not checked yet. The deletion phase can be further
divided into five blocks (a—e) and the insertion phase into two (f-g), as indicated by the comments on
the right-hand side of Algorithm 1. Note that the order of the blocks in the algorithm is based on their
priority and does not necessarily represent their appearance during processing. We use the following
example as starting point to describe the functionality of the different sets and blocks:

Example 3. Assume we have four rules pi(z),p2(z) — q(z), ps(x) — q(x), ¢(x) — r(x), and
q(x), pa(z) — s(x), and two consecutive updates U, = ({p1(c)},{pa(c)}) and Uy = ({pa(c)}, D), which
we sequentially apply on a materialized dataset I = {p1(c), p2(c), p3(c),q(c),r(c)}. During the first loop
iteration in Algorithm 1, we assign U, to Uy and set D = {p1(c)}, before we assign Uy, to Uy and then
mark the fact p4(c).

Since the sets V and W are initially empty, but D is not, we begin with block c), where we determine
facts that are affected by a deletion. For that, we search for rule instances where the body contains some
deleted fact from D and the head has not been checked yet (see line 23), in which case the head is added
to the set of waiting facts W (see line 24). In our example, we use the rule instance p;(c), p2(c) — ¢(c)
with p1(c) € D to add ¢(c) to W.

Due to ¢(c) € W, we apply block b) in the next iteration, where we process facts that are waiting to
be checked for a deletion-free derivation. For the implicit fact g(c), we do this by applying backward
chaining based on the rule instance p3(c) — ¢(c), where the body does not contain any deleted fact
from D but still consists of some facts that were not checked yet, so that they may be added to W for
future processing (see lines 20 and 21). In particular, we only add facts to W if they do not already occur
in W U C to guarantee termination for recursive derivation cycles. As in the original B/F algorithm, we
perform backward chaining in a depth-first manner by always selecting the most recently added fact
from W (see line 17). Accordingly, we continue in the next iteration with the new fact p3(c). Because
p3(c) is explicit and not deleted, it is regarded as “proven” and added to the set V. Thus, we do not
need to process it any further and move it from W to the set of completed facts C' (cf. lines 18 and 19).

With p3(c) € V, the next iteration starts with block a), which is responsible for the forward chaining
segment of B/F, where we derive facts entirely with proven facts from V' (cf. line 11). In addition, the
derived fact is marked if the body of the applied rule contains a marked explicit fact (see line 12). Using
the rule p3(z) — ¢(z), we derive and, thus, prove the fact ¢(c), which is also added to V" as it has
already been checked during backward chaining and, hence, occurs in W (or C'), based on lines 13 to 15.
Prioritizing forward over backward chaining facilitates a quick proving of facts which were considered
during backward chaining, so that we can prevent their further processing in block b) by removing
them from W (see line 14). With ¢(c) in V, we then also derive 7(c) based on the rule ¢(z) — r(z) in
the next iteration, but since 7(c) does not occur in W or C, it is added to the set of delayed facts Y (see
line 16), so that it may directly be proven should it later appear during backward chaining (cf. lines 18
and 19).

At this point in our example, we computed every derivable fact from V, the set W is empty, we
considered every rule instance that contains a fact from D, and every checked fact has been proven,
ie, C = V. Therefore, we can only apply block e), where we remove the facts in D from the
materialized dataset I and add the new explicit facts F; of the current update Uy, resulting in I =
{p2(c), p3(c),q(c),r(c),ps(c)}, before we adapt the phase variable to continue with the insertion phase
(see line 26).

In the first block f) of the insertion phase, we repeatedly add every fact to the dataset that is not present
yet, but occurs as head in a rule instance (see lines 28 and 30). In our case, we use ¢(c), p4(c) — s(c) to



add s(c) to the dataset. Furthermore, we also mark the derived fact s(c) due to the marked explicit fact
pa(c) in the rule body (cf. line 29). Once we cannot add any new fact, we end the insertion phase in
block g) by writing the now fully updated materialized dataset to the output stream and prepare the
processing of the next update in lines 32 and 33: we empty the sets C, V, and Y to reset the proven
facts, initialize D with the explicitly deleted facts of the next update, and use the set of marked implicit
facts as starting point for W. In our example, we get I = {pa(c), p3(c), q(c),(c), pa(c), s(c)} with
D = {ps()} and W = {s(c)}.

Unlike the processing of the first update, the second one now begins with block b) as W' is not empty.
More specifically, we can directly prevent rule applications in block c), where we only consider a rule
instance if the head does not already occur in W or C (see line 23). Accordingly, the initialization of W
based on marked facts is how we improve the performance of B/F in the end. Since s(c) € W is neither
explicit nor in Y, and there is no rule instance without any body fact in D which has s(c) as head, the
fact is moved to C' based on line 22.

Because V and W are empty, and s(c) occurs in C but not in V, we apply block d) next. At this
point, we know that facts which were checked but could not be proven do not possess any alternative
derivation and, hence, have to be deleted, which is why we add them to D, so that we may determine
further facts affected by deletions in the following iterations (cf. line 25). Since s(c¢) cannot be matched
to any body atom in our rules, we cannot perform block c) and instead move on to block e), where the
deleted facts are removed from the dataset, leading to I = {pa(c), p3(c), q(c),r(c)}. As U, does not
insert new facts, we then finish with block g).

5. Evaluation

Extending DRed with marking allowed us to reduce the CPU time that is needed to process a stream of
updates by about 25% in average in the conducted evaluation [6]. For the B/F algorithm, we expect less
improvement in the performance. The first reason is that marks are only computed based on explicit
facts, which might lead to fewer marked implicit facts and, thus, a smaller reduction of rule applications.
In addition, the main effort of B/F usually lies in the backward and forward chaining of the deletion
phase, whereas determining what facts are affected by a deletion is comparatively simple. To see if the
marking approach can still improve B/F despite those limitations, we conducted the same evaluation as
for DRed with Marking.

5.1. Test Data

The evaluation involves two synthetic and one real test case. In the synthetic ones, we work with a
graph represented by a set of directed edges, where randomly generated updates appropriately add
and delete the same number of edges. In one case, we use a Datalog program P;;,,s, which computes
(transitive) paths in the graph, and in the other one a program Py, where predicates are repeatedly
renamed to create simple sequences of rule applications. In particular, P;,,s allows for many alternative
derivations, which is often an advantage for B/F compared to DRed, while facts in Py can only be
derived in one specific way, which is usually less optimal for B/F.

The real test case is inspired by a task in autonomous driving, where we reason about dynamically
loaded map data. Given a GPS track, we load map data within a radius of 50 m around each GPS position
and then generate a stream of updates, which states how the map data changes between the sequential
GPS positions. The map data focuses on specific types of ways, for which Datalog rules are utilized
to compute connections and their transitive relations. The exact rules of each program are listed in
Appendix B.



Table 1
Test measurements for the synthetic data with Pi.qps

time reduction inser-
[in seconds]  [in %] deletions backward forward tions marks
size  old new old new old new old new both ex. im.
10 42.48 39.17 7.8 1,603 447 11,253 14,447 18,777 19,001 545 480 991
20 38.55 35.68 7.4 3,046 594 10,468 13,199 15,373 15,516 2912 960 2,277
30 38.64 35.57 7.9 5,146 1,100 10,206 11,856 11,154 11,224 7,288 1,399 4,153
40 41.35 40.17 2.9 4,755 682 10,834 13,036 12,560 12,612 6,575 1,816 4,069
50 43.60 45.09 -3.4 3,778 360 11,514 14,441 15,060 15,096 4,570 2,215 3,660
60 45.78 48.51 -6.0 3,227 213 11,842 15,254 16,518 16,547 3,327 2,604 3,428
70 48.34 52.76 9.1 2,724 161 11,919 16,054 17,780 17,796 2,158 2,973 3,085
80 50.04 55.76 -11.4 2,584 126 11,863 16,323 18,169 18,183 1,782 3,293 3,078

5.2. Test Execution and Results

We performed the evaluation by extending the implementation of DRed with Marking, which is available
online'. The tested update streams are created with Java, while Constraint Handling Rules [15] based
on SWI-Prolog? are used to implement both the original and our extended B/F algorithm. For a more
efficient implementation, we slightly adapted Algorithm 1 to allow more than one rule application in a
loop iteration once the next update Us has been provided.

During the tests, we measured the time spent by the CPU to process the whole stream, along with
the number of applied rules in the different phases of the algorithm. For our extended B/F approach, we
additionally counted the number of marked facts. The following results were obtained on a Windows 11
PC with an AMD Ryzen 7 3700X 3.59 GHz CPU and 16 GB RAM, using SWI-Prolog 9.3.15 with a 4 GB
stack.

5.2.1. Synthetic Data Results

For the synthetic tests, we computed average values from three runs based on different random seeds
and five repetitions. Every stream included exactly 50 updates, where the first one added 100 facts
to an empty dataset, for which the materialization was first completed before any other update was
considered. Each test run processed eight update streams, where the update size, i.e., the number of
both added and deleted facts, increased evenly from 10 to 80. The maximum number of nodes in the
graph was set to 20 for Pirans and to 100 for Peeg.

Table 1 shows the results for Pians, where “old” refers to classical B/F and “new” to B/F with marking,
respectively. Furthermore, “deletions” presents the number of rule applications for line 23 in Algorithm 1,
“backward” for line 20, “forward” for line 11, and “insertions” for line 28. As indicated by the “reduction”
column, the marking approach can both decrease and increase the processing time. Nevertheless, this
may still be seen as an improvement, because B/F is generally suited for smaller updates [8], all of
which benefit in our test.

The reason for the performance gain is provided by the “deletions” column, which shows a greatly
reduced number of rule applications. For larger updates, however, this does not suffice as more facts in
an update also mean more marking-related overhead. In addition, the ratio of marked implicit facts
(“im”) to marked explicit facts (“ex””) is lower than for smaller updates, while the number of performed
deletion rules in the original B/F is also relatively small for larger updates, thus further hindering the
gain of the marking approach. Moreover, the number of applied rules during backward and forward

"https://github.com/M-Illich/dred-mark-eval
*https://www.swi-prolog.org/
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Table 2
Test measurements for the synthetic data with Py,

time reduction
[in seconds] [in %] deletions backward forward insertions marks
size old new old new both both both ex. im.
10 10.32 8.73 15.4 1,960 1,480 0 0 2,360 480 480
20 18.69 15.68 16.1 3,920 2,960 0 0 4,317 960 960
30 28.59 23.33 18.4 5,880 4,440 0 0 6,265 1,440 1,440
40 43.14 34.60 19.8 7,827 5,910 0 0 8,228 1917 1917
50  64.62 52.67 185 9,709 7,332 0 0 10,173 2,377 2,377
60 107.12 85.82 19.9 11,588 8,744 0 0 12,129 2,844 2,844
70 152.29 120.46 20.9 13,457 10,147 0 0 14,069 3,311 3,311
80 220.44 177.29 19.6 15,283 11,516 0 0 16,005 3,767 3,767
Table 3
Test measurements for the real data
time reduction
[in seconds] [in %] deletions  backward forward insertions marks
old new old new old new old new both ex. im.
tracky 114.58 106.22 7.3 859 754 4,329 4,400 3,299 3,299 4,638 910 70
track, 20.57  20.29 1.4 684 544 2,697 2,733 2,317 2,317 2,653 1,208 119
tracks 1046  10.24 22 558 400 1,484 1,479 1,206 1,206 1,704 1,017 137

chaining is actually higher with marking, especially for larger updates, which may be explained by
the change of order in which facts are checked for alternative derivations in line 17 of Algorithm 1,
due to the initialization of the set W based on marked implicit facts in line 32. The impact of the facts’
processing order on the number of performed rules is also the reason why the number of marked
implicit facts does generally not match with the number of prevented deletion rules. For example, a fact
might be already proven during the processing of another fact, before we determine that it is affected
by a deletion.

The results for Py, are in Table 2. Due to the lack of alternative derivations, we cannot apply any
rules during the backward and forward chaining parts, which is why the prevention of rule applications
indicated in the “deletions” column has a higher influence on the performance improvement than for
Pirans (see “reduction” column), although Pj.q,s could decrease the number of deletion rules much
more. In particular, even the larger updates did benefit from the marking approach. For the same reason,
the number of marked implicit facts equals the number of prevented deletion rules now.

5.2.2. Real Data Results

For the real test, we used predefined GPS tracks (tracko, track, tracks) to generate three streams
consisting of 55, 83, and 114 updates that add/delete around 18/17, 14/14, and 9/8 facts on average,
and 172/114, 152/167, and 65/74 facts at maximum, respectively. The results in Table 3 lead to similar
conclusions as the synthetic tests, with an overall better performance for the marking approach (see
“reduction” column) due to a decreased number of rule applications related to “deletions”. While the
undesired increase of applied backward chaining rules is much smaller than for P;,.4y,s, so is the number
of marked implicit facts, especially in proportion to the explicit ones, which is why we mainly obtain
small time improvements.



6. Conclusion

We extended the Backward/Forward algorithm with marking as done previously for Delete/Rederive.
During the processing of an update, we directly take a look at the next available one and mark facts that
are deleted by this next update. With those marked explicit facts, we can already determine some facts
that have to be checked for alternative derivations during the processing of the next update, without the
need to apply rules for that. An evaluation based on both synthetic and real data tests showed that the
marking approach can accelerate the processing time, although improvements are often small. Future
work may involve further optimizations, like integrating heuristics to specify the processing order of
facts to prevent additional rule applications during backward and forward chaining, for instance.
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A. Algorithm - Correctness

We show correctness of Algorithm 1 in a similar way to DRed with Marking. First, we prove that the
algorithm works correctly if the stream only consists of a single update, and then show that the marking-
related computations do not have any influence on both the current update’s and the next update’s
dataset. For the following, we define that given two sequential updates U, and Uy, the “processing of
U,” refers to loop iterations in Algorithm 1 where U; = U, and Us = Uy, while the “processing of U”
refers to the subsequent, continuing iterations where U; = Up,. Furthermore, we say that a “derivation
path” for a fact F is a sequence of rule instances r1, ..., 7,, where body(71) only contains explicit facts,
head(ry,) = F', and head(r;) € body(r;;+1) for 1 < i < n.

Let [ = mat(P, E) be the initial dataset and I’ = mat(P, E’) be the correctly adapted dataset with
E' = (E\E")UE" foranupdate U = (E—, E*). We prove the correct processing of a single update
by showing that the algorithm’s deletion phase removes every fact from I \ I’, while the insertion
phase adds every new derivable fact from I’ \ I, respectively. For the deletion phase, we first show the
following claims related to Algorithm 1:

Claim 1. A fact F' is added to the set W if and only if it is also added to the set C.

Proof. (=) When a fact F' occurs in W, it will eventually be selected in line 17. If F satisfies the
conditions in line 18, it will be added to C' in the next line. The second condition, in line 20, can only be
satisfied for a limited number of times due to the finite number of rule instances and the prevention of
repetitions as the consequence of this operation contradicts its condition. Hence, F' will eventually be
added to C based on line 22. The only way to prevent the selection of F' in line 17 is its removal from
W . Whenever we remove a fact from W in lines 14, 19, and 22, however, we also add the fact to C.
(<) We only add a fact F' to C in lines 14, 19, and 22, which can only be visited when F' is also in
W (see lines 13 and 17). O

Claim 2. A fact F is added to the set V ifand only if F € C NI

Proof. (=) A fact F is only added to V' in lines 14 and 19, where F is also added to C, or in line 15,
which already requires that F' € C. The conditions for the former additions are that F' is explicit and
not in E~, or that F' can be derived by proven facts from V. We show that F € V = F € I’ by
induction:

As base case, we consider the initial situation where V' is empty, so that we can only add explicit
facts that are not in £~ and, thus, still in £’ C I’. As induction step, we consider the case where we
add F' by deriving it from facts in V. By our hypothesis, every fact from V is also in I’, so that the facts
derived from V have to be in I’ too.

(<) If a fact F occurs in C' N I, it was also processed as part of W based on Claim 1. If F' is explicit,
it cannot be in E~ due to F' € I, so that it will be added to V' in line 19. We show that an implicit F is
added to V by induction over the length of F”’s derivation paths in I N I’, because implicit facts in C'
are based on rule instances from p(P, [):
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For the base case, we assume that F' has a derivation path of length 1, which means that there exists
a rule instance r with head(r) = F and body(r) C E N E’. Since F was processed as part of W and is
not explicit, we can apply 7 in line 20 to add every body fact to W. These body facts are in E N E’, so
that they will be added to V in line 19 during the following algorithm iterations. Hence, we can also
apply r in line 11 and, thus, add F' to V' as well.

For the induction step, we assume that F' has a (shortest) derivation path of length n + 1. Accordingly,
there exists a rule instance r with head(r) = F, where every fact in body(r) has a (shortest) derivation
path of length < n. Due to F' € I’, we also have body(r) C I’. By Claim 1, F' occurred in W, in which
case we can apply 7 in line 20 to add body(r) to W and, hence, to C. Thus, we have body(r) C C' NI’
and consequently body(r) C V based on our hypothesis. This allows us to apply 7 in line 11 and, thus,
add F'to V. O

With the above claims, we can show the correct behavior of the deletion phase:
Claim 3. A fact F is added to the set D if and only if F € I\ I'.

Proof. (=)If F € D and F is explicit, then F' € E~ (cf. line 6) and, thus, F' € T\ I'. For the case that
F is implicit, we know that F' € C and F' ¢ V based on line 25. By Claim 2, this also requires that
F ¢ I'. Since the algorithm only works with rule instances from p(P, I), we also have C' C I, and
hence F € I\ I'.

(<)If F € I\ I'and F is explicit, it has to appear in E~ and, thus, in D based on line 6. For the
case that I is implicit, we use a proof by induction over the derivation path length of F:

For the base case, we assume that /" has a derivation path of length 1, which means that there is a
rule instance 7, where head(r) = F and every fact from body(r) is explicit. Since F' € I \ I’, the body
has to contain a fact from E—, otherwise F' would still be derivable in I’. Initially, we have D = E—,
so that we can apply r in line 23 and add F’' to W in the next line. By Claim 1, F' will be added to C too.
Because F' ¢ I', we get F' ¢ V by Claim 2, so that F' is added to D based on line 25.

For the induction step, we assume that F' has a (shortest) derivation path of length n + 1. Accordingly,
there exists a rule instance r with head(r) = F', where every fact in body(r) has a (shortest) derivation
path of length < n. Due to F' € I\ I, we have body(r) N (I \ I') # (). By our hypothesis, we then get
body(7) N D # (), so that we can apply 7 in line 23 to add F' to W and, consequently, to C' by Claim 1.
Dueto F' ¢ I', we get F ¢ V by Claim 2, so that F will be added to D based on line 25. O

Next, we show the correct behavior of the algorithm’s insertion phase:

Claim 4. Let I'* be the updated dataset I of line 26, and E* the corresponding set of explicit facts. When
we reach line 33, we have I = mat(P, E*).

Proof. As long as phase = 2, we repeatedly look for rule instances in I where the head is not yet
present, and add this head to I (cf. lines 28 and 30). Accordingly, we extend I with P([), as defined in
Section 2. Repeating this until the dataset does not change anymore, i.e., once we cannot add any new
fact, will eventually lead to I = mat(P, E*) as defined in Section 2.1. O

Based on this, we can now prove that the algorithm correctly processes a single update:

Lemma 1 (Single update). Given a Datalog program P, a materialized dataset I = mat(P, Ey), and a
stream of updates U = (U) withU = (E~, E™), Algorithm 1 returns as output a stream {mat(P, E1))
with By = (Eg \ E")UE*.

Proof. By Claim 3, we obtain D = mat(P, Ey) \ mat(P, E1) once we cannot extend D any further, in
which case line 26 is executed and every fact that cannot be derived anymore in mat(P, E1) is deleted.
In the same line, we also add Et to I, so that we eventually obtain I = mat(P, F) once we reach
line 33, based on Claim 4. O



Knowing that Algorithm 1 works correctly in the classical way, where we do not take a look at the
next update, we next show that the marking-related computations do not interfere with the computation
of the dataset. First, we consider the case for the current update U;:

Lemma 2 (No influence on current dataset). Given two sequential updates U, and Uy from U in
Algorithm 1, the marks that are computed due to Uy, during the processing of U, do not influence the
dataset I that is returned at the end of processing U,,.

Proof. The procedures MARK, UNMARK and the function GETMARKED do neither add nor remove facts.
The only cases where a marked fact is required as a condition to perform some operation are in lines 12
and 29, where we just mark a fact and, thus, do not change the dataset. O

To prove that the dataset of the next update Us will not be affected by the markings either, we first
show the following claim:

Claim 5. The order in which we add facts to the set W does not have an influence on the dataset I that is
returned at the end of an update’s processing.

Proof. Lines 20 and 23 do not specify what rule we may choose if several ones are applicable, so that the
order in which we add facts to W can be different each time we use the algorithm. Based on Lemma 1,
however, we know that the algorithm still produces the correct materialized dataset. O

Now, we can prove the following lemma:

Lemma 3 (No influence on next dataset). Given two sequential updates U, and Uy, from U in Algorithm 1,
the marks that are computed due to Uy, during the processing of U, do not influence the dataset I that is
returned at the end of processing Uy,

Proof. Marked facts influence the next update’s processing based on the initialization of the set W in
line 32. Here, we only add implicit facts (by removing Ej, ), which can only be marked in lines 12 and 29.
In both cases, we mark the head of a rule instance, where the body contains a marked explicit fact.
Based on line 9, we only mark explicit facts that occur in E; . Since we use £ to initialize the set D
when we prepare the next update’s processing in line 32, we could apply those rule instances in line 23
during the next update’s processing if we would start with an empty set W. This means that every fact
that we add to W in line 32 based on markings, would also be added to W if we processed the next
update in the classical way, where we consider each update alone, without any marking. By Claim 5,
changing the order of fact additions to W based on its initialization does not affect the resulting dataset,
so that we obtain the same dataset I at the end as if we would process the next update alone, which is
correct based on Lemma 1. O

Combining the above lemmas, we can show correctness of Algorithm 1 as follows:

Theorem 1. Given a Datalog program P, a materialized dataset I = mat(P, Ey), and a stream of
updates U = (Uy,Us, ...), Algorithm 1 returns as output a stream (mat(P, Ey), mat(P, E3), ...) with
E;=(Ei.1\E;)UE} foreachU; = (E; ,E}") € U.

Proof. We prove this by induction: As base case, we have the first update U; € U, for which the
algorithm correctly computes mat(P, F;) based on Lemmas 1 and 2. In the induction step, we consider
two sequential updates U;, U; 1 € U. By hypothesis, we get the correct result for U;. By Lemma 3,
the related computations do not affect the result of U, 1, so that we also obtain the correct dataset
mat(P, E;+1) by hypothesis. O



B. Evaluation - Datalog Programs

edge(z,y) — path(z,y)
edge(z,y), path(y,z) — path(z, 2)

(a) Rules for Datalog program Pans

Figure 1: Rules for the Datalog programs used in synthetic data tests

nextinWay(x, y1, z1), nextinWay(x, y2, 22), neq 21,22
nextinWay(x, y1, z1), nextinWay(xs, z, zo
nextinWay(x1,y, z1), nextinWay(y, y2, 22), neq(z1, 22
nextinWay(x1,y, z1), nextinWay(x2, y, 22), neq(z1, z2

connection(x, y), connection(y, z

with neq(z,y) :=x #vy

Figure 2: Rules for the Datalog program used in real data tests

edge(x,y) — edgel(x,y)
edgel(xz,y) — edge2(x,y)
edge2(x,y) — edge3(x,y)
edge3(x,y) — edged(x,y)

(b) Rules for Datalog program Pieq

— connection(z1, z2)
— connection(z1, z2)
— connection(z1, z2)
— connection(z1, z3)
— connection(zx, z)

The atom nextInWay(z,y, z) states that the node z is followed by the node y on the way z.
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