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Abstract
While the computation of Craig interpolants for description logics (DLs) with the Craig Interpolation Property

(CIP) is well understood, very little is known about the computation and size of interpolants for DLs without

CIP or if one aims at interpolating concepts in a weaker DL than the DL of the input ontology and concepts. In

this paper, we provide the first elementary algorithms computing (i) 𝒜ℒ𝒞 interpolants between 𝒜ℒ𝒞-concepts

under 𝒜ℒ𝒞ℋ-ontologies and (ii) 𝒜ℒ𝒞 interpolants between 𝒜ℒ𝒞𝒬-concepts under 𝒜ℒ𝒞𝒬-ontologies. The

algorithms are based on recent decision procedures for interpolant existence. We also observe that, in contrast,

uniform depth restricted interpolants might be of non-elementary size.
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1. Introduction

Interpolants between description logic (DL) concepts have found many applications. For instance, they

can be used as explicit concept definitions or referring expressions, as explanations for concept inclusions,

as rewritings of queries, and as separating concepts in the context of concept learning [1, 2, 3, 4, 5]. The

computation of interpolants has been investigated extensively, both by the DL community [6, 7, 8, 9]

but also in modal logic and related fragments of FO [10, 11, 12]. We quickly remind the reader how this

is done: A Craig interpolant between 𝐶 and 𝐷 is a concept 𝐸 in the shared signature of 𝐶 and 𝐷 such

that |= 𝐶 ⊑ 𝐸 and |= 𝐸 ⊑ 𝐷 (for simplicity we drop the ontology). A DL has the Craig Interpolation

Property (CIP), if the existence of such an interpolant follows from |= 𝐶 ⊑ 𝐷. DLs such as 𝒜ℒ𝒞,

𝒜ℒ𝒞𝒬, and 𝒜ℒ𝒞ℐ have the CIP [6]. Then, an interpolant 𝐸 can typically be extracted from a proof

of |= 𝐶 ⊑ 𝐷 (or, equivalently, of non-satisfiability of 𝐶 ⊓ ¬𝐷) in standard calculi in the field such as

tableau, the chase, sequent calculi, or type elimination [6, 7, 8, 11, 13].

The situation is very different for DLs that do not enjoy the CIP or if one is interested in interpolating

concepts in a weaker DL than the concepts used in the inclusion. In this case, the existence of an

interpolating concept does not follow from the validity of the inclusion and extracting interpolating

concepts from proofs becomes much harder. In fact, very little is known about how this could be done

and research has so far focused on deciding the existence of interpolants rather than constructing

them [14, 15, 16]. It is worth noting, however, that for extensions of ℰℒ, the chase can be used to

compute interpolants even without CIP [7].

It is well known that Craig interpolants of 𝒜ℒ𝒞 concept inclusions under 𝒜ℒ𝒞ℋ ontologies do not

necessarily exist [17, 6] and that not every 𝒜ℒ𝒞𝒬 concept inclusion has an 𝒜ℒ𝒞 interpolant (take

|= 𝐶 ⊑ 𝐶 for any 𝒜ℒ𝒞𝒬 concept 𝐶 not equivalent to an 𝒜ℒ𝒞 concept). Existence of 𝒜ℒ𝒞 interpolants

in these settings is, however, decidable [15, 18]. To explain the proof, assume that |= 𝐶 ⊑ 𝐷 and let Σ
be any signature (again we drop the ontology for simplicity). It is known that an interpolating 𝒜ℒ𝒞(Σ)
concept exists if no Σ-bisimilar nodes satisfying 𝐶 and ¬𝐷 exist. Hence it suffices to decide whether a
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pair of concepts is satisfiable in Σ-bisimilar nodes. It turns out that to decide this problem it is crucial to

decide the more general problem whether a set of concepts (and not just a pair) is satisfiable in mutually

Σ-bisimilar nodes. By completing concepts to types containing them, it suffices to decide the latter

problem for sets of types, often called mosaics. In fact, the decision algorithms in [15, 18] use mosaics

and generalize the well-known type elimination procedures deciding satisfiability of concepts to mosaic
elimination procedures deciding Σ-bisimilar satisfiability.

Mosaic elimination procedures decide the existence of interpolants, but they do not construct any

interpolants. The aim of this paper is to give the first elementary algorithms constructing 𝒜ℒ𝒞 inter-

polants whenever they exist under ontologies in 𝒜ℒ𝒞ℋ and under ontologies and concept inclusions

in 𝒜ℒ𝒞𝒬. Our algorithms are not restricted to computing Craig interpolants, but work for arbitrary

signatures. The idea of the algorithms is to run the mosaic elimination procedures discussed above

and construct, in addition and inductively, for each eliminated mosaic entailed 𝒜ℒ𝒞(Σ) concepts that

witness non Σ-bisimilar satisfiability of its types. The witness concepts we propose are not aggregated

at each step, but are polyadic in the sense that we define, for any set 𝑇 of concepts (types in the case of

mosaics) which are not satisfiable in Σ-bisimilar nodes, for each 𝐶 ∈ 𝑇 an 𝒜ℒ𝒞(Σ) concept Sep(𝐶)
such that the following holds:

• |= 𝐶 ⊑ Sep(𝐶) for all 𝐶 ∈ 𝑇 ;

• |= ⊓
𝐶∈𝑇

Sep(𝐶) ⊑ ⊥.

The concept Sep(𝐶) constructed for 𝑇 = {𝐶,¬𝐷} is then the desired interpolant. We note that an

earlier attempt to construct interpolants while running a mosaic elimination procedure without using

polyadic separators does not work as stated [15]. Hence one main contribution of this paper is to correct

that proof. Our second main contribution is to show that our approach also works in the case of 𝒜ℒ𝒞𝒬
ontologies.

2. Preliminaries

We first introduce the syntax and semantics of the basic description logics 𝒜ℒ𝒞, 𝒜ℒ𝒞ℋ, and 𝒜ℒ𝒞𝒬
and introduce some model theory. We refer the reader to [19] for a comprehensive introduction to

description logics. Let NC, and NR be mutually disjoint and countably infinite sets of concept, and role
names. An 𝒜ℒ𝒞𝒬 concept is defined according to the syntax rule

𝐶,𝐷 ::= ⊤ | 𝐴 | ¬𝐶 | 𝐶 ⊓𝐷 | (≥ 𝑛 𝑟.𝐶)

where 𝐴 ranges over concept names, 𝑟 over role names, and 𝑛 ≥ 0. We use the standard abbreviations

∃𝑟.𝐶 for (≥ 1 𝑟.𝐶), ∀𝑟.𝐶 for ¬∃𝑟.¬𝐶 , 𝐶 ⊔𝐷 for ¬(¬𝐶 ⊓ ¬𝐷), and 𝐶 → 𝐷 for ¬𝐶 ⊔𝐷. An 𝒜ℒ𝒞
concept is an 𝒜ℒ𝒞𝒬 concept in which for every subformula (≥ 1 𝑟.𝐶), 𝑛 is actually 1. An 𝒜ℒ𝒞𝒬
concept inclusion (𝒜ℒ𝒞𝒬 CI) takes the form 𝐶 ⊑ 𝐷 for 𝒜ℒ𝒞𝒬 concepts 𝐶 and 𝐷. 𝒜ℒ𝒞 concept
inclusions are defined accordingly. An 𝒜ℒ𝒞𝒬 ontology is a finite set of 𝒜ℒ𝒞𝒬 CIs. An 𝒜ℒ𝒞ℋ ontology
is a finite set of 𝒜ℒ𝒞 concept inclusions and role inclusions (RIs) 𝑟 ⊑ 𝑠 where 𝑟, 𝑠 are role names from NR.

The size of a (finite) syntactic object 𝑋 , denoted ‖𝑋‖, is the number of symbols needed to represent it as

a word, and the role depth of a concept is the maximal nesting depth of concept constructors (≥ 𝑛 𝑟.𝐶).
As usual, the semantics is defined in terms of interpretations ℐ = (∆ℐ , ·ℐ), where ∆ℐ

is a non-empty

set, called domain of ℐ , and ·ℐ is a function mapping every 𝐴 ∈ NC to a subset of 𝐴ℐ ⊆ ∆ℐ
and every

𝑟 ∈ NR to a subset of 𝑟ℐ ⊆ ∆ℐ ×∆ℐ
. The extension 𝐶ℐ of a concept 𝐶 in ℐ is defined as usual. An

interpretation ℐ satisfies a CI 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ
and an RI 𝑟 ⊑ 𝑠 if 𝑟ℐ ⊆ 𝑠ℐ . We say that ℐ is a model

of an ontology 𝒪 if it satisfies all inclusions in it. A concept 𝐶 is satisfiable under ontology 𝒪 if there is

a model ℐ of 𝒪 with 𝐶ℐ ̸= ∅. Moreover, 𝐶 is subsumed by another concept 𝐷 under 𝒪 if 𝐶ℐ ⊆ 𝐷ℐ
in

every model ℐ of 𝒪. We write 𝒪 |= 𝐶 ⊑ 𝐷 in this case.

We next introduce the studied notions and associated problems. A signature is a set Σ of concept

and role names. An 𝒜ℒ𝒞(Σ) concept is an 𝒜ℒ𝒞 concept that uses only concept and role names from Σ.



Let ℒ,ℒ′
be DLs, and let us fix an ℒ ontology 𝒪, ℒ concepts 𝐶,𝐷, and a signature Σ. Then, an ℒ′(Σ)

interpolant for 𝒪 |= 𝐶 ⊑ 𝐷 is an ℒ′(Σ) concept 𝐸 with 𝒪 |= 𝐶 ⊑ 𝐸 and 𝒪 |= 𝐸 ⊑ 𝐷. The associated

decision problem of ℒ′(Σ) interpolant existence over ℒ ontologies and concepts has been recently

studied and shown decidable [15, 18]. The decision procedures are based on elegant model-theoretic

characterizations of interpolant existence in terms of bisimulations, which we introduce next. A relation

𝑍 ⊆ ∆ℐ ×∆𝒥
is a Σ-bisimulation between interpretations ℐ and 𝒥 if the following conditions are

satisfied for all (𝑑, 𝑒) ∈ 𝑍 :

Atom for all concept names 𝐴 ∈ Σ: 𝑑 ∈ 𝐴ℐ
iff 𝑒 ∈ 𝐴𝒥

,

Back for all role names 𝑟 ∈ Σ and all (𝑑, 𝑑′) ∈ 𝑟ℐ , there is (𝑒, 𝑒′) ∈ 𝑟𝒥 such that (𝑑′, 𝑒′) ∈ 𝑍 ,

Forth for all role names 𝑟 ∈ Σ and all (𝑒, 𝑒′) ∈ 𝑟𝒥 , there is (𝑑, 𝑑′) ∈ 𝑟ℐ such that (𝑑′, 𝑒′) ∈ 𝑍 .

A pointed interpretation is a pair ℐ, 𝑑 with ℐ an interpretation and 𝑑 ∈ ∆ℐ
. We write ℐ, 𝑑 ∼𝒜ℒ𝒞,Σ 𝒥 , 𝑒

and call ℐ, 𝑑 and 𝒥 , 𝑒 Σ-bisimilar if there exists an Σ-bisimulation 𝑍 such that (𝑑, 𝑒) ∈ 𝑍 . We say

that 𝒜ℒ𝒞𝒬 concepts 𝐶1, 𝐶2 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 if there are models ℐ1, ℐ2 of 𝒪 and

elements 𝑑𝑖 ∈ 𝐶ℐ𝑖
𝑖 for 𝑖 = 1, 2 with ℐ1, 𝑑1 ∼𝒜ℒ𝒞,Σ ℐ2, 𝑑2. We have the following characterization:

Lemma 1. Let ℒ ∈ {𝒜ℒ𝒞ℋ,𝒜ℒ𝒞𝒬}, 𝒪 be an ℒ ontology, 𝐶,𝐷 be ℒ-concepts, and Σ be a signature.
Then the following are equivalent:

1. there is an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶 ⊑ 𝐷;
2. 𝐶,¬𝐷 are not jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪.

The proof of Lemma 1 is based on the fact that Σ-bisimulations capture the expressive power of

𝒜ℒ𝒞(Σ) concepts, and crucially relies on the use of compactness. In particular, it is not constructive

in the sense that in the proof of implication 2 ⇒ 1, no interpolant is constructed. We study here the

associated computation problems, that is, compute the interpolants if they exist. A notion dual to the

notion of an interpolant is that of a separator. Given concepts 𝐶,𝐷,𝐸 we call 𝐸 a separator for 𝐶,𝐷
if 𝐶 ⊑ 𝐸 and 𝐸 ⊑ ¬𝐷. Clearly, 𝐸 is a separator for 𝐶,𝐷 iff it is an interpolant for 𝐶,¬𝐷. Thus,

the problems of finding interpolants and separators for a given pair of concepts are algorithmically

equivalent. We will switch between these two perspectives depending on which one is more convenient

in a given context.

3. Role Inclusions

In this section, we are concerned with computing 𝒜ℒ𝒞 interpolants of concept inclusions under 𝒜ℒ𝒞ℋ
ontologies. We start with an example that illustrates the failure of the computation algorithm given

in [15].

Example 2. Fix 𝑘 ≥ 1, 𝒪 = {𝑟 ⊑ 𝑠𝑖, 𝑠𝑖 ⊑ 𝑠′𝑖 | 𝑖 ≤ 𝑘}, Σ = {𝑠′𝑖, 𝐴𝑖 | 𝑖 ≤ 𝑘}, and

𝐶 = ∃𝑟.𝐵 ⊓ ∀𝑟.(𝐵 → ⊔
𝑖≤𝑘

𝐴𝑖) and 𝐷 = ⊓
𝑖≤𝑘

∀𝑠𝑖.¬𝐴𝑖.

We show that 𝐶,𝐷 are not jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪. Indeed, if 𝐶,𝐷 are jointly ∼𝒜ℒ𝒞,Σ-
consistent, then all concepts in 𝑆 = {𝐵 ⊓ (𝐵 → ⊔

𝑖≤𝑘
𝐴𝑖)} ∪ {¬𝐴𝑖 | 𝑖 ≤ 𝑘} are satisfied in mutually

Σ-bisimilar nodes, which is clearly not the case. By Lemma 1, there is an 𝒜ℒ𝒞(Σ) interpolant for
𝒪 |= 𝐶 ⊑ ¬𝐷. For instance, 𝐸 = ⊔

𝑖≤𝑘
∃𝑠′𝑖.𝐴𝑖 is an 𝒜ℒ𝒞(Σ) interpolant. The algorithm from [15],

however, computes a concept of shape ∃𝑠′𝑖.𝐸 for a single 𝑖 ≤ 𝑘 and one can easily see that a concept of this
shape cannot serve as an interpolant. The mistake in the algorithm is a confusion in the quantifier order in
the assumptions of the interpolant construction.



We first show how a natural idea for computing interpolants, which works in several other settings,

fails to compute elementary sized interpolants in the presence of role inclusions. Next we provide an

algorithm which does compute elementary interpolants.

A natural idea to compute interpolants could be to show first that, if there is an 𝒜ℒ𝒞(Σ) interpolant

for 𝒪 |= 𝐶0 ⊑ 𝐷0, then there is one of small role depth 𝑛, and then use the strongest 𝒜ℒ𝒞 consequence

of 𝐶0 of this role depth 𝑛. Let 𝑛 ≥ 0. A (Σ, 𝑛)-uniform interpolant of 𝐶0 under 𝒪 is an 𝒜ℒ𝒞(Σ)
concept 𝑈 such that 𝒪 |= 𝐶0 ⊑ 𝑈 and 𝒪 |= 𝑈 ⊑ 𝐸 for every 𝒜ℒ𝒞(Σ) concept 𝐸 of role depth

at most 𝑛 with 𝒪 |= 𝐶0 ⊑ 𝐸. A (Σ, 𝑛)-uniform interpolant for 𝐶0 under 𝒪 always exists, and can

be used as an interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷 whenever an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷 of

role depth 𝑛 exists. This idea has been used to compute elementary sized modal logic interpolants

of 𝜇-calculus formulae [20] and it follows from its proof that it applies to computing interpolants

under 𝒜ℒ𝒞 ontologies. We actually conjecture that it works for the majority of DLs enjoying the CIP,

but we leave an elaboration for future work. Unfortunately, contrary to these settings, in our case

(Σ, 𝑛)-uniform interpolants need not be elementary in 𝑛, and consequently do not lead to elementary

sized interpolants. In what follows we denote by Tower the iterated exponential function, that is,

Tower(0) = 1 and Tower(𝑛+ 1) = 2Tower(𝑛)
.

Theorem 3. There is an 𝒜ℒ𝒞ℋ ontology 𝒪, an 𝒜ℒ𝒞 concept 𝐶0, and signature Σ such that there is no
(Σ, 𝑛)-uniform interpolant of 𝐶0 under 𝒪 smaller than Tower(𝑛− 2).

Proof. Consider the 𝒜ℒ𝒞ℋ ontology 𝒪 = {𝑟 ⊑ 𝑠, 𝑟 ⊑ 𝑠′}, the concept 𝐶0 = ∃𝑟.⊤ and Σ = {𝑠, 𝑠′}.

We claim that no concept 𝑈 of size smaller than Tower(𝑛− 2) is a (Σ, 𝑛)-uniform interpolant for 𝐶0

under 𝒪. Assume towards contradiction that there is such an 𝑈 . Observe that for every 𝐶 ∈ 𝒜ℒ𝒞(Σ)
of depth 𝑛 − 1, ∀𝑠.𝐶 → ∃𝑠′.𝐶 is an 𝒜ℒ𝒞(Σ) concept of depth 𝑛 and 𝒪 |= 𝐶0 ⊑ (∀𝑠.𝐶 → ∃𝑠′.𝐶).
Hence 𝒪 |= 𝑈 ⊑ (∀𝑠.𝐶 → ∃𝑠′.𝐶). Consider all trees of depth 𝑛− 1, choose one for every equivalence

class of Σ-bisimulation and denote the set of all these chosen trees by 𝒯 . We have Tower(𝑛− 1) ≤ |𝒯 |
and ‖𝑈‖ < Tower(𝑛 − 2). Thus, by the pigeonhole principle there are two different ℐ1, ℐ2 ∈ 𝒯
whose respective roots 𝑑1, 𝑑2 satisfy exactly the same sub-concepts of 𝑈 . Every two trees in 𝒯 are

distinguished by some 𝐷 ∈ 𝒜ℒ𝒞(Σ) of depth 𝑛− 1, so let us pick 𝐷 such that 𝑑1 ∈ 𝐷ℐ1
but 𝑑2 /∈ 𝐷ℐ2

.

We claim that 𝒪 ̸|= 𝑈 ⊑ ∀𝑠.𝐷 → ∃𝑠′.𝐷, which contradicts that 𝑈 is an (Σ, 𝑛)-uniform interpolant.

This is witnessed by an interpretation 𝒥 constructed as follows. First take the disjoint union of ℐ1, ℐ2.

Then take two fresh points 𝑒1, 𝑒2, and add edges 𝑒1
𝑟→ 𝑑1, 𝑒1

𝑠→ 𝑑1, 𝑒1
𝑠′→ 𝑑1 and 𝑒2

𝑠→ 𝑑1, 𝑒2
𝑠′→ 𝑑2.

Since 𝒪 |= 𝐶0 ⊑ 𝑈 and 𝐶0 is true at 𝑒1 we have 𝑒1 ∈ 𝑈𝒥
. This implies 𝑒2 ∈ 𝑈𝒥

because 𝑑 and 𝑑′

satisfy the same subconcepts of 𝑈 . But ∀𝑠.𝐷 → ∃𝑠′.𝐷 is false at 𝑒2, a contradiction.

On the positive side, we show the following second main result.

Theorem 4. Let 𝒪 be an 𝒜ℒ𝒞ℋ ontology, 𝐶0, 𝐷0 𝒜ℒ𝒞 concepts, and Σ be a signature. Then, if there is
an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0, we can construct the DAG representation of such an interpolant
in time double exponential in ‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖.

The proof is by extending a known mosaic elimination procedure for deciding joint ∼𝒜ℒ𝒞,Σ-

consistency for input ontology and concepts formulated in 𝒜ℒ𝒞ℋ [15]. We present a slight sim-

plification of the original procedure, as we require it only for a restricted setting.

Let us fix an 𝒜ℒ𝒞ℋ ontology 𝒪, 𝒜ℒ𝒞 concepts 𝐶0, 𝐷0, and a signature Σ. We denote with

sub(𝒪, 𝐶0, 𝐷0) the set of subconcepts that occur in 𝒪, 𝐶0, 𝐷0, closed under single negation. A type for
𝒪 is any subset of sub(𝒪, 𝐶0, 𝐷0) realizable in a model of 𝒪, that is, any set 𝑡 ⊆ sub(𝒪, 𝐶0, 𝐷0) such

that there is a model ℐ of 𝒪 and element 𝑑 ∈ ∆ℐ
with 𝑡 = tpℐ(𝑑) where:

tpℐ(𝑑) = {𝐸 ∈ sub(𝒪, 𝐶0, 𝐷0) | 𝑑 ∈ 𝐸ℐ}.

We often treat a type 𝑡 as the conjunction of all concepts it contains, which allows us to write, for

instance, 𝒪 |= 𝑡 ⊑ 𝐷. A mosaic for 𝒪 is a set 𝑇 of types for 𝒪. We say that a type 𝑡 is a completion of a



concept 𝐶 ∈ sub(𝒪, 𝐶0, 𝐷0) if 𝐶 ∈ 𝑡, and a mosaic 𝑇 is a completion of a set 𝒞 ⊆ sub(𝒪, 𝐶0, 𝐷0) of

concepts if 𝑇 contains a completion of every 𝐶 ∈ 𝒞.

Intuitively, a mosaic 𝑇 describes a collection of elements in an interpretation ℐ which realize precisely

the types in 𝑇 and are mutually Σ-bisimilar. Naturally, not every set of types can be realized in this way,

and we use a mosaic elimination procedure to determine which can. We write 𝑡⇝𝑟 𝑡
′

if an element

of type 𝑡′ is a viable 𝑟-successor of an element of type 𝑡, that is, {𝐶 | ∀𝑟.𝐶 ∈ 𝑡} ⊆ 𝑡′. We will denote

{𝐶 | ∀𝑟.𝐶 ∈ 𝑡} = 𝑡/𝑟 . We write 𝑇 ⇝𝑟 𝑇
′

if for every 𝑡 ∈ 𝑇 , there is 𝑡′ ∈ 𝑇 ′
with 𝑡⇝𝑟 𝑡

′
. Let ℳ be a

set of mosaics. A mosaic 𝑇 ∈ ℳ is bad if it violates one of the following conditions:

(Atomic Consistency) for every 𝑡, 𝑡′ ∈ 𝑇 and 𝐴 ∈ Σ, 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′;

(Existential Saturation) for every 𝑡 ∈ 𝑇 and ∃𝑟.𝐶 ∈ 𝑡, there is 𝑇 ′ ∈ ℳ such that (a) 𝐶 ∈ 𝑡′ for some

𝑡′ ∈ 𝑇 ′
with 𝑡⇝𝑟 𝑡

′
and (b) if 𝒪 |= 𝑟 ⊑ 𝑠 for some 𝑠 ∈ Σ, then 𝑇 ⇝𝑠 𝑇

′
.

Along the lines of the proof of Lemma 6.5 in [15] one can show Lemma 5 below, see the appendix for a

proof sketch. The original Lemma 6.5 works with pairs of mosaics which is necessary for DLs that are

not preserved under disjoint unions such as 𝒜ℒ𝒞𝒪.

Lemma 5. 𝐶0 and 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics that does
not contain a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1 and 𝐷0 ∈ 𝑡2.

It is a consequence of Lemma 5 that joint ∼𝒜ℒ𝒞,Σ-consistency under 𝒜ℒ𝒞ℋ ontologies can be decided

in double exponential time. Indeed, an ℳ*
as in Lemma 5 can be found (if it exists) by exhaustively

eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics is of double exponential

size, and each round of the elimination procedure can be performed in time polynomial in the size of

the current set of mosaics, the upper bound follows. By the link to interpolant existence provided in

Lemma 1, also 𝒜ℒ𝒞(Σ) interpolant existence is decidable in double exponential time.

Our aim is to extend the described mosaic elimination procedure by computing, for each type in

an eliminated mosaic, its “contribution” to the elimination. To formalize this we introduce a polyadic

notion of a separator reflecting the fact that a mosaic may contain more than two types. Assume a set 𝒞
of concepts. An 𝒜ℒ𝒞(Σ) separator for 𝒞 is a function Sep from 𝒞 to 𝒜ℒ𝒞(Σ)-concepts such that:

• 𝒪 |= 𝐶 ⊑ Sep(𝐶) for every 𝐶 ∈ 𝒞;

• 𝒪 |= ⊓
𝐶∈𝒞

Sep(𝐶) ⊑ ⊥.

We call 𝒞 𝒜ℒ𝒞(Σ)-separable if there is an 𝒜ℒ𝒞(Σ) separator for 𝒞. We will use the following lemma

which connects separation of concepts with separation of their completions.

Lemma 6. Assume a set 𝒞 ⊆ sub(𝒪, 𝐶0, 𝐷0) of concepts. The following are equivalent:

1. the set 𝒞 is 𝒜ℒ𝒞(Σ)-separable;
2. every completion 𝑇 of 𝒞 is 𝒜ℒ𝒞(Σ)-separable.

Proof. The implication (1) =⇒ (2) is straightforward because a separator for 𝒞 is a separator for every

completion 𝑇 of 𝒞.

For the other implication (2) =⇒ (1) assume that for every completion of 𝒞 we have a separator. Let

cp(𝒞) denote the set of all functions from 𝒞 to types which map every 𝐶 ∈ 𝒞 to one of its completions.

The image 𝑓 [𝒞] of every such function 𝑓 ∈ cp(𝒞) is a completion of 𝒞, and thus, by assumption, is

separated by some Sep𝑓 .

We define a separator Sep for 𝒞 by setting, for every 𝐶 ∈ 𝒞:

Sep(𝐶) = ⊔
𝑡 completion

of 𝐶

⊓
𝑓∈cp(𝒞)
𝑓(𝐶)=𝑡

Sep𝑓 (𝐶) (*)

To prove 𝒪 |= 𝐶 ⊑ Sep(𝐶) assume ℐ |= 𝒪 and 𝑑 ∈ 𝐶ℐ
. Let 𝑡 be the type tpℐ(𝑑) of 𝑑. Clearly, 𝑡 is

a completion of 𝐶 . By assumption, for every 𝑓 ∈ cp(𝒞) and 𝐶 ∈ 𝒞 we have 𝒪 |= 𝑓(𝐶) ⊑ Sep𝑓 (𝐶).



Hence, for every 𝑓 ∈ cp(𝒞) such that 𝑓(𝐶) = 𝑡 we get 𝒪 |= 𝑡 ⊑ Sep𝑓 (𝐶). It follows that 𝑑 ∈
(Sep(𝐶))ℐ .

It remains to show that 𝒪 |= ⊓
𝐶∈𝒞

Sep(𝐶) ⊑ ⊥. Assume towards contradiction an interpretation

ℐ |= 𝒪 with 𝑑 ∈ ( ⊓
𝐶∈𝒞

Sep(𝐶))ℐ . By definition of Sep, for every 𝐶 there is a completion 𝑡𝐶 such that 𝑑

satisfies:

⊓
𝑓∈cp(𝒞)
𝑓(𝐶)=𝑡𝐶

Sep𝑓 (𝐶).

Consider a function 𝑓 ∈ cp(𝒞) defined as 𝑓(𝐶) = 𝑡𝐶 for every 𝐶 . It follows that 𝑑 satisfies Sep𝑓 (𝐶)
for every 𝐶 . This contradicts the assumption that {Sep𝑓 (𝐶) | 𝐶 ∈ 𝒞} is a separator for the image of 𝑓
and as such is inconsistent.

We inductively define separators for each eliminated mosaic. Recall that there are two ways a mosaic

𝑇 can be eliminated: the base case when 𝑇 violates atomic consistency, and the inductive case when 𝑇
violates existential saturation. We look at these cases in turn.

Inductive Base. If 𝑇 violates atomic consistency then there is a concept name 𝐴 ∈ Σ and types

𝑡, 𝑡′ ∈ 𝑇 with 𝐴 ∈ 𝑡 and ¬𝐴 ∈ 𝑡′. Let Sep(𝑡) be 𝐴 if 𝐴 ∈ 𝑡 and ¬𝐴 otherwise. It follows that

𝒪 |= 𝑡 ⊑ Sep(𝑡) for all 𝑡, and ⊓
𝑡∈𝑇

Sep(𝑡) ⊑ ⊥.

Inductive Step. Denote the current set of mosaics by ℳ and assume a mosaic 𝑇 ∈ ℳ is eliminated

because it violates existential saturation. This means that there are 𝑡 ∈ 𝑇 and ∃𝑟.𝐶 ∈ 𝑡 such that

whenever 𝑇 ′ ∈ ℳ satisfies (i) 𝑇 ⇝𝑠 𝑇
′

for all 𝒪 |= 𝑟 ⊑ 𝑠, and (ii) contains some 𝑡′ ∈ 𝑇 ′
with 𝑡⇝𝑟 𝑡

′

and 𝐶 ∈ 𝑡′ then 𝑇 ′ /∈ ℳ. Consider the set:

𝒟 = {𝑡′/𝑠 | 𝑡
′ ∈ 𝑇, 𝑠 ∈ Σ, and 𝒪 |= 𝑟 ⊑ 𝑠} ∪ {{𝐶} ∪ 𝑡/𝑟}.

It follows that every completion 𝑇 ′
of 𝒟 was already eliminated from ℳ: left and right part of the

union correspond to parts (i) and (ii) of the violated condition. Lemma 6 provides us with a separator

Sep𝒟 for 𝒟. We use Sep𝒟 to get a separator Sep for 𝑇 as follows. We put:

Sep(𝑡′) = ⊓
𝒪|=𝑟⊑𝑠,
𝑠∈Σ

∀𝑠.Sep𝒟(𝑡′/𝑠) and Sep(𝑡) = ¬ ⊓
𝑡′ ̸=𝑡

Sep(𝑡′) = ⊔
𝑡′ ̸=𝑡

⊔
𝒪|=𝑟⊑𝑠,
𝑠∈Σ

∃𝑠.¬Sep𝒟(𝑡′/𝑠).

for every 𝑡′ ̸= 𝑡.
We claim that Sep separates 𝑇 . For every 𝑡′ ̸= 𝑡 we have 𝒪 |= 𝑡′ ⊑ Sep(𝑡′). This follows because

for every 𝒪 |= 𝑟 ⊑ 𝑠 with 𝑠 ∈ Σ we have |= 𝑡′ ⊑ ∀𝑠.𝑡′/𝑠 and 𝒪 |= 𝑡′/𝑠 ⊑ Sep(𝑡′/𝑠). To show

𝒪 |= 𝑡 ⊑ Sep(𝑡) assume an interpretation ℐ |= 𝒪 with 𝑑 ∈ 𝑡ℐ . The point 𝑑 has an 𝑟-child 𝑒 satisfying

{𝐶} ∪ 𝑡/𝑟 and hence also Sep𝒟({𝐶} ∪ 𝑡/𝑟). By definition of a separator, the image Sep𝒟[𝒟] of Sep𝒟 is

inconsistent. Thus, the fact that 𝑑 satisfies Sep𝒟({𝐶} ∪ 𝑡/𝑟) implies that some concept 𝐸 ∈ Sep𝒟[𝒟]

other than Sep𝒟({𝐶} ∪ 𝑡/𝑟) must be false at 𝑑. We therefore have 𝑑 ∈ (¬Sep𝒟(𝑡′/𝑠))
ℐ

for some

𝒪 |= 𝑟 ⊑ 𝑠 with 𝑠 ∈ Σ and some 𝑡′. Since for every 𝑠 ∈ Σ with 𝒪 |= 𝑟 ⊑ 𝑠 we have 𝑑 ∈ (𝑡/𝑠)
ℐ

and thus 𝑑 ∈ (Sep𝒟(𝑡/𝑠))
ℐ

, it follows that 𝑡′ ̸= 𝑡. This proves that 𝑑 ∈ (Sep(𝑡))ℐ . Note that Sep[𝑇 ] is

inconsistent by definition: the concept Sep(𝑡) is just a negated conjunction ⊓
𝑡′ ̸=𝑡

Sep(𝑡′) of the rest. This

completes the proof that Sep separates 𝑇 .

This finishes the construction of separators for every eliminated mosaic. To construct the actual

interpolant, note that Lemmas 1 and 5 imply that, if there is an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0,

then all completions of {𝐶0,¬𝐷0} have been eliminated. Lemma 6 provides us with an 𝒜ℒ𝒞(Σ)
separator Sep for {𝐶0,¬𝐷0} and it is easy to see that Sep(𝐶0) is the sought 𝒜ℒ𝒞(Σ) interpolant.

It remains to analyze the DAG size of the constructed separators, which we do by counting the

number of sub-formulae used in the constructed separators. On a high-level, we construct one formula

for every type in every eliminated mosaic. This formula is of negligible size 1 in the inductive base, so

let us analyze the inductive step. This step relies on Lemma 6, and one can see that the construction



in Equation (*) uses double exponentially many sub-formulae. It remains to note that the Lemma is

invoked only double exponentially often and that the construction of the separator formulae for the

just eliminated concept introduces only double exponentially many sub-formulae. This completes the

proof of Theorem 4.

We finish the section with some remarks regarding the size of the constructed interpolants. First, we

strongly conjecture that there are examples in which the interpolant is forced to have double exponential

role depth, so the upper size bound in Theorem 4 is optimal. Second, it is known that the size of DAG

representation of interpolants in standard DLs enjoying the CIP is at most exponential [6, Theorem 3.26]

and thus there is an exponential gap.

4. Qualified Number Restrictions

We are concerned with computing 𝒜ℒ𝒞 interpolants of concept inclusions in 𝒜ℒ𝒞𝒬 under 𝒜ℒ𝒞𝒬
ontologies. We use the same notation for 𝒜ℒ𝒞𝒬 as in the previous section for 𝒜ℒ𝒞ℋ, defined in the

obvious way. Our first result is that (Σ, 𝑛)-uniform 𝒜ℒ𝒞 interpolants can be of non-elementary size.

Theorem 7. There is an 𝒜ℒ𝒞𝒬 concept 𝐶0 and signature Σ such that there is no (Σ, 𝑛)-uniform 𝒜ℒ𝒞
interpolant of 𝐶0 smaller than Tower(𝑛− 2).

Proof. Take the concept 𝐶0 = (≤ 1 𝑟.⊤), signature Σ = {𝑟, 𝑠, 𝑠′}, and let 𝑛 > 0. Using 𝒜ℒ𝒞(Σ)
concepts ∃𝑟.𝐶 → ∀𝑟.𝐶 one can show the lower bound in the same way as in the proof of Theorem 3.

The main result of this section is as follows.

Theorem 8. Let 𝒪 be an 𝒜ℒ𝒞𝒬 ontology, 𝐶0, 𝐷0 𝒜ℒ𝒞 concepts, and Σ be a signature. If there is an
𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0, then there is one of 3-exponential size which can be constructed
in 4-exponential time in ‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖.

Fix an 𝒜ℒ𝒞𝒬 ontology 𝒪, 𝒜ℒ𝒞𝒬 concepts 𝐶0, 𝐷0, and a signature Σ. Our algorithm for computing

interpolants again relies on a mosaic elimination procedure that determines the mosaics for which

there is a model ℐ of 𝒪 which realizes the types in 𝑇 in mutually Σ-bisimilar nodes. To formalize the

elimination condition, we need some new notation. Let 𝑚∙ ∈ N be maximal such that (≥ 𝑚∙ 𝑟.𝐶)
occurs in sub(𝒪, 𝐶0, 𝐷0) for some 𝑟, 𝐶 . Let 𝑁∙ = {0, . . . ,𝑚∙} ∪ {∞}, and define < and + on 𝑁∙

as

usual by setting, for instance, 𝑚∙ < ∞ and 𝑘 +∞ = ∞. For a role name 𝑟 and type 𝑡, a witnessing
function 𝑤𝑟,𝑡 assigns to every type 𝑡′ a 𝑤𝑟,𝑡(𝑡

′) ∈ 𝑁∙
such that for each (≥ 𝑛 𝑟.𝐶) ∈ sub(𝒪, 𝐶0, 𝐷0),

(≥ 𝑛 𝑟.𝐶) ∈ 𝑡 iff

∑︀
𝐶∈𝑡′ 𝑤𝑟,𝑡(𝑡

′) ≥ 𝑛. If 𝑡 is realizable, then there exists a witnessing function 𝑤𝑟,𝑡 for

each role name 𝑟: take a model ℐ of 𝒪 realizing 𝑡 in a node 𝑑 and define

𝑤𝑟,𝑡(𝑡
′) =

{︃
𝑛 if 𝑛 = |{𝑑′ ∈ ∆ℐ | (𝑑, 𝑑′) ∈ 𝑟ℐ , 𝑡′ = tpℐ(𝑑

′)}| ≤ 𝑚∙

∞ otherwise.

(1)

Let 𝑇 be a mosaic, 𝑟 a role name, and (𝑤𝑟,𝑡)𝑡∈𝑇 be witnessing functions. To satisfy the types in a

mosaic in mutually Σ-bisimilar nodes one must be able to partition, for 𝑟 ∈ Σ, their 𝑟-successors into

mosaics so that the back- and-forth conditions of Σ-bisimulations hold. Our formalization of this idea

follows [18], but we modify the notation for our purposes. Say that a set 𝒮 of mosaics is a mosaic
partition for (𝑤𝑟,𝑡)𝑡∈𝑇 if one can assign to each 𝑡, 𝑡′ with 𝑡 ∈ 𝑇 and 𝑤𝑟,𝑡(𝑡

′) > 0 a non-empty set

𝑎𝑟(𝑡, 𝑡
′) ⊆ 𝒮 (intuitively, the mosaics in 𝒮 containing 𝑡′ as an 𝑟-successor of 𝑡) with 𝑡′ ∈ 𝑇 ′

for all

𝑇 ′ ∈ 𝑎𝑟(𝑡, 𝑡
′) in such a way that

• for every 𝑇 ′ ∈ 𝒮 and 𝑡 ∈ 𝑇 , there exists a 𝑡′ ∈ 𝑇 ′
with 𝑇 ′ ∈ 𝑎𝑟(𝑡, 𝑡

′);

• for all types 𝑡, 𝑡′, |𝑎𝑟(𝑡, 𝑡′)| ≤ 𝑤𝑟,𝑡(𝑡
′).

Let ℳ be a set of mosaics. A mosaic 𝑇 ∈ ℳ is bad if it violates one of the following conditions:

(Atomic Consistency) for every 𝑡, 𝑡′ ∈ 𝑇 and 𝐴 ∈ Σ, 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′;



(Existential Saturation) for every role name 𝑟 ∈ Σ there are witnessing functions (𝑤𝑟,𝑡)𝑡∈𝑇 and a

mosaic partition 𝒮 ⊆ ℳ for (𝑤𝑟,𝑡)𝑡∈𝑇 .

The following result is shown in [18] (using slightly different wording):

Lemma 9. (i) If the condition (Existential Saturation) is satisfied for some 𝑇 ∈ ℳ, then this is witnessed
by a mosaic partition 𝒮 ⊆ ℳ with |𝒮| ≤ 𝑚∙ × 22|sub(𝒪,𝐶0,𝐷0)|.

(ii) 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics that does not contain
a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1 and 𝐷0 ∈ 𝑡2.

It is a consequence of Lemma 9 that joint ∼𝒜ℒ𝒞,Σ-consistency under 𝒜ℒ𝒞𝒬 ontologies can be decided

in double exponential time. Indeed, an ℳ*
as in Lemma 9 can be found (if it exists) by exhaustively

eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics is of double exponential

size, and each round of the elimination procedure can be performed in double exponential time, the

upper bound follows. By the link to interpolant existence provided in Lemma 1, also𝒜ℒ𝒞(Σ) interpolant

existence is decidable in double exponential time.

We next exploit the elimination procedure to construct interpolants. Similar to the previous Section 3

we compute an 𝒜ℒ𝒞(Σ) separator for every eliminated mosaic. It will be convenient to actually compute

something slightly stronger. Let ℳ be a set of mosaics. A function Sep that maps every 𝑡 in some

𝑇 ∈ ℳ to an 𝒜ℒ𝒞(Σ) concept Sep(𝑡) is called general 𝒜ℒ𝒞(Σ) separator for ℳ if for every 𝑇 ∈ ℳ
the restriction of Sep to 𝑇 is an 𝒜ℒ𝒞(Σ) separator for 𝑇 .

We compute, by induction, a general 𝒜ℒ𝒞(Σ) separator for the set of eliminated mosaics.

Inductive Base. Assume 𝑇 has been eliminated because atomic consistency is violated. Then there

exists 𝐴 ∈ Σ such that the function Sep𝑇 defined by setting Sep𝑇 (𝑡) = 𝐴 if 𝐴 ∈ 𝑇 and Sep𝑇 (𝑡) = ¬𝐴
otherwise, is an 𝒜ℒ𝒞(Σ) separator for 𝑇 . Let ℰ0 be the set of all mosaics that violate atomic consistency

and let Sep𝑇 be defined as above for 𝑇 ∈ ℰ0. Then we obtain a general separator Sep0 for ℰ0 by setting

Sep0(𝑡) = ⊓
𝑇∈ℰ0

Sep𝑇 (𝑡), for all 𝑡 ∈ 𝑇 ∈ ℰ0.

Inductive Step. Assume ℰ𝑛 is the set of eliminated mosaics and Sep𝑛 is a general separator for

ℰ𝑛. Let ℳ𝑛 be the set of mosaics that have not yet been eliminated. Setting Sep𝑛(𝑡) = ⊤ for types 𝑡
that do not occur in any mosaic in ℰ𝑛, we may assume that Sep𝑛 is defined for all types. Let 𝑇 be the

mosaic eliminated in the next step. Then existential saturation is violated in ℳ𝑛. Note that this implies

that one can pick a role name 𝑟 ∈ Σ such that for every witnessing functions 𝑤𝑟,𝑡, 𝑡 ∈ 𝑇 , and mosaic

partition 𝒮 for (𝑤𝑟,𝑡)𝑡∈𝑇 there is an eliminated mosaic 𝑇 ′ ∈ 𝒮 ∩ ℰ𝑛. We fix such an 𝑟.

Let 𝒯 be the set of all types. Denote by 𝒱+
the set of all conjunctions 𝐶 = ⊓

𝑡∈𝒯
𝐿𝑡 with 𝐿𝑡 ∈

{Sep𝑛(𝑡),¬Sep𝑛(𝑡)}. For any nonempty subset ℬ ⊆ 𝒱+
we set as usual

∇𝑟(ℬ) = ( ⊓
𝐶∈ℬ

∃𝑟.𝐶) ⊓ ∀𝑟.( ⊔
𝐶∈ℬ

𝐶).

Let 𝛿𝑟(𝑡) be the disjunction of all ∇𝑟(ℬ) such that 𝑡 ⊓ ∇𝑟(ℬ) is satisfiable under 𝒪. Observe that

𝒪 |= 𝑡 ⊑ 𝛿𝑟(𝑡). Take any 𝑡0 ∈ 𝑇 and set Sep(𝑡0) = ¬ ⊓
𝑡∈𝑇∖{𝑡0}

𝛿𝑟(𝑡) and Sep(𝑡) = 𝛿𝑟(𝑡) for all

𝑡 ∈ 𝑇 ∖ {𝑡0}.

Lemma 10. Sep is an 𝒜ℒ𝒞(Σ) separator for 𝑇 .

Proof. It suffices to show that 𝒪 |= 𝑡0 ⊑ Sep(𝑡0), the remaining conditions are trivial. Assume this is not

the case. Then we have a model ℐ𝑡0 of 𝒪 and some 𝑑𝑡0 ∈ ∆ℐ𝑡0 such that 𝑑𝑡0 ∈ (𝑡0 ⊓ ( ⊓
𝑡∈𝑇∖{𝑡0}

𝛿𝑟(𝑡))
ℐ𝑡0 .

Pick the (unique) ℬ ⊆ 𝒱+
such that 𝑑𝑡0 ∈ ∇𝑟(ℬ)ℐ𝑡0 . Then ∇𝑟(ℬ) is a disjunct of each 𝛿𝑟(𝑡) with 𝑡 ∈ 𝑇 .

Take interpretations ℐ𝑡 and 𝑑𝑡 with 𝑑𝑡 ∈ (𝑡 ⊓ ∇𝑟(ℬ))ℐ𝑡 for 𝑡 ∈ 𝑇 ∖ {𝑡0}. We may assume that all ℐ𝑡,
𝑡 ∈ 𝑇 , coincide (otherwise take their disjoint union) and denote it by ℐ . Next define, for 𝑡 ∈ 𝑇 , 𝑤𝑟,𝑡(𝑡

′)
as in (1). Then (𝑤𝑟,𝑡)𝑡∈𝑇 is a family of witnessing functions. Let for each 𝐶 ∈ ℬ:

𝑇𝐶 = {tpℐ(𝑑) | there is 𝑡 ∈ 𝑇 with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and 𝑑 ∈ 𝐶ℐ}



By the definition of ℬ, 𝑇𝐶 ̸= ∅ for every 𝐶 ∈ ℬ. Observe that none of the mosaics 𝑇𝐶 is in ℰ𝑛 because

otherwise 𝒪 |= ⊓
𝑡∈𝑇𝐶

Sep𝑛(𝑡) ⊑ ⊥ which is not the case since Sep𝑛(𝑡) is a conjunct of 𝐶 for all 𝑡 ∈ 𝑇𝐶 .

We show that {𝑇𝐶 | 𝐶 ∈ ℬ} form a mosaic partition for (𝑤𝑟,𝑡)𝑡∈𝑇 , and so derive a contradiction. To

this end define 𝑎𝑟(𝑡, 𝑡
′) ⊆ {𝑇𝐶 | 𝐶 ∈ ℬ} as

{𝑇𝐶 | there is 𝑑 ∈ 𝐶ℐ
with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and tpℐ(𝑑) = 𝑡′}

To see that 𝑎𝑟(𝑡, 𝑡
′) is as required, first observe that 𝑡′ ∈ 𝑇𝐶 for any 𝑇𝐶 ∈ 𝑎𝑟(𝑡, 𝑡

′). Next assume that

a 𝑇𝐶 with 𝐶 ∈ ℬ and 𝑡 ∈ 𝑇 are given. From 𝑑𝑡 ∈ (𝑡 ⊓ ∇𝑟(ℬ))ℐ we obtain a 𝑑 with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and

𝑑 ∈ 𝐶ℐ
. Let 𝑡′ = tpℐ(𝑑). Then 𝑇𝐶 ∈ 𝑎𝑟(𝑡, 𝑡

′). The condition |𝑎𝑟(𝑡, 𝑡′)| ≤ 𝑤𝑟.𝑡(𝑡
′) follows directly from

the definitions.

Using Lemma 10 we obtain a general 𝒜ℒ𝒞(Σ) separator Sep𝑛+1 for ℰ𝑛∪{𝑇} by setting Sep𝑛+1(𝑡) =
Sep(𝑡) ⊓ Sep𝑛(𝑡) for all 𝑡 ∈ 𝑇 and Sep𝑛+1(𝑡) = Sep𝑛(𝑡) for all remaining types.

This finishes the construction of separators for every eliminated mosaic. One can now construct

the actual interpolants in exactly the same way as in the previous section for 𝒜ℒ𝒞ℋ via Lemma 6. To

compute the size of the interpolants, observe that in the construction above ‖Sep𝑛+1(𝑡)‖ ≤ ‖Sep𝑛(𝑡)‖×
22

2𝑓(𝑚)

with 𝑓 a polynomial function and 𝑚 = ‖𝒪‖ + ‖𝐶0‖ + ‖𝐷0‖. As Sep𝑛 stabilizes after at

most double exponentially many elimination steps, ‖Sep𝑛‖ is bound by a 3-exponential function in

‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖. This bound remains 3-exponential under DAG representation. The construction

of Sep𝑛(𝑡) involves satisfiability checks for concepts of 3-exponential size, so overall the interpolant

can be constructed in 4-exponential time.

5. Conclusion

We have presented first non-trivial algorithms for computing 𝒜ℒ𝒞 interpolants under 𝒜ℒ𝒞ℋ and

𝒜ℒ𝒞𝒬 ontologies, relying on the new notion of polyadic separators tailored to store witnesses for the

fact that a mosaic (or set of types) cannot be realized in mutually bisimilar models. Theorems 4 and 8

demonstrate the inherent difficulty of the problem and explain why previously known techniques do

not easily apply in the cases of 𝒜ℒ𝒞ℋ and 𝒜ℒ𝒞𝒬. It is worth to note that Theorem 4 can be easily

modified to obtain non-elementary lower bounds for the size of uniform interpolants at the concept

level in the presence of 𝒜ℒ𝒞ℋ ontologies. These lower bounds, in turn, translate to non-elementary

lower bounds for the size of uniform interpolants at the ontology level in 𝒜ℒ𝒞ℋ. This implies that the

resolution based calculus for computing uniform interpolants of 𝒜ℒ𝒞ℋ ontologies from [21] cannot

run in elementary time, answering a question posed by the authors.

In the future, we would like to extend our algorithms to other standard DL constructors. While we

believe that this will be rather easy for some constructors, like inverse roles or the universal role, we

expect it to be much more involved in other cases such as nominals. In fact, already unifying the two

presented algorithms into one for computing 𝒜ℒ𝒞 interpolants under 𝒜ℒ𝒞ℋ𝒬 ontologies appears to

be challenging. It would be also interesting to analyze our procedures in the ontology-free cases (or with

an ontology containing only role inclusions), for which we expect smaller interpolants. From a practical

perspective, it would be interesting to extend implemented tableaux algorithms to be able to compute

interpolants. Beyond description logics, it would be very interesting to compute interpolants in the

guarded and/or the two-variable fragments of first-order logic [14] or in first-order modal logics [16].
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A. Missing Proof Details

Lemma 11. 𝐶0 and 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics that does
not contain a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1 and 𝐷0 ∈ 𝑡2.

Proof (Sketch). For implication “⇒”, suppose that 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪, that

is, there are models ℐ1, ℐ2 of 𝒪 and elements 𝑑1 ∈ 𝐶ℐ1
0 and 𝑑2 ∈ 𝐷ℐ2

0 such that ℐ1, 𝑑1 ∼𝒜ℒ𝒞,Σ ℐ2, 𝑑2.

Since 𝒜ℒ𝒞ℋ is preserved under taking disjoint unions, we can assume without loss of generality that

ℐ1 = ℐ2 = ℐ . We read off a set ℳ*
of mosaics by taking

ℳ* = { {tpℐ(𝑒) | ℐ, 𝑑 ∼𝒜ℒ𝒞,Σ ℐ, 𝑒} | 𝑑 ∈ ∆ℐ}.

It is routine to verify that ℳ*
satisfies the conditions formulated in Lemma 5.

For implication “⇐”, let ℳ*
be a set of mosaics that does not contain a bad mosaic and such that

there is 𝑇 * ∈ ℳ*
and 𝑡1, 𝑡2 ∈ 𝑇 *

with 𝐶 ∈ 𝑡1 and 𝐷 ∈ 𝑡2. We construct an interpretation ℐ as follows:

∆ℐ = {(𝑡, 𝑇 ) | 𝑇 ∈ ℳ*
and 𝑡 ∈ 𝑇}

𝐴ℐ = {(𝑡, 𝑇 ) ∈ ∆ℐ | 𝐴 ∈ 𝑡}
𝑟ℐ = {((𝑡, 𝑇 ), (𝑡′, 𝑇 ′)) ∈ ∆ℐ ×∆ℐ | 𝑡⇝𝑟 𝑡

′
and for all 𝑠 ∈ Σ: ((𝒪 |= 𝑟 ⊑ 𝑠) ⇒ 𝑇 ⇝𝑠 𝑇

′)}

One can verify by structural induction that 𝐶 ∈ (𝑡, 𝑇 ) iff (𝑡, 𝑇 ) ∈ 𝐶ℐ
, for all 𝐶 ∈ sub(𝒪, 𝐶0, 𝐷0) and

(𝑡, 𝑇 ) ∈ ∆ℐ
. Consequently, (𝑡1, 𝑇

*) ∈ 𝐶ℐ
0 and (𝑡2, 𝑇

*) ∈ 𝐷ℐ
0 . Moreover, following relation 𝑍 :

𝑍 = {(𝑡, 𝑇 ), (𝑡′, 𝑇 ) | 𝑇 ∈ ℳ*}

is a Σ-bisimulation. Since ((𝑡1, 𝑇
*), (𝑡2, 𝑇

*)) ∈ 𝑍 , we conclude that 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-

consistent under 𝒪.
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