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Abstract

While the computation of Craig interpolants for description logics (DLs) with the Craig Interpolation Property
(CIP) is well understood, very little is known about the computation and size of interpolants for DLs without
CIP or if one aims at interpolating concepts in a weaker DL than the DL of the input ontology and concepts. In
this paper, we provide the first elementary algorithms computing (i) ALC interpolants between ALC-concepts
under ALCH-ontologies and (ii) ALC interpolants between ALC Q-concepts under ALC Q-ontologies. The
algorithms are based on recent decision procedures for interpolant existence. We also observe that, in contrast,
uniform depth restricted interpolants might be of non-elementary size.
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1. Introduction

Interpolants between description logic (DL) concepts have found many applications. For instance, they
can be used as explicit concept definitions or referring expressions, as explanations for concept inclusions,
as rewritings of queries, and as separating concepts in the context of concept learning [1, 2, 3, 4, 5]. The
computation of interpolants has been investigated extensively, both by the DL community [6, 7, 8, 9]
but also in modal logic and related fragments of FO [10, 11, 12]. We quickly remind the reader how this
is done: A Craig interpolant between C' and D is a concept F in the shared signature of C' and D such
that = C' C E and = E' C D (for simplicity we drop the ontology). A DL has the Craig Interpolation
Property (CIP), if the existence of such an interpolant follows from = C' C D. DLs such as ALC,
ALCQ, and ALCT have the CIP [6]. Then, an interpolant E can typically be extracted from a proof
of = C C D (or, equivalently, of non-satisfiability of C' M —D) in standard calculi in the field such as
tableau, the chase, sequent calculi, or type elimination [6, 7, 8, 11, 13].

The situation is very different for DLs that do not enjoy the CIP or if one is interested in interpolating
concepts in a weaker DL than the concepts used in the inclusion. In this case, the existence of an
interpolating concept does not follow from the validity of the inclusion and extracting interpolating
concepts from proofs becomes much harder. In fact, very little is known about how this could be done
and research has so far focused on deciding the existence of interpolants rather than constructing
them [14, 15, 16]. It is worth noting, however, that for extensions of £L, the chase can be used to
compute interpolants even without CIP [7].

It is well known that Craig interpolants of ALC concept inclusions under ALCH ontologies do not
necessarily exist [17, 6] and that not every ALCQ concept inclusion has an ALC interpolant (take
= C C C for any ALCQ concept C not equivalent to an ALC concept). Existence of ALC interpolants
in these settings is, however, decidable [15, 18]. To explain the proof, assume that = C' C D and let &
be any signature (again we drop the ontology for simplicity). It is known that an interpolating ALC(X)
concept exists if no X-bisimilar nodes satisfying C' and —D exist. Hence it suffices to decide whether a
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pair of concepts is satisfiable in 3-bisimilar nodes. It turns out that to decide this problem it is crucial to
decide the more general problem whether a set of concepts (and not just a pair) is satisfiable in mutually
>-bisimilar nodes. By completing concepts to types containing them, it suffices to decide the latter
problem for sets of types, often called mosaics. In fact, the decision algorithms in [15, 18] use mosaics
and generalize the well-known type elimination procedures deciding satisfiability of concepts to mosaic
elimination procedures deciding Y -bisimilar satisfiability.

Mosaic elimination procedures decide the existence of interpolants, but they do not construct any
interpolants. The aim of this paper is to give the first elementary algorithms constructing ALC inter-
polants whenever they exist under ontologies in ALCH and under ontologies and concept inclusions
in ALCQ. Our algorithms are not restricted to computing Craig interpolants, but work for arbitrary
signatures. The idea of the algorithms is to run the mosaic elimination procedures discussed above
and construct, in addition and inductively, for each eliminated mosaic entailed ALC(X) concepts that
witness non X-bisimilar satisfiability of its types. The witness concepts we propose are not aggregated
at each step, but are polyadic in the sense that we define, for any set 7" of concepts (types in the case of
mosaics) which are not satisfiable in X-bisimilar nodes, for each C' € T' an ALC(X) concept Sep(C)
such that the following holds:

« = CLC Sep(C)forall C eT;
. C 1.
= ] Ser(C)E L

The concept Sep(C') constructed for 7' = {C,—D} is then the desired interpolant. We note that an
earlier attempt to construct interpolants while running a mosaic elimination procedure without using
polyadic separators does not work as stated [15]. Hence one main contribution of this paper is to correct
that proof. Our second main contribution is to show that our approach also works in the case of ALCQ
ontologies.

2. Preliminaries

We first introduce the syntax and semantics of the basic description logics ALC, ALCH, and ALCQ
and introduce some model theory. We refer the reader to [19] for a comprehensive introduction to
description logics. Let N¢, and Ng be mutually disjoint and countably infinite sets of concept, and role
names. An ALCQ concept is defined according to the syntax rule

C,Dz=T|A|-C|CND|(>nr.C)

where A ranges over concept names, r over role names, and n > 0. We use the standard abbreviations
Ir.C for (> 1 r.C), Vr.C for ~3r.—C, C' U D for =(—~C M —=D), and C — D for -C' U D. An ALC
concept is an ALCQ concept in which for every subformula (> 1 7.C), n is actually 1. An ALCQ
concept inclusion (ALCQ CI) takes the form C T D for ALCQ concepts C and D. ALC concept
inclusions are defined accordingly. An ALCQ ontology is a finite set of ALCQ CIs. An ALCH ontology
is a finite set of ALC concept inclusions and role inclusions (RIs) r C s where r, s are role names from Ng.
The size of a (finite) syntactic object X, denoted || X ||, is the number of symbols needed to represent it as
a word, and the role depth of a concept is the maximal nesting depth of concept constructors (> n r.C').

As usual, the semantics is defined in terms of interpretations T = (A%, 1), where AT is a non-empty
set, called domain of Z, and -* is a function mapping every A € Nc to a subset of AZ C AT and every
r € Ng to a subset of rZ C AT x AL, The extension C* of a concept C in T is defined as usual. An
interpretation Z satisfiesa CIC C D if CT C DTandanRIr C sifrf C sT. We say that 7 is a model
of an ontology O if it satisfies all inclusions in it. A concept C' is satisfiable under ontology O if there is
a model Z of O with CZ # (). Moreover, C is subsumed by another concept D under O if C* C DT in
every model Z of O. We write O = C C D in this case.

We next introduce the studied notions and associated problems. A signature is a set X of concept
and role names. An ALC(X) concept is an ALC concept that uses only concept and role names from X..



Let £, L' be DLs, and let us fix an £ ontology O, L concepts C, D, and a signature 3. Then, an £L'(X)
interpolant for O |= C C D isan £'(X) concept E with O |= C C Eand O = FE C D. The associated
decision problem of £/(X) interpolant existence over L ontologies and concepts has been recently
studied and shown decidable [15, 18]. The decision procedures are based on elegant model-theoretic
characterizations of interpolant existence in terms of bisimulations, which we introduce next. A relation
Z C AT x AY is a ¥-bisimulation between interpretations Z and J if the following conditions are
satisfied for all (d,e) € Z:

Atom for all concept names A € ¥: d € Al iffe € A7,
Back for all role names r € ¥ and all (d, d’) € 7%, there is (e, €’) € r7 such that (d',¢') € Z,
Forth for all role names r € ¥ and all (e, ¢’) € r7, there is (d, d’) € r* such that (d',¢) € Z.

A pointed interpretation is a pair Z, d with Z an interpretation and d € AZ. We write Z,d ~ccx J, e
and call Z,d and J, e X-bisimilar if there exists an X-bisimulation Z such that (d,e) € Z. We say
that ALCQ concepts Cy, C5 are jointly ~ src x:-consistent under O if there are models Z1,Z5 of O and
elements d; € C’;Z “fori = 1,2 with Zy,dy ~azc,y Z2, d2. We have the following characterization:

Lemma 1. Let £ € {ALCH, ALCQ}, O be an L ontology, C, D be L-concepts, and ¥ be a signature.
Then the following are equivalent:

1. there is an ALC(X) interpolant for O = C C D;
2. C,=D are not jointly ~ azc x.-consistent under O.

The proof of Lemma 1 is based on the fact that ¥-bisimulations capture the expressive power of
ALC(Y) concepts, and crucially relies on the use of compactness. In particular, it is not constructive
in the sense that in the proof of implication 2 = 1, no interpolant is constructed. We study here the
associated computation problems, that is, compute the interpolants if they exist. A notion dual to the
notion of an interpolant is that of a separator. Given concepts C, D, E we call I a separator for C, D
if C C Fand E C —D. Clearly, E is a separator for C, D iff it is an interpolant for C, —D. Thus,
the problems of finding interpolants and separators for a given pair of concepts are algorithmically
equivalent. We will switch between these two perspectives depending on which one is more convenient
in a given context.

3. Role Inclusions

In this section, we are concerned with computing ALC interpolants of concept inclusions under ALCH
ontologies. We start with an example that illustrates the failure of the computation algorithm given
in [15].

Example 2. Fixk > 1,0 ={rC s;,s; C s} |i <k}, X ={s,,A;i|i <k}, and

C=3r.BNvr(B— L A) and D = [ Vs;.mA4;.
i<k i<k
We show that C, D are not jointly ~ src x.-consistent under O. Indeed, if C, D are jointly ~ rc -
consistent, then all concepts in S = {B 1 (B — |Z|k: A;)} U{—A; | i <k} are satisfied in mutually
1=

Y.-bisimilar nodes, which is clearly not the case. By Lemma 1, there is an ALC(X) interpolant for
O E C C —D. For instance, E = |Z|k Jst.A; is an ALC(X) interpolant. The algorithm from [15],
7

however, computes a concept of shape 3s.,.E for a single i < k and one can easily see that a concept of this
shape cannot serve as an interpolant. The mistake in the algorithm is a confusion in the quantifier order in
the assumptions of the interpolant construction.



We first show how a natural idea for computing interpolants, which works in several other settings,
fails to compute elementary sized interpolants in the presence of role inclusions. Next we provide an
algorithm which does compute elementary interpolants.

A natural idea to compute interpolants could be to show first that, if there is an ALC(X) interpolant
for O = Cy C Dy, then there is one of small role depth n, and then use the strongest ALC consequence
of Cy of this role depth n. Let n > 0. A (3, n)-uniform interpolant of Cy under O is an ALC(X)
concept U such that O |= Cy C U and O = U C E for every ALC(X) concept E of role depth
at most n with O = Cy C E. A (X, n)-uniform interpolant for Cy under O always exists, and can
be used as an interpolant for O = Cy T D whenever an ALC(Y) interpolant for O = Cy T D of
role depth n exists. This idea has been used to compute elementary sized modal logic interpolants
of p-calculus formulae [20] and it follows from its proof that it applies to computing interpolants
under ALC ontologies. We actually conjecture that it works for the majority of DLs enjoying the CIP,
but we leave an elaboration for future work. Unfortunately, contrary to these settings, in our case
(X, n)-uniform interpolants need not be elementary in n, and consequently do not lead to elementary
sized interpolants. In what follows we denote by TOwER the iterated exponential function, that is,
Tower(0) = 1 and Tower(n + 1) = 2ToWEr(),

Theorem 3. There is an ALCH ontology O, an ALC concept Cy, and signature ¥ such that there is no
(3, n)-uniform interpolant of Cy under O smaller than TOWER(n — 2).

Proof. Consider the ALCH ontology O = {r C s,r C s'}, the concept Cyp = Ir. T and ¥ = {s, s'}.
We claim that no concept U of size smaller than TOowER(n — 2) is a (X, n)-uniform interpolant for Cj
under O. Assume towards contradiction that there is such an U. Observe that for every C' € ALC(X)
of depth n — 1, Vs.C' — 3s'.C is an ALC(X) concept of depth n and O = Cy C (Vs.C — 3¢'.0).
Hence O = U C (Vs.C' — 35'.C). Consider all trees of depth n — 1, choose one for every equivalence
class of X-bisimulation and denote the set of all these chosen trees by 7. We have Tower(n — 1) < |T|
and ||U]| < Tower(n — 2). Thus, by the pigeonhole principle there are two different 7,,7o € T
whose respective roots dj, ds satisfy exactly the same sub-concepts of U. Every two trees in 7 are
distinguished by some D € ALC(X) of depth n — 1, so let us pick D such that d; € D% but dy ¢ D2,
We claim that O (£ U C Vs.D — 3¢'.D, which contradicts that U is an (X, n)-uniform interpolant.
This is witnessed by an interpretation 7 constructed as follows. First take the disjoint union of Z;, Zs.

/ !
Then take two fresh points ej, ez, and add edges e; SN di,eq N di,er 2y dy and ey > di, e 2 do.
Since O = Cy C U and Cj is true at e; we have e; € UY. This implies ey € U because d and d’

satisfy the same subconcepts of U. But Vs.D — 3s’.D is false at eo, a contradiction.
O

On the positive side, we show the following second main result.

Theorem 4. Let O be an ALCH ontology, Cy, Dy ALC concepts, and ¥ be a signature. Then, if there is
an ALC(X) interpolant for O = Cy T Dy, we can construct the DAG representation of such an interpolant
in time double exponential in ||O|| + || Col| + || Dol|-

The proof is by extending a known mosaic elimination procedure for deciding joint ~ 4.¢c x-
consistency for input ontology and concepts formulated in ALCH [15]. We present a slight sim-
plification of the original procedure, as we require it only for a restricted setting.

Let us fix an ALCH ontology O, ALC concepts Cy, Dy, and a signature 3. We denote with
sub(O, Cp, Dy) the set of subconcepts that occur in O, Cy, Dy, closed under single negation. A type for
O is any subset of sub(O, Cy, Dy) realizable in a model of O, that is, any set ¢ C sub(O, Cy, Dy) such
that there is a model Z of O and element d € AT with t = tp7(d) where:

tpz(d) = {E € sub(O,Cy, Do) | d € E*}.

We often treat a type t as the conjunction of all concepts it contains, which allows us to write, for
instance, O =t C D. A mosaic for O is a set T' of types for O. We say that a type ¢ is a completion of a



concept C' € sub(O, Cy, Dy) if C € t, and a mosaic T is a completion of a set C C sub(O, Cy, Dy) of
concepts if 7" contains a completion of every C' € C.

Intuitively, a mosaic 1" describes a collection of elements in an interpretation 7 which realize precisely
the types in 1" and are mutually >-bisimilar. Naturally, not every set of types can be realized in this way,
and we use a mosaic elimination procedure to determine which can. We write ¢t ~~, t’ if an element
of type t’ is a viable r-successor of an element of type ¢, that is, {C | Vr.C € t} C t'. We will denote
{C|¥r.C et} =t . Wewrite T ~, T"if for every t € T, there ist' € T’ with ¢ ~, t'. Let M be a
set of mosaics. A mosaic T € M is bad if it violates one of the following conditions:

(Atomic Consistency) forevery t,t’ € Tand A€ X, Actiff Aet;

(Existential Saturation) forevery ¢t € T'and 3r.C € t, thereis T’ € M such that (a) C' € t’ for some
t' € T' with t ~, t' and (b) if O |=r C s for some s € X, then T ~~4 T".

Along the lines of the proof of Lemma 6.5 in [15] one can show Lemma 5 below, see the appendix for a
proof sketch. The original Lemma 6.5 works with pairs of mosaics which is necessary for DLs that are
not preserved under disjoint unions such as ALCO.

Lemma 5. Cy and Dy are jointly ~ 4rc 5:-consistent under O iff there is a set M™ of mosaics that does
not contain a bad mosaic and such that there isT € M™* andt1,t9 € T with Cy € t1 and Dy € ts.

It is a consequence of Lemma 5 that joint ~ 42¢ x;-consistency under ALCH ontologies can be decided
in double exponential time. Indeed, an M™ as in Lemma 5 can be found (if it exists) by exhaustively
eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics is of double exponential
size, and each round of the elimination procedure can be performed in time polynomial in the size of
the current set of mosaics, the upper bound follows. By the link to interpolant existence provided in
Lemma 1, also ALC(X) interpolant existence is decidable in double exponential time.

Our aim is to extend the described mosaic elimination procedure by computing, for each type in
an eliminated mosaic, its “contribution” to the elimination. To formalize this we introduce a polyadic
notion of a separator reflecting the fact that a mosaic may contain more than two types. Assume a set C
of concepts. An ALC(X) separator for C is a function Sep from C to ALC(X)-concepts such that:

« O =C C Sep(C) for every C € C;
cO0FE clgc Sep(C) C L.

We call C ALC(X)-separable if there is an ALC(X) separator for C. We will use the following lemma
which connects separation of concepts with separation of their completions.

Lemma 6. Assume a setC C sub(O, Cy, Dy) of concepts. The following are equivalent:

1. the set C is ALC(X)-separable;
2. every completion T of C is ALC(X)-separable.

Proof. The implication (1) = (2) is straightforward because a separator for C is a separator for every
completion T of C.

For the other implication (2) = (1) assume that for every completion of C we have a separator. Let
cp(C) denote the set of all functions from C to types which map every C' € C to one of its completions.
The image f[C] of every such function f € cp(C) is a completion of C, and thus, by assumption, is
separated by some Sep;.

We define a separator Sep for C by setting, for every C € C:

= U [l
Sep(C) t completion fecp(C) Sepf(C) (*)
ofC F(C)=t

To prove O = C C Sep(C) assume Z |= O and d € C7. Let t be the type tpz(d) of d. Clearly, t is
a completion of C'. By assumption, for every f € cp(C) and C' € C we have O = f(C) C Sep;(C).



Hence, for every f € cp(C) such that f(C) = t we get O = t C Sep;(C). It follows that d €
(Sep(C))*.
It remains to show that O | Cl_lc Sep(C') C L. Assume towards contradiction an interpretation
€

Z = O withd € (Cl_lc Sep(C))~. By definition of Sep, for every C' there is a completion ¢ such that d
€

satisfies:
[T Sep(C).
feep(C) Pr(€)
f(O)=tc
Consider a function f € cp(C) defined as f(C') = t¢ for every C. It follows that d satisfies Sep;(C)
for every C'. This contradicts the assumption that {Sep(C) | C' € C} is a separator for the image of f
and as such is inconsistent. O

We inductively define separators for each eliminated mosaic. Recall that there are two ways a mosaic
T can be eliminated: the base case when 7" violates atomic consistency, and the inductive case when T
violates existential saturation. We look at these cases in turn.

Inductive Base. If T" violates atomic consistency then there is a concept name A € ¥ and types
t,t' € T with A € tand -A € t'. Let Sep(t) be A if A € t and —A otherwise. It follows that
O =t C Sep(t) for all ¢, and tl_lT Sep(t) C L.

€

Inductive Step. Denote the current set of mosaics by M and assume a mosaic 7' € M is eliminated
because it violates existential saturation. This means that there are t € T and 3r.C' € ¢ such that
whenever 77 € M satisfies (i) T ~s T" for all O |= r C s, and (ii) contains some ' € T" with t ~,. t/
and C' € t' then T” ¢ M. Consider the set:

’D:{t'/s |t eT,se¥, and O =rEs}U{{C}UL, }.

It follows that every completion 7" of D was already eliminated from M: left and right part of the
union correspond to parts (i) and (ii) of the violated condition. Lemma 6 provides us with a separator
Sepp for D. We use Sepp to get a separator Sep for 1" as follows. We put:

N / - - / — - / ]
Sep(t') —Obl—rl;& Vs.Sepp(t),) and Sep(t) = tDt Sep(t') t!;|ét(9|:|7|gs, Js.—Sepp (1))
s€eX seX

for every ' # t.
We claim that Sep separates T For every ¢’ # ¢ we have O |= t' C Sep(t'). This follows because

forevery O E r C s with s € ¥ we have E ' C Vs.t’/s and O = t’/s C Sep(t’/s). To show

O |=t C Sep(t) assume an interpretation Z = O with d € tZ. The point d has an r-child e satisfying
{C} Ut and hence also Sepp({C'} Ut/, ). By definition of a separator, the image Sepp[D] of Sepp, is
inconsistent. Thus, the fact that d satisfies Sepp({C'} U/, ) implies that some concept £ € Sepp[D]
other than Sepp({C} U ¢, ) must be false at d. We therefore have d & (ﬂSepD(t’/S))I for some
O = r C s with s € 3 and some t'. Since for every s € ¥ with O |=r C s we have d € (t/s)z
and thus d € (SepD(t/s))I, it follows that #' # t. This proves that d € (Sep(t))%. Note that Sep[T] is
inconsistent by definition: the concept Sep(t) is just a negated conjunction tglét Sep(t') of the rest. This

completes the proof that Sep separates 7.

This finishes the construction of separators for every eliminated mosaic. To construct the actual
interpolant, note that Lemmas 1 and 5 imply that, if there is an ALC(X) interpolant for O = Cy C Dy,
then all completions of {Cy, =Dy} have been eliminated. Lemma 6 provides us with an ALC(Y)
separator Sep for {Cy, =Dy} and it is easy to see that Sep(Cy) is the sought ALC(Y) interpolant.

It remains to analyze the DAG size of the constructed separators, which we do by counting the
number of sub-formulae used in the constructed separators. On a high-level, we construct one formula
for every type in every eliminated mosaic. This formula is of negligible size 1 in the inductive base, so
let us analyze the inductive step. This step relies on Lemma 6, and one can see that the construction



in Equation () uses double exponentially many sub-formulae. It remains to note that the Lemma is
invoked only double exponentially often and that the construction of the separator formulae for the
just eliminated concept introduces only double exponentially many sub-formulae. This completes the
proof of Theorem 4.

We finish the section with some remarks regarding the size of the constructed interpolants. First, we
strongly conjecture that there are examples in which the interpolant is forced to have double exponential
role depth, so the upper size bound in Theorem 4 is optimal. Second, it is known that the size of DAG
representation of interpolants in standard DLs enjoying the CIP is at most exponential [6, Theorem 3.26]
and thus there is an exponential gap.

4. Qualified Number Restrictions

We are concerned with computing ALC interpolants of concept inclusions in ALCQ under ALCQ
ontologies. We use the same notation for ALCQ as in the previous section for ALCH, defined in the
obvious way. Our first result is that (3, n)-uniform ALC interpolants can be of non-elementary size.

Theorem 7. There is an ALCQ concept Cy and signature X such that there is no (X, n)-uniform ALC
interpolant of Cy smaller than TOWER(n — 2).

Proof. Take the concept Cyp = (< 1 r.T), signature ¥ = {r,s, s}, and let n > 0. Using ALC(X)
concepts Ir.C' — Vr.C' one can show the lower bound in the same way as in the proof of Theorem 3. [J

The main result of this section is as follows.

Theorem 8. Let O be an ALCQ ontology, Cy, Dy ALC concepts, and 3 be a signature. If there is an
ALC(X) interpolant for O |= Cy T Dy, then there is one of 3-exponential size which can be constructed
in 4-exponential time in ||O|| + ||Col| + || Do]l.

Fix an ALCQ ontology O, ALCQ concepts Cy, Dy, and a signature X.. Our algorithm for computing
interpolants again relies on a mosaic elimination procedure that determines the mosaics for which
there is a model 7 of O which realizes the types in 7" in mutually X-bisimilar nodes. To formalize the
elimination condition, we need some new notation. Let m® € N be maximal such that (> m*® r.C)
occurs in sub(O, Cy, Dy) for some 7, C. Let N®* = {0,...,m*} U {oo}, and define < and + on N*® as
usual by setting, for instance, m® < oo and k + co = oco. For a role name r and type ¢, a witnessing
function w,; assigns to every type t’ a w,(t') € N*® such that for each (> n r.C') € sub(O, Cy, Dy),
(>nr.C)etiff Y oy wri(t') > n. If tis realizable, then there exists a witnessing function w. ; for
each role name r: take a model Z of O realizing ¢ in a node d and define

(1)

) n ifn=|{d €Al |(d,d)erlt' =tpy(d)} <m*
w 7t = .

’ oo otherwise.

Let T' be a mosaic, r a role name, and (wy+)ier be witnessing functions. To satisfy the types in a
mosaic in mutually ¥-bisimilar nodes one must be able to partition, for r € 3, their r-successors into
mosaics so that the back- and-forth conditions of 3-bisimulations hold. Our formalization of this idea
follows [18], but we modify the notation for our purposes. Say that a set S of mosaics is a mosaic
partition for (wy¢)ier if one can assign to each ¢,t’ with ¢t € T and w,.(t') > 0 a non-empty set
ar(t,t") C S (intuitively, the mosaics in S containing ¢’ as an r-successor of ¢) with ¢’ € 7" for all
T € a,(t,t') in such a way that

« foreveryT' € Sandt € T, there existsat’ € T' with T" € a,.(¢,t);
ar(t,t")] < wp(t).

o for all types ¢, t/,
Let M be a set of mosaics. A mosaic 7' € M is bad if it violates one of the following conditions:

(Atomic Consistency) forevery t,t’ € Tand A€ X, Actiff Aet;



(Existential Saturation) for every role name r € ¥ there are witnessing functions (wy ¢)tcr and a
mosaic partition S € M for (w;.¢)ser.

The following result is shown in [18] (using slightly different wording):

Lemma 9. (i) If the condition (Existential Saturation) is satisfied for some T" € M, then this is witnessed
by a mosaic partition S C M with |S| < m® x 221sub(O.Co,Do)|,

(ii) Co, Do are jointly ~ gzc s.-consistent under O iff there is a set M™ of mosaics that does not contain
a bad mosaic and such that there isT € M* and t1,to € T with Cy € t1 and Dy € to.

It is a consequence of Lemma 9 that joint ~ 4.¢ x:-consistency under ALC Q ontologies can be decided
in double exponential time. Indeed, an M* as in Lemma 9 can be found (if it exists) by exhaustively
eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics is of double exponential
size, and each round of the elimination procedure can be performed in double exponential time, the
upper bound follows. By the link to interpolant existence provided in Lemma 1, also ALC(X) interpolant
existence is decidable in double exponential time.

We next exploit the elimination procedure to construct interpolants. Similar to the previous Section 3
we compute an ALC () separator for every eliminated mosaic. It will be convenient to actually compute
something slightly stronger. Let M be a set of mosaics. A function Sep that maps every ¢ in some
T € M to an ALC(X) concept Sep(t) is called general ALC(X) separator for M if for every T' € M
the restriction of Sep to 7" is an ALC(X) separator for 7.

We compute, by induction, a general ALC (X)) separator for the set of eliminated mosaics.

Inductive Base. Assume 7" has been eliminated because atomic consistency is violated. Then there
exists A € ¥ such that the function Sep; defined by setting Sep;(t) = A if A € T and Sepp(t) = -A
otherwise, is an ALC(X) separator for T'. Let & be the set of all mosaics that violate atomic consistency
and let Sepy be defined as above for T € &. Then we obtain a general separator Sep, for &y by setting
Sepy(t) = Tl;lg0 Sepp(t), forallt € T € &.

Inductive Step. Assume &, is the set of eliminated mosaics and Sep,, is a general separator for
En- Let M, be the set of mosaics that have not yet been eliminated. Setting Sep,,(t) = T for types ¢
that do not occur in any mosaic in &,,, we may assume that Sep,, is defined for all types. Let T be the
mosaic eliminated in the next step. Then existential saturation is violated in M,,. Note that this implies
that one can pick a role name r € X such that for every witnessing functions w,, t € T', and mosaic
partition S for (wy.;)er there is an eliminated mosaic 7" € S N &,,. We fix such an r.

Let 7 be the set of all types. Denote by VT the set of all conjunctions C' = tDT Ly with L; €

{Sep,,(t), =Sep,,(t)}. For any nonempty subset B C V' we set as usual

V. (B) = (CE'B Ir.C) M W'(clzlg 0).

Let 6,(t) be the disjunction of all V,(B) such that ¢ M V,(B) is satisfiable under O. Observe that
O E t C 6,.(t). Take any ty € T and set Sep(tg) = - [1 6,(¢t) and Sep(t) = §,(t) for all

teT\{to}
te T\ {to}.
Lemma 10. Sep is an ALC(X) separator for T

Proof. It suffices to show that O = ¢y C Sep(t¢), the remaining conditions are trivial. Assume this is not

the case. Then we have a model Z;, of O and some dy, € At such that dy, € (to 1 ( T|;|[ }57«(75))%)'
te to

Pick the (unique) B C V7 such that dy, € V,(B)%. Then V(1) is a disjunct of each §,.(¢) with t € T..
Take interpretations Z; and d; with d; € (t 1 V,.(B))%t for t € T\ {to}. We may assume that all Z;,
t € T, coincide (otherwise take their disjoint union) and denote it by Z. Next define, for ¢t € T, wr,t(t’ )
as in (1). Then (wy¢):er is a family of witnessing functions. Let for each C' € B:

Tc = {tpz(d) | thereist € T with (d¢,d) € r* and d € CT}



By the definition of B, T # () for every C' € B. Observe that none of the mosaics T¢ is in &, because
otherwise O = t |_|T Sep,,(t) C L which is not the case since Sep,,(t) is a conjunct of C for all ¢ € T¢.
€lc

We show that {T¢ | C' € B} form a mosaic partition for (w;.¢):er, and so derive a contradiction. To
this end define a,(¢,t") C {T¢ | C € B} as

{T¢ | thereisd € CT with (di,d) € r* and tpr(d) =t'}

To see that a,(t, ") is as required, first observe that t' € T for any T € a,(t,t’). Next assume that
aTo with C € Bandt € T are given. From d; € (t M V,(B))? we obtain a d with (d;,d) € r* and
d € CT. Lett' = tpz(d). Then T¢ € a,(t,t'). The condition |a, (¢, )| < wy.4+(t') follows directly from
the definitions. O

Using Lemma 10 we obtain a general ALC(X) separator Sep,, , | for £, U{T'} by setting Sep,, | (t) =
Sep(t) M Sep,,(t) for all t € T and Sep,,, 1 (t) = Sep,,(t) for all remaining types.

This finishes the construction of separators for every eliminated mosaic. One can now construct
the actual interpolants in exactly the same way as in the previous section for ALCH via Lemma 6. To
compute the size of the interpolants, observe that in the construction above ||Sep,, . { (¢)|| < ||Sep,,(t)]| x

222f(m) with f a polynomial function and m = ||O|| + ||Co|| + || Dol|- As Sep,, stabilizes after at
most double exponentially many elimination steps, ||Sep,,|| is bound by a 3-exponential function in
O]l + ||Col| + || Dol|- This bound remains 3-exponential under DAG representation. The construction
of Sep,, (t) involves satisfiability checks for concepts of 3-exponential size, so overall the interpolant
can be constructed in 4-exponential time.

5. Conclusion

We have presented first non-trivial algorithms for computing ALC interpolants under ALCH and
ALCQ ontologies, relying on the new notion of polyadic separators tailored to store witnesses for the
fact that a mosaic (or set of types) cannot be realized in mutually bisimilar models. Theorems 4 and 8
demonstrate the inherent difficulty of the problem and explain why previously known techniques do
not easily apply in the cases of ALCH and ALCQ. It is worth to note that Theorem 4 can be easily
modified to obtain non-elementary lower bounds for the size of uniform interpolants at the concept
level in the presence of ALCH ontologies. These lower bounds, in turn, translate to non-elementary
lower bounds for the size of uniform interpolants at the ontology level in ALC?H. This implies that the
resolution based calculus for computing uniform interpolants of ALC?H ontologies from [21] cannot
run in elementary time, answering a question posed by the authors.

In the future, we would like to extend our algorithms to other standard DL constructors. While we
believe that this will be rather easy for some constructors, like inverse roles or the universal role, we
expect it to be much more involved in other cases such as nominals. In fact, already unifying the two
presented algorithms into one for computing ALC interpolants under ALCH Q ontologies appears to
be challenging. It would be also interesting to analyze our procedures in the ontology-free cases (or with
an ontology containing only role inclusions), for which we expect smaller interpolants. From a practical
perspective, it would be interesting to extend implemented tableaux algorithms to be able to compute
interpolants. Beyond description logics, it would be very interesting to compute interpolants in the
guarded and/or the two-variable fragments of first-order logic [14] or in first-order modal logics [16].

Declaration on Generative Al

The authors have not employed any Generative Al tools.
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A. Missing Proof Details

Lemma 11. Cy and Dy are jointly ~ gzc s.-consistent under O iff there is a set M™ of mosaics that does
not contain a bad mosaic and such that there isT € M™* andty,ty € T with Cy € t1 and Dy € ts.

Proof (Sketch). For implication “=", suppose that Cy, Dy are jointly ~ 4.¢ x.-consistent under O, that
is, there are models 71, Z5 of O and elements d; € C’OI Yand ds € Dgz such that 71, dy ~acc,s Lo, da.
Since ALC*H is preserved under taking disjoint unions, we can assume without loss of generality that
7y =1y = I. We read off a set M* of mosaics by taking

M* = {{tpz(e) | T,d ~accx I,e} | d e AT}

It is routine to verify that M* satisfies the conditions formulated in Lemma 5.
For implication “<”, let M* be a set of mosaics that does not contain a bad mosaic and such that
thereis T € M* and t1,t2 € T* with C' € t; and D € t5. We construct an interpretation Z as follows:

AT ={(t,T)|T € M*andt c T}
AT ={t,T) e AT |Act}
rf={((t,T), ", T")) € AT x AT |t ~», t' andforalls € ¥: (O =rCs) =T ~, 1)}

One can verify by structural induction that C' € (¢,7T) iff (¢,T) € CZ, for all C € sub(O, Cy, D) and
(t,T) € AT. Consequently, (t1,T*) € CZ and (t2, T*) € DE. Moreover, following relation Z:

Z={(t,T),(t,T)| T e M*}

is a Y-bisimulation. Since ((t1,T™), (t2,17*)) € Z, we conclude that Cy, Dy are jointly ~ ¢ 5-
consistent under O. O
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