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Abstract
We propose an extension of Description Logics (DLs) with generic concepts and conditional axioms. Inspired by
object-oriented languages, generic concepts allow a compact definition of concepts with similar structures. For
example, one can define a generic concept Owner[X] to describe objects that own another object from X, and
later use a specific replacement of the parameter X, such as Owner[Pet] representing pet owners. Conditional
axioms can be used to set bounds on the values that replace the generic parameters. For example, we could
restrict replacements of X in a concept Feeder[X] to only subconcepts of Pet. As the set of possible parameter
replacements can be infinite and even uncountable, the generic extensions are, in general, undecidable. To identify
decidable generic DLs, we focus on the case of terminologies, requiring that variables are only used in definitions
of generic concepts. We formulate syntactic restrictions that allow reducing generic to classical entailment and
further conditions that ensure decidability.
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1. Introduction

Many large Description Logics (DLs) ontologies exhibit regularities in their syntactic structure [1, 2],
and there have been several proposals to model such regularities within the languages so that ontologies
are easier to maintain [3, 4, 5, 6, 7, 8, 9, 10, 11]. One proposal is to apply the principles of generic
programming for object-oriented languages [12] to ontologies. Generic DLs [13] extend classical
DLs with two new features: concept variables and parametrized concepts. Concept variables are
placeholders that can be replaced with (ordinary) concepts. For example, a generic concept ∃owns.𝑋
uses a concept variable 𝑋 , which could be replaced with (ordinary) concepts like Pet or Car resulting
in (ordinary) concepts ∃owns.Pet and ∃owns.Car. Parameterized concepts are a generalized form of
atomic concepts, whose meaning may depend on other concepts. For example, a parameterized concept
Owner[𝑋] can be used to describe owners of objects from 𝑋 , and could be defined using a generic axiom
Owner[𝑋] ≡ ∃owns.𝑋 . Thus, Owner[Pet] and Owner[Car] describe two different kinds of owners.

Generic axioms can be interpreted in two ways: using the schema semantics and using the second-
order semantics [13]. Under the schema semantics, the axiom Owner[𝑋] ≡ ∃owns.𝑋 is regarded
literally as an abbreviation of (countably-many) axioms Owner[𝐶] ≡ ∃owns.𝐶 obtained by replacing
the concept variable 𝑋 with all possible concepts 𝐶 from the language. Under the second-order semantics,
concept variables can be replaced with arbitrary subsets of the interpretation domain. Second-order
semantics is, generally, stronger than the schema semantics because not every subset of a domain is
an interpretation of some concept of the language. However, entailment under the schema semantics
can be computed using standard DL algorithms by treating instances of parametrized concepts such as
Owner[Pet] and Owner[Car] as distinct atomic concepts. Schema entailment, however, may depend
on the language in which the replacement concepts 𝐶 are constructed: replacing with ℰℒ concepts may
result in fewer entailments than replacing with 𝒜ℒ𝒞 concepts (and fewer than for the second-order
entailment). Therefore, a central question for generic DLs is, when both semantics result in the same
entailments.
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The previous work on generic DLs [13] shows that it is possible to ensure that second-order entailment
coincides with the schema entailment by limiting the base language to DL ℰℒ and applying further
syntactic restrictions. In this paper, we use a different approach: Instead of restricting the type of
concept constructors that can be used in ontologies, we restrict the shape of axioms. Specifically, we
allow definitions of (generic) atomic concepts of form 𝐴[𝑋1, . . . , 𝑋𝑛] ≡ 𝐶 where the left-hand side is a
parametrized concept and the right-hand side 𝐶 is an arbitrary (𝒮ℛ𝒪ℐ𝒬) concept containing only
the variables 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) present on the left. A terminology is a set of such concept definitions in
which every concept is defined at most once. We can also allow partial concept definitions of the form
𝐴[𝑋1, . . . , 𝑋𝑛] ⊑ 𝐶 , also when the partially defined atomic concept may appear in several such partial
definitions, because they can be rewritten to concept definitions using concept conjunction and fresh
atomic concepts. We also allow the ontology to contain any number of ground axioms, i.e., axioms that
do not contain concept variables.

Sometimes, it is useful to further restrict (partial) definitions by limiting the scope of parameters
for which they can be used. For this purpose, we introduce a new type of axiom called conditional
axiom. Similarly to bounds in generic programming [12], conditional axioms allow for restricting the
concepts/domain-subsets that are considered for concept variables. A conditional axiom consists of a
range of conditions and a target axiom: {𝛾1, . . . , 𝛾𝑛} ⇒ 𝛽, the conditions, as well as the target axiom,
are classical axioms (potentially using generic concepts). For example, this allows us to specify different
kinds of contents: 𝑋 ⊑ 𝐹𝑖𝑙𝑒 ⇒ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠[𝑋] ⊑ 𝐷𝑎𝑡𝑎, 𝑋 ⊑ 𝐹𝑜𝑜𝑑 ⇒ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠[𝑋] ⊑ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠,
𝑋 ⊑ 𝐿𝑎𝑤 ⇒ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠[𝑋] ⊑ 𝑃𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ𝑠. If a parameterized concept is applied to an argument that
is not satisfied by the conditions, we consider it to be undefined, and it can be interpreted arbitrarily,
which aligns with the idea of partial definitions. The terminological part of ontologies that we specify
can also be cyclic. For example, our DL extension is able to capture recursive data definitions such as a
node of a tree-structure: Node[𝑋] ≡ ∀hasSuccessor.Node[𝑋] ⊓ ∃hasValue.𝑋

In this paper, we present the following results. First, we show that reasoning under classical ontologies
extended with (only) conditional axioms can be reduced to reasoning with classical ontologies allowing
for negated axioms (Section 4). Second, using the conditional axioms, we show that entailment for
ground generic ontologies can be reduced to entailment for classical ontologies (with conditional axioms)
(Section 5). Third, we show that we can reduce reasoning with a non-ground generic terminology to
reasoning with a ground generic ontology using a fixpoint approach; this approach allows us to extend
a model of the ground part of a generic terminology to a model of the whole ontology (Section 6). In
Section 7, we explain how the semantic restrictions from Section 6 can be achieved syntactically in
practice. We start out with a discussion of related work (Section 2), followed by the formal introduction
of the generic extension using conditional axioms (Section 3), and conclude with a discussion of our
results (Section 8).

Due to limited space, we provide most proofs and examples in the appendix.

2. Related Work

As mentioned in the introduction, our work is based on the existing generic extension of description
logics [13]. We differ from that work in the way we restrict the usage of generic features to keep
decidability. Instead of restricting the generic DL to a fragment of the extension of ℰℒ, we work with
the extension of DLs up to 𝒮ℛ𝒪ℐ𝒬, but require that axioms with variables are part of a terminology
where each parameterized concept is defined at most once (multiple partial definitions are also allowed).
Additionally, we introduce a new feature of the generic extension in this paper, namely, conditional
axioms that allow us to restrict the range of concept variables using classical axioms.

Apart from generic extensions, our approach is related to several other areas. Ontology parts
of similar syntactic structure are primarily studied in the field of Ontology Design Patterns (ODPs)
[3, 4, 5, 6, 7, 8, 9]. Similar to our reduction of second-order to classical reasoning, this method employs
variables to create axiom templates for deriving standard axioms tailored to particular applications.
The key distinction from our approach is that ODPs lack true generic concepts like Owner[𝑋] and do



not possess model-theoretic semantics. Rather, ODPs are generally a preliminary stage, substituting
variables with concepts from predetermined sets of candidates to form a classical ontology that can
subsequently be used in the standard way. There are also works in this area that are primarily concerned
with finding repeating structures in ontologies (usually with the goal of testing and defining new ODPs)
[1, 2, 14].

A related but different concept are the Generators introduced by Kindermann et al. [10]. Those are a
kind of rule language on top of DLs, consisting of rules called generators that have axiom templates as
conditions and targets. If a certain replacement of variables in the conditions results in an axiom that is
entailed by the ontology, then the target is added as an axiom to the ontology for the same variable
replacement. This is somewhat similar to our conditional axioms, with the most important difference
being that usage of these generators requires the (manual) specification of a language of replacement
concepts, while in our case, the second-order semantics considers arbitrary subsets of the domain as
replacements of the concept variables.

Additionally, in the broader context of DL research, the idea of making axioms depend on other
axioms in the DL itself, like we do with conditional axioms, is also not completely new. One example
are so-called context description logics [15], which allow axioms to be dependent on a concrete context,
which is itself also formulated as a DL axiom. They differ from conditional axioms in that contexts
are defined outside the ontology in a special context ontology; there is no direct connection between
elements of the context axiom and the classical axiom targeted, as we can establish by sharing variables;
and finally, context DLs are a kind of multi-modal DL allowing to formulate a kind of possibility and
necessity on contexts, which we do not support. We also differ from DL rules (e.g., [16]) because we
do not leave the DL language to formulate rules in First-Order Logic (FOL), but formulate conditional
axioms directly in the DL of the ontology itself and we quantify over concept variables, not variables
for individuals.

3. Generic Extension

We start by formally defining the syntax of generic DLs with parameterized concepts, concept variables,
and conditional axioms.

Definition 1 (Syntax, extended from [13]). The syntax of generic DLs consists of disjoint and countably
infinite sets 𝑁𝐶 of concept names, each with an assigned arity ar(𝐴) ∈ N (𝐴 ∈ 𝑁𝐶 ), 𝑁𝑅 of role
names, and 𝑁𝑋 of concept variables. Given a base DL L that is a fragment of 𝒮ℛ𝒪ℐ𝒬, we define
by L𝒳 its corresponding generic extension, adding parameterized (atomic) concepts, concept variables,
and conditional axioms. Specifically, the set of L𝒳 -concepts is the smallest set containing concept
variables 𝑋 ∈ 𝑁𝑋 , concept terms 𝐴[𝐶1, . . . , 𝐶𝑛], where 𝐴 ∈ 𝑁𝐶 , 𝑛 = ar(𝐴) and 𝐶𝑖 are L𝒳 -concepts
(1 ≤ 𝑖 ≤ 𝑛), and which is closed under the concept constructors of L. The set of L𝒳 -axioms is the smallest
set containing all axioms built from L𝒳 -concepts using the axiom constructors of L, as well as axioms of the
form Γ ⇒ 𝛽 (conditional axioms), where 𝛽 is a non-conditional L𝒳 axiom and Γ is a set of such axioms.
An L𝒳 -ontology is a (possibly infinite) set 𝒦 of L𝒳 -axioms.

For a conditional axiom 𝛼 = (Γ ⇒ 𝛽), we call all elements 𝛾 ∈ Γ conditions of 𝛼 and 𝛽 the target
of 𝛼. All axioms that are not conditional axioms, i.e., Γ is empty, we call unit axioms. Note that all
conditions and the target can only be unit axioms; conditional axioms can not be nested.1 We introduce
a range of special notations to facilitate the discussion about L𝒳 concepts and axioms.

Definition 2 (Adapted from [13]). Let the expression 𝑒𝑥 be either a L𝒳 -concept, a L𝒳 -axiom, or a
L𝒳 -ontology. We denote by sub(𝑒𝑥) (all) subconcepts of 𝑒𝑥, i.e., substrings of the expression that are valid
concepts. For L𝒳 -concepts and L𝒳 -axioms (that are not using ⇒), we split sub(𝑒𝑥) into sub+(𝑒𝑥) and
sub−(𝑒𝑥) the set of concepts that occur positively, respectively negatively, in 𝑒𝑥, sub(𝑒𝑥) = sub+(𝑒𝑥) ∪
sub−(𝑒𝑥). For simple DLs occurring positively (negatively) simply corresponds to occurring on the right

1If conditional axioms were allowed to be nested, we would be able to express all boolean combinations over axioms.



side of the axiom under an even (odd) number of nested negations or on the left side under an odd (even)
number of nested negations, for more expressive DLs this can be more difficult, see e.g., [17] for 𝒮ℛ𝒪ℐ𝒬.
We denote by vars(𝑒𝑥) = sub(𝑒𝑥) ∩𝑁𝑋 the set of concept variables occurring in 𝑒𝑥. We say that 𝑒𝑥 is
ground if vars(𝑒𝑥) = ∅.

A (concept variable) substitution is a partial mapping 𝜃 = [𝑋1/𝐶1, . . . , 𝑋𝑛/𝐶𝑛] that assigns concepts
𝐶𝑖 to concept variables 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛). We denote by 𝜃(𝑒𝑥) the result of applying the substitution to 𝑒𝑥,
defined in the usual way.

In the remainder of the paper, we differentiate between different versions of a DL as follows: If
concepts, axioms, and ontologies include concept terms, conditional axioms, and concept variables, we
call them generic. If this is not the case, i.e., the DL is not extended by us, we call these classical.

As described in Section 1, we adapt the existing second-order semantics for generic extensions [13]
for usage with conditional axioms:

Definition 3 (Second-Order Semantics, adapted from [13]). A (second-order) interpretation for a L𝒳
is a pair ℐ = (∆ℐ , ·ℐ), where ∆ℐ is a nonempty set called the domain of ℐ and ·ℐ is an interpretation
function, which assigns to every 𝐴 ∈ 𝑁𝐶 with arity 𝑛 = ar(𝐴) a function 𝐴ℐ : (2Δ

ℐ
)𝑛 → 2Δ

ℐ
and

to every 𝑟 ∈ 𝑁𝑅 a relation 𝑟ℐ ⊆ ∆ℐ ×∆ℐ . A valuation for ℐ (also called a variable assignment) is a
mapping 𝜂 that assigns to every variable 𝑋 ∈ 𝑁𝑋 a subset 𝜂(𝑋) ⊆ ∆ℐ .

The interpretation of L𝒳 -concepts 𝐶ℐ,𝜂 ⊆ ∆ℐ is recursively defined by 𝑋ℐ,𝜂 = 𝜂(𝑋) for 𝑋 ∈
𝑁𝑋 , 𝐴[𝐶1, . . . , 𝐶𝑛]

ℐ,𝜂 = 𝐴ℐ(𝐶ℐ,𝜂
1 , . . . , 𝐶ℐ,𝜂

𝑛 ), and is extended to other L𝒳 -concepts in the usual way.
Satisfaction of unit axioms ℐ |=2

𝜂 𝛽 under ℐ and 𝜂 is determined from the interpretation of L𝒳 -concepts
in 𝛽 in the standard way. For example, ℐ |=2

𝜂 𝐶 ⊑ 𝐷 iff 𝐶ℐ,𝜂 ⊆ 𝐷ℐ,𝜂 . The interpretation of conditional
axioms follows naturally, i.e., ℐ |=2

𝜂 Γ ⇒ 𝛽, iff ∃𝛾 ∈ Γ : ℐ ̸|=2
𝜂 𝛾 or ℐ |=2

𝜂 𝛽. We write ℐ |=2 𝛼 if ℐ |=2
𝜂 𝛼

for every valuation 𝜂. Finally, for an ontology 𝒦, we write ℐ |=2 𝒦 if ℐ |=2 𝛼 for every 𝛼 ∈ 𝒦, and we
write 𝒦 |=2 𝛼 if ℐ |=2 𝒦 implies ℐ |=2 𝛼.

We add a few remarks about this definition: First, for a classical ontology every second-order model
is a classical model and vice versa as the second-order interpretation only differs from a classical
interpretation in its treatment of atomic concepts (which we call parameterized concepts in the generic
DL) as functions, which is not relevant if we only have atomic/parameterized concepts with zero arity as
in the case of classical ontologies. Second, notice that for our conditional axioms, the same 𝜂 is considered
for the conditions, as for the target, i.e., the ∀𝜂 quantification is outside the implication. This is important
as we want conditions to restrict the choice of subsets of the domain that are considered for the variables
in the target axiom. For example, all usages of 𝑋 in {𝑋 ⊑ Pet} ⇒ Keeper[𝑋] ≡ ∃owns.𝑋 ⊓ ∃feeds.
𝑋 , must be the same, and describe some kind of pet. Finally, we can easily reduce the entailment of a
ground axiom Γ ⇒ 𝛽, i.e., 𝒦 |= Γ ⇒ 𝛽, to the unsatisfiability of 𝒦 extended with Γ and the conditional
axiom {𝛽} ⇒ ⊤ ⊑ ⊥: Clearly, 𝒦 |= Γ ⇒ 𝛽 iff 𝒦∪ Γ |= 𝛽 and if 𝒦∪ {{𝛽} ⇒ ⊤ ⊑ ⊥} is unsatisfiable,
then ℐ |= 𝛽 holds for every model ℐ of 𝒦, therefore 𝒦 |= Γ ⇒ 𝛽 iff 𝒦 ∪ Γ ∪ {{𝛽} ⇒ ⊤ ⊑ ⊥} is
unsatisfiable.

4. Conditional Axioms

We start our analysis by considering the new feature introduced in this paper, i.e., conditional axioms,
on their own. That is, we consider the extension of classical DLs (only) with conditional axioms (not
yet concept terms or concept variables). For example, we allow axioms such as {𝐴 ⊑ 𝐵,𝐴 ⊑ 𝐶} ⇒
∃𝑟.𝐴 ⊑ ⊤.

This extension can be nondeterministically reduced to reasoning with negated axioms by choosing
for each conditional axiom either the target axiom or the negation of some condition axiom. Then the
satisfiability of our ontology with conditions coincides with the satisfiability of (at least) one of these
constructed ontologies.



Theorem 1. There is a non-deterministic algorithm that reduces in polynomial time the second-order
satisfiability of a classical ontology with conditional axioms to the classical satisfiability of an ontology
potentially including negated axioms.

The reduction described in Theorem 1 can be used for DLs, which can express negation of the axioms
appearing as conditions. For example, negations of concept inclusion axioms 𝐶 ⊑ 𝐷 can be expressed
as {𝐶(𝑎), (¬𝐷)(𝑎)} with 𝑎 a fresh individual. Of course, for a less expressive DL like ℰℒ, this raises
the complexity of reasoning, as effectively we are using 𝒜ℒ𝒞 reasoning.

5. Ground Ontologies

The approach described in the previous section allows us to remove conditional axioms from ontologies
to be able to use classical interpretations instead of second-order ones. With this result, only two
features still make it difficult to consider a generic ontology under classical interpretations. The first
are variables, the second are concept terms. We can leave variables aside for now by considering only
ground generic ontologies. To deal with concept terms, a naive way to interpret them under classical
interpretations is to simply consider them as new atomic concept names.2 Unfortunately, this has the
side effect that we do not account for equivalent axioms anymore, i.e., using classical interpretations in
this way for an ontology such as {𝐶 ≡ 𝐷} we do not get 𝐴[𝐶] ≡ 𝐴[𝐷] as a consequence because 𝐴[𝐶]
and 𝐴[𝐷] are two independent atomic concepts. On the other hand, clearly, for second-order semantics,
we get 𝐴[𝐶] ≡ 𝐴[𝐷] as the function 𝐴𝒥 applied to the same set 𝑀 = 𝐶ℐ = 𝐷ℐ twice, gives the same
result. To still be able to reduce second-order entailment to classical entailment using this approach,
we transform the given ontology using a closure that moves this treatment of equal concepts from the
semantics to explicit (conditional) axioms in the ontology:

Definition 4 (Congruence Closure). A congruence axiom is a (conditional) axiom of the form:
⋀︀𝑛

𝑖=1𝐶𝑖 ≡
𝐷𝑖 ⇒ 𝐴[𝐶1, . . . , 𝐶𝑛] ≡ 𝐴[𝐷1, . . . , 𝐷𝑛] where 𝑛 = ar(𝐴) and 𝐶𝑖, 𝐷𝑖, L𝒳 -concepts (1 ≤ 𝑖 ≤ 𝑛). The
congruence closure of a ground ontology 𝒦 is the extension of 𝒦 with all congruence axioms for which
𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦) and 𝐴[𝐷1, . . . , 𝐷𝑛] ∈ sub(𝒦).

Clearly, all congruence axioms are tautologies under the second-order semantics:

Lemma 2. Let 𝛼 be a congruence axiom and ℐ a second-order interpretation. Then ℐ |=2 𝛼.

Lemma 3. Let 𝒦 be a ground ontology and 𝒦′ the congruence closure of 𝒦 (see Definition 4). Then 𝒦 is
satisfiable under second-order semantics iff 𝒦′ is (classically) satisfiable.

Proof sketch. (⇒) We can easily construct a classical interpretation 𝒥 from a second-order model ℐ
of 𝒦 by setting 𝐴[𝐶1, . . . , 𝐶𝑛]

𝒥 = 𝐴ℐ(𝐶ℐ
1 , . . . , 𝐶

ℐ
𝑛 ). But then this new classical interpretation is still

a model of 𝒦 and by Lemma 2 also a model of 𝒦′. (⇐) Likewise we can construct a second-order
interpretation ℐ from a classical model 𝒥 of 𝒦′ by setting 𝐴ℐ(𝑀1, . . . ,𝑀𝑛) = 𝐴[𝐶1, . . . , 𝐶𝑛]

𝒥 if there
are such 𝐶s that 𝐶𝒥

𝑖 = 𝑀𝑖. If this is not the case we set 𝐴ℐ(𝑀1, . . . ,𝑀𝑛) = ∅ as the default. Using
the presence of the equivalence axioms, we can show that the choice of 𝐶1, . . . , 𝐶𝑛 is unambiguous.
But then this new interpretation is a model of 𝒦′ and therefore also a model of 𝒦.

Note that 𝒦′ can be computed in polynomial time in the size of 𝒦 since the number of atoms
𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦) is linear in 𝒦. Therefore, we get the following result.

Theorem 4. Second-order satisfiability of ground ontologies with conditional axioms can be reduced in
polynomial time to satisfiability of ground ontologies with conditional axioms under classical semantics.

2This was done in the existing work on generic extensions, leading to syntactic restrictions [13].



6. Terminologies

Following the results regarding ground ontologies, in this section, we extend our results to the non-
ground case. The goal of this section is to reduce the (second-order) satisfiability of generic non-ground
ontologies to the (second-order) satisfiability of generic ground ontologies. With the results from the
previous sections, this gives us the ability to reduce reasoning with generic ontologies to classical
reasoning (with negated axioms).

Our approach works under the assumption that a given generic ontology consists of two parts: a
ground part containing arbitrary ground axioms and a terminological part consisting of generic concept
definitions. Our main result shows that, under certain semantic conditions, an arbitrary model of
the ground part can be extended to a model of the terminological part by using a fixpoint operator
reminiscent of defining the least fixpoint semantics for (cyclic) ℰℒ terminologies [18].

Definition 5 (Generic Terminology). A (generic) complete concept definition is a conditional axiom 𝛼 of
the form Γ ⇒ 𝐴[𝑋1, . . . , 𝑋𝑛] ≡ 𝐷 where 𝑛 = ar(𝐴) ≥ 1 and vars(Γ) ∪ vars(𝐷) ⊆ {𝑋1, . . . , 𝑋𝑛}. We
call 𝐴[𝑋1, . . . , 𝑋𝑛] the defined concept of 𝛼 and 𝐷 its complete description. A (generic) partial concept
definition is a conditional axiom 𝛼 of the form Γ ⇒ 𝐴[𝑋1, . . . , 𝑋𝑛] ⊑ 𝐷 where 𝑛 = ar(𝐴) ≥ 1. We call
𝐴[𝑋1, . . . , 𝑋𝑛] the defined concept of 𝛼 and 𝐷 its partial description. A concept definition is either
a partial or complete concept definition. A (generic) terminology is a set 𝒯 of concept definitions, such
that no two different axioms define the same (generic) concept, i.e., 𝐴[𝑋1, . . . , 𝑋𝑛] is either defined in one
complete concept definition or in one or more partial concept definitions, but not both.

For a given generic terminology, we call parameterized concepts that occur as the defined concept
of a complete concept definition, completely defined concepts, denoted as 𝑁def, and parameterized
concepts that occur as the defined concept of a partial concept definition, partially defined concepts,
denoted as 𝑁part. All other parameterized concepts occurring in the terminology are called primitive
concepts, denoted 𝑁prim. It should be noted that we permit cyclic dependencies among the defined
concepts. We do not consider an axiom as a proper complete concept definition if a variable occurs
in the conditional axiom, but not as an argument of the defined concept. In this case, the definition
would not be unambiguous, for example, 𝐴[𝑋] ≡ 𝑋 ⊓ ∃𝑟.𝑌 does not clearly define how 𝐴[𝐶] should
be interpreted. This problem does not occur for partially defined concepts, as in cases where a complete
definition would be ambiguous, the option that interprets the parameterized concept as the smallest set
can be chosen. See Example 1 for a number of examples of concept definitions.

As said above, we want to take a model of the ground part of an ontology and extend it to a model
of the whole ontology (including the non-ground but terminological part). This means that given a
model of the non-ground part ℐ , we can only change the interpretation of parameterized concepts for
arguments that do not occur in the ground part, e.g., if 𝐴[𝐶] is a concept in the ground ontology, we
may not change the interpretation of 𝐴ℐ(𝑀) for the argument 𝑀 = 𝐶ℐ in order to ensure that our
resulting interpretation still is a model. What we can change is the interpretation for “unknown” 𝑀s.
We formalize these allowed changes in the following definition.

Definition 6 (Terminological Expansions). Let 𝒢 be a ground generic ontology, 𝒯 a generic terminology,
and ℐ a model of 𝒢, i.e., ℐ |= 𝒢. We call a set 𝑀 ⊆ ∆ℐ known if there is a 𝐶 ∈ sub(𝒢) such that 𝐶ℐ = 𝑀 ,
otherwise it is unknown. A subset of 𝒫(∆ℐ) is unknown if at least one member is unknown. Then a
terminological expansion of ℐ is an interpretation 𝒥 = (∆𝒥 , ·𝒥 ), such that ∆𝒥 = ∆ℐ , ∀𝑟 ∈ 𝑁𝑅 : 𝑟𝒥 =
𝑟ℐ , ∀𝐶 ∈ sub(𝒢) : 𝐶𝒥 = 𝐶ℐ , for 𝐴 ∈ 𝑁part and 𝑀1, . . . ,𝑀𝑛 ⊆ ∆ℐ unknown, 𝐴(𝑀1, . . . ,𝑀𝑛)

𝒥 = ∅,
and ∀𝐴 ∈ 𝑁prim : 𝐵𝒥 = 𝐵ℐ . By Tx𝒢,𝒯 (ℐ) we denote the set of all terminological expansions of ℐ . We
omit 𝒢 and 𝒯 if they are irrelevant or clear from the context.

We additionally define the following ordering on Tx(ℐ): If 𝒥1,𝒥2 ∈ Tx(ℐ), then 𝒥1 ⪯ℐ 𝒥2 iff
∀𝐴 ∈ 𝑁def,∀𝑀1, . . . ,𝑀𝑛 ⊆ ∆ℐ : 𝐴(𝑀1, . . . ,𝑀𝑛)

𝒥1 ⊆ 𝐴(𝑀1, . . . ,𝑀𝑛)
𝒥2 .

Note that a 𝒥 ∈ Tx𝒢,𝒯 (ℐ) differs from ℐ only in the interpretation of defined concepts when those
are applied to unknown arguments, i.e., to subsets of the domain that are not “represented” by any
concept that occurs in 𝒢. This makes sure that for all concepts in 𝒢, 𝒥 and ℐ coincide, i.e., 𝒥 |=2 𝒢.



We choose to interpret partially defined concepts as the empty set in the expansions. The advantage
of this is that for partially defined concepts and unknown arguments, we immediately know that their
definition is entailed by every 𝒥 ∈ Tx𝒢,𝒯 (ℐ).

Definition 7. An L𝒳 -ontology 𝒦 is said to be admissible if 𝒦 = 𝒢 ∪ 𝒯 , where:

1. 𝒢 is a ground ontology,
2. 𝒯 is a (generic) terminology,
3. If 𝐴[𝑋1, . . . , 𝑋𝑛] is defined by some 𝛼 ∈ 𝒯 then for every substitution 𝜃 such that

𝜃(𝐴[𝑋1, . . . , 𝑋𝑛]) ∈ sub(𝒢) it holds that 𝒢 |=2 𝜃(𝛼),
4. If 𝐷 is the description of some completely defined concept in 𝒯 , ℐ a model of 𝒢 and 𝒥1 ⪯ℐ 𝒥2, then

𝐷𝒥1,𝜂 ⊆ 𝐷𝒥2,𝜂 for every valuation 𝜂.

The notion of an admissible ontology ensures that an extension of a model of the ground part to a
model of the terminological part is always possible. Condition 3 prevents a clash of the knowledge of
the ground and the terminological parts, e.g., having an axiom ⊤ ⊑ 𝐴[𝐵] in 𝒢 and an axiom 𝐴[𝑋] ≡ ⊥
in 𝒯 violates this condition. Furthermore, Condition 3 ensures that for known arguments, definitions in
𝒯 are entailed by every 𝒥 ∈ Tx𝒢,𝒯 (ℐ). This means we do only need to choose a 𝒥 ∈ Tx𝒢,𝒯 (ℐ) that
also entails complete definitions for unknown arguments to get a model of 𝒦. To find this 𝒥 , we use an
approach that (starting from ℐ) changes the interpretation of completely defined concepts step-by-step
to get closer to their definition, until a fixpoint is reached.

For such a fixpoint to exist, we need to make sure that the interpretation only increases from step
to step. Because we allow defined concepts in the descriptions in 𝒯 , this can only be ensured if
descriptions are always upward monotone in all fully defined concept terms. For example, if we had
𝐴[𝑋] ≡ ¬𝐵[𝑋], this would not hold, as if we assume that 𝐵[𝑋] increases with every step of our
expansion, then 𝐴[𝑋] would at the same time decrease. Indeed, if this monotonicity were not required,
we would be able to express General Concept Inclusions (GCIs) in our terminology. The reason for
this is similar to absorption [19]: We can express a GCI 𝐶[𝑋] ⊑ 𝐷[𝑋] as ⊤ ≡ ¬𝐶[𝑋] ⊔𝐷[𝑋] and,
because this is not allowed as a terminological axiom (as ⊤ is not a parameterized concept), we use
𝐴[𝑋] ≡ ¬𝐴[𝑋] ⊓ ¬𝐵[𝑋] to be able to use 𝐵[𝑋] ≡ ¬𝐶[𝑋] ⊔ 𝐷[𝑋] instead of ⊤. To prevent such
cases, we use Condition 4 in Definition 7. See Example 2 for a number of examples of admissible or
non-admissible ontologies.

Definition 8 (One Step Expansion). Let 𝒦 = 𝒢 ∪ 𝒯 be an admissible ontology according to Definition 7
and ℐ a model of 𝒢. The one-step expansion is a function 1Exp𝒦,ℐ : Tx𝒢,𝒯 (ℐ) → Tx𝒢,𝒯 (ℐ) such that
1Exp𝒦,ℐ(𝒥 ) is the interpretation 𝒥 ′ ∈ Tx𝒢,𝒯 (ℐ) defined by changing the interpretation of completely
defined concepts in the following way: Let 𝐴 ∈ 𝑁def, 𝑀1, . . . ,𝑀𝑛 ⊆ ∆ℐ unknown, if 𝐴 is defined by
Γ ⇒ 𝐴[𝑋1, . . . , 𝑋𝑛] ≡ 𝐷 ∈ 𝒯 then for 𝜂 = {𝑋1/𝑀1, . . . , 𝑋𝑛/𝑀𝑛}: 𝐴𝒥 ′

(𝑀1, . . . ,𝑀𝑛) = 𝐷𝒥 ,𝜂

Intuitively, the one-step expansion 1Exp(𝒥 ) is the result of updating the interpretation of completely
defined concepts (when applied to unknown arguments) by using their description. Note that the
conditions of Definition 5 ensure that one-step expansion of 𝒥 is well-defined. In particular, the
definition is unambiguous because every parameterized concept is completely defined in 𝒯 at most
once, and all concept variables appearing in this definition must be parameters of this concept. In this
procedure, we do not take the conditions Γ into consideration, because if we make sure that in the
extended model the definition 𝐴[𝑋1, . . . , 𝑋𝑛] ≡ 𝐷 holds for every choice of 𝑋𝑖, then it also holds in the
cases where Γ is also entailed. Disregarding Γ can also not lead to contradictions: A contradiction with
another axiom in 𝒯 is not possible, because every parameterized concept is only completely defined
once (regardless if conditions are present or not); And a contradiction with 𝒢 is not possible because of
we only change the interpretation for unknown arguments.

We are now ready to show the final result of this section. We use here that the one-step expansion
we defined is a monotone function on the set of terminological expansions, giving us the guaranteed
existence of a fixpoint. This fixpoint is our new model of the whole ontology 𝒦.



Theorem 5. Let 𝒦 = 𝒢 ∪ 𝒯 be an admissible ontology and 𝒢 second-order satisfiable, then 𝒦 is second-
order satisfiable.

Proof sketch. Given a model ℐ = (∆ℐ , ·ℐ) of 𝒢, we show that the fixpoint of 1Exp𝒦,ℐ exists and is a
model of 𝒦. To show this, we use our Requirement 4 of Definition 7, which gives us the monotonic
behavior of descriptions. From this, the monotonic behavior of the one-step expansion follows naturally.
Together with the observation that ⪯ℐ builds a lattice on Tx(ℐ), this gives us the existence of a fixpoint
of the one-step expansion. This fixpoint is (still) a model of the ground part of the ontology, but also of
the terminological part. This follows because, as it is a fixpoint, the one-step expansion does not change
the interpretation of defined concepts anymore; therefore, those defined concepts already correspond
to their description, and the definitions in 𝒯 are modeled.

7. Ensuring Admissibility

In the previous section, we have shown that the satisfiability of a generic ontology with an arbitrary
ground part and a terminological non-ground part can be reduced to the satisfiability of the ground
part only. The requirement for this result is, that the given ontology is admissible, i.e., fulfills certain
restrictions: First, for a defined concept, the definition must already be entailed for known arguments by
the ground part (Case 3 of Definition 7), second the descriptions of completely defined concepts need to
be (upward) monotone in the contained completely defined concepts, i.e., increase if the interpretation
of subterms increases (Case 4 of Definition 7). In this section, we discuss how these restrictions can be
achieved in practice.

Definition 9 (Ground Expansion). Given a generic ontology 𝒦, consisting of a ground part 𝒢 and a generic
terminology 𝒯 , i.e., 𝒦 = 𝒢 ∪ 𝒯 , we define the ground expansion Exp(𝒢) as the set of axioms achieved
in the following way: All axioms in 𝒢 are in Exp(𝒢). Then we repeatedly check if for 𝐴[𝐶1, . . . , 𝐶𝑛] ∈
sub(Exp(𝒢)) such that 𝐴 is defined by 𝛼 in 𝒯 , we have Exp(𝒢) |=2 𝜃(𝛼) for 𝜃 = {𝑋1/𝐶1, . . . , 𝑋𝑛/𝐶𝑛}.
If this is not the case, we add 𝜃(𝛼) to Exp(𝒢). We repeat this until no new axioms are added to Exp(𝒢).

This procedure does not terminate in every case. To achieve termination, it is important that there
are no nested concept terms in 𝒯 . If this were the case, e.g., we would have 𝐵1[𝐵2[𝑋]] ∈ sub(𝒯 ), then
any replacement of 𝑋 with a concept 𝐶 from 𝐴[. . . , 𝐶, . . . ] ∈ sub(Exp(𝒢)) results in a new concept
𝐵1[𝐵2[𝐶]] ∈ sub(Exp(𝒢)), which again results in a new concept 𝐵1[𝐵2[𝐵2[𝐶]]] ∈ sub(Exp(𝒢)) and
so on. This would result in an infinite Exp(𝒢). If we do not have such nested concept terms, calculating
the expansion of 𝒢 takes at most exponential time. This is because, in the worst case, we have to ground
every terminological axiom with every set of concepts occurring as arguments of concept terms in 𝒦.

Clearly, if the original 𝒦 is satisfiable, then the resulting Exp(𝒢) is also satisfiable, as we only add
instances of axioms in 𝒯 . Furthermore, it is easy to see that now 𝒦′ = Exp(𝒢) ∪ 𝒯 fulfills Case 3 of
Definition 7, therefore (assuming that Case 4 of Definition 7 also holds) we can check the satisfiability
of Exp(𝒢) to determine if 𝒦 is satisfiable by Theorem 5.

We now consider how to achieve the monotonicity of concept descriptions (i.e., Case 4 of Definition 7).
A simple syntactic condition that is sufficient to achieve this monotonicity is to require that concept
terms using a completely defined concept may only occur positively in a concept description. It is
well known that positive polarity of subterms results in the concept being upward monotone in the
subterm (see e.g., [20]). Using a suitable definition of positive polarity for 𝒮ℛ𝒪ℐ𝒬 (e.g., [17]) this
can be shown in general using induction on the structure of the concept description. In our case, it is
sufficient to require the positive polarity for concept terms using completely defined concepts, because
the interpretation of other concepts is fixed in Tx(ℐ).

Taking these remarks together with our earlier results, we obtain the following reduction as a
consequence of Theorems 1, 4, and 5:

Corollary 6. Given a generic ontology 𝒦 satisfying the following conditions: (1) Axioms are either ground
or concept definitions; (2) there are no nested concept terms in these definitions; and (3) non-ground concept



terms using completely defined concepts only occur positively in descriptions. The satisfiability of 𝒦 under
second-order semantics can be reduced in exponential time to the satisfiability of classical ontologies with
negated axioms.

8. Discussion and Conclusion

Generic DLs were introduced to efficiently handle collections of similar axioms in ontologies, offering
advantages akin to those of generic classes in programming: A parameterized concept’s definition can
be applied in various contexts, minimizing the necessity for duplicating and altering intricate concept
structures. This method supports modular ontology construction and aids in preventing mistakes that
may occur during axiom refactoring. Unfortunately, existing generic extensions [13] were limited to
fragments of the extension of ℰℒ.

In this paper, we lift this restriction, showing the decidability of generic extensions of expressive
DLs up to 𝒮ℛ𝒪ℐ𝒬. We achieve this by requiring that axioms with variables are only used to define
parameterized concepts, while they can be used freely when ground. This is a reasonable restriction
as this captures the initial idea of generic concepts, namely being a way to combine the definition of
many similar concepts into one place. It also corresponds to the historic development of DLs, which
also started with terminologies.

We also introduce a new feature of generic extensions, namely, conditional axioms. These allow
us to formulate conditions under which an axiom should hold, while in interpretations where these
conditions do not hold, the axiom can be ignored. Conditional axioms are a natural addition to generic
DLs, akin to bounds in generic programming. They can be used as a check on variable replacements
in concept terms, allowing to select one (or more) of potentially many partial definitions given for
a parameterized concept in an ontology. Furthermore, conditional axioms are also an advantage for
complete definitions, for example, we can formulate that the definition of Keeper[𝑋] “makes sense”
only when 𝑋 describes some set of pets, i.e., {𝑋 ⊑ Pet} ⇒ Keeper[𝑋] ≡ ∃owns.𝑋 ⊓ ∃feeds.𝑋 . This
prevents modeling errors, where Keeper[·] is used with some wrong argument, such as Keeper[Car].

Planned future work involves an implementation of the approach presented here, as well as studies
to analyze the potential of existing ontologies to benefit from generic extensions, i.e., what reduction of
inherent complexity is possible, as well as a tool for an automatic translation of existing ontologies to
the generic extension.

In summary, the findings in this paper demonstrate that it is possible to get generic extensions of
expressive description logics that are still decidable, provided certain reasonable restrictions are applied.
Additionally, the introduction of conditional axioms allows to use generic concepts in a more targeted
way, by restricting the replacement of parameters. This is a valuable addition to the area of generic
description logics, as well as to the broader research area that deals with exploiting syntactic regularities
in ontologies.
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A. Additional Material for Section 4: Conditional Axioms

Theorem 1. There is a non-deterministic algorithm that reduces in polynomial time the second-order
satisfiability of a classical ontology with conditional axioms to the classical satisfiability of an ontology
potentially including negated axioms.

Proof. Let 𝒦 be a classical ontology with conditional axioms. Let 𝒦′ be obtained from 𝒦 by adding
(1) all unit axioms to 𝒦′ and (2) for each (conditional) axiom {𝛾1, . . . , 𝛾𝑛} ⇒ 𝛽 ∈ 𝒦, 𝒦′ adding non-
deterministically either 𝛽 or one of ¬𝛾𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. If 𝒦 is satisfiable, then for some of these
choices 𝒦′ is satisfiable:

Given ℐ |=2 𝒦, we can construct one such 𝒦′ as follows: For each 𝛼 ∈ 𝒦, we do the following: If 𝛼
is a unit axiom, then 𝛼 ∈ 𝒦′ otherwise 𝛼 = {𝛾1, . . . , 𝛾𝑛} ⇒ 𝛽, and as ℐ |=2 𝛼 either ∃𝑗(1 ≤ 𝑗 ≤ 𝑛) :
ℐ ̸|= 𝛾𝑗 and we add ¬𝛾𝑗 to 𝒦′ or ℐ |= 𝛽, and we add 𝛽 to 𝒦′. Then ℐ |= 𝒦′ and because 𝒦′ contains
the non-conditional axioms of 𝒦 and for each conditional axiom, either one of the negated conditions
or the target is in 𝒦′, 𝒦′ fulfills the construction described above.

Conversely, if𝒦′ is satisfiable then𝒦 is satisfiable in the same interpretation: Take ℐ such that ℐ |= 𝒦′,
we show that ℐ |=2 𝒦: Take 𝛼 ∈ 𝒦 either 𝛼 is non-conditional and 𝛼 ∈ 𝒦′ or 𝛼 = {𝛾1, . . . , 𝛾𝑛} ⇒ 𝛽
and either ∃𝛾𝑗 : ℐ |= ¬𝛾𝑗 then ℐ |=2 𝛼 or ℐ |= 𝛽 and ℐ |=2 𝛼.

This gives us a non-deterministic polynomial time reduction.

B. Additional Material for Section 5: Ground Ontologies

Lemma 2. Let 𝛼 be a congruence axiom and ℐ a second-order interpretation. Then ℐ |=2 𝛼.

Proof. Let 𝛼 be a congruence axiom (Definition 4), ℐ a second-order interpretation, and 𝜂 a vari-
able assignment. If 𝐶ℐ,𝜂

𝑖 ̸= 𝐷ℐ,𝜂
𝑖 for some 𝑖 (1 ≤ 𝑖 ≤ 𝑛), then, trivially, ℐ |=2

𝜂 𝛼. Otherwise
(𝐴[𝐶1, . . . , 𝐶𝑛])

ℐ,𝜂 = 𝐴ℐ(𝐶ℐ,𝜂
1 , . . . , 𝐶ℐ,𝜂

𝑛 ) = 𝐴ℐ(𝐷ℐ,𝜂
1 , . . . , 𝐷ℐ,𝜂

𝑛 ) = 𝐴[𝐷1, . . . , 𝐷𝑛])
ℐ,𝜂 , which, like-

wise, implies ℐ |=2
𝜂 𝛼. Since 𝜂 was arbitrary, we proved ℐ |=2 𝛼.

Lemma 3. Let 𝒦 be a ground ontology and 𝒦′ the congruence closure of 𝒦 (see Definition 4). Then 𝒦 is
satisfiable under second-order semantics iff 𝒦′ is (classically) satisfiable.

Proof. (⇒) Let ℐ = (∆ℐ , ·ℐ) be a second-order interpretation such that ℐ |=2 𝒦. Define the classical
interpretation 𝒥 = (∆𝒥 , ·𝒥 ) with ∆𝒥 = ∆ℐ and 𝐴[𝐶1, . . . , 𝐶𝑛]

𝒥 = 𝐴ℐ(𝐶ℐ
1 , . . . , 𝐶

ℐ
𝑛 ) for every

𝐴 ∈ 𝑁𝐶 , 𝑛 = ar(𝐴) and 𝐶𝑖 ground L𝒳 -concepts (1 ≤ 𝑖 ≤ 𝑛), and 𝑟𝒥 = 𝑟ℐ for every 𝑟 ∈ 𝑁𝑅.
Note that this definition implies that 𝐷𝒥 = 𝐷ℐ for every ground L𝒳 -concept since the extension of
interpretation under concept constructors is defined in ℐ and 𝒥 in the same way. Likewise, ℐ |=2 𝛼 iff
𝒥 |= 𝛼 for every ground L𝒳 -axiom 𝛼. Hence, from ℐ |=2 𝒦, we obtain 𝒥 |= 𝒦. Further, by Lemma 2,
ℐ |=2 𝛼 for every congruence axiom 𝛼 ∈ 𝒦′. Hence 𝒥 |= 𝒦′.

(⇐) Let 𝒥 be a classical interpretation such that 𝒥 |= 𝒦′. Define the second-order interpretation
ℐ = (∆ℐ , ·ℐ) with ∆ℐ = ∆𝒥 , 𝐴ℐ(𝑀1, . . . ,𝑀𝑛) = 𝐴[𝐶1, . . . , 𝐶𝑛]

𝒥 if 𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦)
and 𝑀𝑖 = 𝐶𝒥

𝑖 (1 ≤ 𝑖 ≤ 𝑛), and 𝐴ℐ(𝑀1, . . . ,𝑀𝑛) = ∅ in the remaining cases, and 𝑟ℐ = 𝑟𝒥

for every 𝑟 ∈ 𝑁𝑅. Notice that the interpretation of 𝐴𝒥 (𝑀1, . . . ,𝑀𝑛) is well-defined, i.e., it does
not depend on the choice of the atom 𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦) such that 𝐶ℐ

𝑖 = 𝑀𝑖 (1 ≤ 𝑖 ≤ 𝑛).
Indeed, for every other choice 𝐴[𝐷1, . . . , 𝐷𝑛] ∈ sub(𝒦) such that 𝐷𝒥

𝑖 = 𝑀𝑖 (1 ≤ 𝑖 ≤ 𝑛), by
Definition 4, the congruence axiom belongs to 𝒦′, and since 𝒥 |= 𝒦′ and 𝐶𝒥

𝑖 = 𝐷𝒥
𝑖 (1 ≤ 𝑖 ≤ 𝑛),

we obtain 𝐴[𝐶1, . . . , 𝐶𝑛]
𝒥 = 𝐴[𝐷1, . . . , 𝐷𝑛]

𝒥 . Since 𝐴[𝐶1, . . . , 𝐶𝑛]
𝒥 = 𝐴ℐ(𝐶ℐ

1 , . . . , 𝐶
ℐ
𝑛 ) for every

𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦), similarly like in the case (⇒), it follows that ℐ |=2 𝛼 iff 𝒥 |= 𝛼 for every
𝛼 ∈ 𝒦. Since 𝒥 |= 𝒦′ and 𝒦 ⊆ 𝒦′, it follows that ℐ |=2 𝒦.

Theorem 4. Second-order satisfiability of ground ontologies with conditional axioms can be reduced in
polynomial time to satisfiability of ground ontologies with conditional axioms under classical semantics.



Proof. Let 𝒦 be a ground ontology with conditional axioms, and 𝒦′ its congruence closure according to
Definition 4. Note that 𝒦′ can be computed in polynomial time in the size of 𝒦 since the number of
atoms 𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒦) is linear in 𝒦. The statement of the theorem now follows directly from
Lemma 3.

C. Additional Material for Section 6: Terminologies

Example 1. The following axioms are concept definitions:

• 𝛼1 = {𝑋 ⊑ ∃𝑟.𝑋} ⇒ 𝐴[𝑋] ≡ ∃𝑟.(𝑋 ⊓𝐴[𝑋])

• 𝛼2 = 𝐵[𝑋] ≡ ¬𝐴[𝑋 ⊓ 𝐶]

• 𝛼3 = 𝐵[𝑋] ≡ 𝐸[𝐴[𝑋 ⊓ 𝐶]]

• 𝛼4 = 𝐸[𝑋] ≡ ¬𝑋
• 𝛼5 = {𝑋 ⊑ ∃𝑟.𝑌 } ⇒ 𝐴[𝑋] ⊑ 𝐵[𝑋,𝑌 ] ⊓ ∃𝑠.𝑌
• 𝛼6 = {𝑋 ⊑ 𝐴[𝑌 ], 𝑍 ⊑ 𝐵[𝑌 ]} ⇒ 𝐴[𝑋] ⊑ 𝐴[𝐵[𝑍]]

The following axioms are not:

• 𝛽1 = 𝐴[𝐶] ≡ ∃𝑟.𝐶
• 𝛽2 = {𝑋 ⊑ ∃𝑟.𝑌 } ⇒ 𝐴[𝑋] ≡ 𝐵[𝑋]

• 𝛽3 = 𝐵[𝑋] ≡ 𝑋 ⊓ ∃𝑟.𝑌
• 𝛽4 = 𝐴[𝐶] ⊑ ⊥

The sets 𝒯1 = {𝛼1, 𝛼2} and 𝒯2 = {𝛼5, 𝛼6} are terminologies, but the set 𝒯3 = {𝛼2, 𝛼3} is not.

Example 2. (Example 1 continued) Take𝒦1 = {𝐴[⊥] ≡ ⊥}∪{𝛼1} this is admissible. Indeed, Conditions 1
and 2 of Definition 7 clearly hold. Condition 3 holds because 𝐴[⊥] is the only instance of a defined concept
appearing in the ground part 𝒢1, and for 𝜃 = {𝑋 ↦→ ⊥}, we have 𝒢1 |= 𝜃(𝛼1) = {⊥ ⊑ ∃𝑟.⊥} ⇒
𝐴[⊥] ≡ ∃𝑟(⊥ ⊓ 𝐴[⊥]). Condition 4 holds because for 𝐷 = ∃𝑟.(𝑋 ⊓ 𝐴[𝑋]) and any ℐ ⊆ 𝒥 , we have
𝐴[𝑋]ℐ,𝜂 ⊆ 𝐴[𝑋]𝒥 ,𝜂 for every valuation 𝜂. Hence 𝐷ℐ,𝜂 ⊆ 𝐷𝒥 ,𝜂 .

Ontology 𝒦2 = {𝛼2} is admissible. We only need to check condition 4. But as 𝐴 is not a defined concept,
𝒥1 and 𝒥2 interpret 𝐴 exactly the same.

Similarly 𝒦3 = {𝛼4} is admissible, as for the same valuation, the interpretation of the description of 𝐸
is always the same.

Ontology 𝒦4 = {𝛼1, 𝛼2} is not admissible. Again, we only need to check condition 4, but in this case, we
have that 𝐴 is indeed a defined concept. So we would need to have that (¬𝐴[𝑋 ⊓𝐶])𝒥1 ⊆ (¬𝐴[𝑋 ⊓𝐶])𝒥2 .
The interpretation of 𝑋 and 𝐶 is not changed between 𝒥1 and 𝒥2, but we know that we can have
𝐴𝒥1(𝑀) ⊂ 𝐴𝒥2(𝑀) so in fact we can have (¬𝐴[𝑋 ⊓ 𝐶])𝒥1 ⊇ (¬𝐴[𝑋 ⊓ 𝐶])𝒥2 and the condition does
not hold.

Similarly, ontology 𝒦5 = {𝛼1, 𝛼3} is not admissible. This is because, again, we do not have monotonicity
of the description of 𝐵. Realize that 𝐸𝒥1(𝐴𝒥1(𝑀)) ⊆ 𝐸𝒥2(𝐴𝒥2(𝑀)) does not necessarily hold, because
we only know that 𝐸𝒥1(𝑀) ⊆ 𝐸𝒥2(𝑀) holds for the same 𝑀 not for different ones. In fact, if we add the
axiom 𝛼4 (which is admissible on its own) to 𝒦5, we get 𝒦5 |=2 𝒦4.

Theorem 5. Let 𝒦 = 𝒢 ∪ 𝒯 be an admissible ontology and 𝒢 second-order satisfiable, then 𝒦 is second-
order satisfiable.

Proof. Given a model ℐ = (∆ℐ , ·ℐ) of 𝒢, we show that the fixpoint of 1Exp𝒦,ℐ exists and is a model of
𝒦.

We start by showing the monotonicity of the one-step expansion, i.e., 𝒥1 ⪯ℐ 𝒥2 implies 1Exp(𝒥1) ⪯ℐ
1Exp(𝒥2). By Definition 8, we need to show 𝐴1Exp(𝒥1)(𝑀1, . . . ,𝑀𝑛) ⊆ 𝐴1Exp(𝒥2)(𝑀1, . . . ,𝑀𝑛) for
all unknown 𝑀1, . . . ,𝑀𝑛 ⊆ ∆ℐ . Let 𝜂 = {𝑋𝑖 → 𝑀𝑖} then by Definition 7 Case 4, 𝐷𝒥1,𝜂 ⊆ 𝐷𝒥2,𝜂 and
𝐴(𝑀1, . . . ,𝑀𝑛)

1Exp(𝒥1) = 𝐷𝒥1,𝜂 ⊆ 𝐷𝒥2,𝜂 = 𝐴1Exp(𝒥2)(𝑀1, . . . ,𝑀𝑛).



As one can easily see that ⪯ℐ is a complete lattice on Tx(ℐ). Then by Tarski’s Fixpoint Theorem
[21], 1Exp𝒦,ℐ has a fixpoint, let 𝒥 denote this fixpoint. As 𝒥 ∈ Tx𝒢,𝒯 (ℐ) we know 𝒥 |=2 𝒢.

We now show that 𝒥 |=2 𝒯 . Take Γ ⇒ 𝛽 ∈ 𝒯 and some 𝜂, we show that 𝒥 |=2
𝜂 Γ ⇒ 𝛽. If 𝒥 ̸|=2

𝜂 Γ,
we are finished. Otherwise, we show that 𝒥 |=2

𝜂 𝛽. Assume that 𝛽 (partially) defines 𝐴[𝑋1, . . . , 𝑋𝑛].
If we have 𝐴[𝐶1, . . . , 𝐶𝑛] ∈ sub(𝒢) and 𝜂(𝑋𝑖) = 𝐶𝒥

𝑖 (1 ≤ 𝑖 ≤ 𝑛), then by Definition 7 Case 3,
𝒢 |=2 [𝑋1/𝐶1, . . . , 𝑋𝑛/𝐶𝑛](𝛽) and as 𝒥 |=2 𝒢, 𝒥 |=2

𝜂 𝛽. Otherwise, if 𝛽 = 𝐴[𝑋1, . . . , 𝑋𝑛] ⊑ 𝐷, then
by Definition 6, 𝐴[𝑋1, . . . , 𝑋𝑛]

𝒥 ,𝜂 = ∅ and therefore 𝒥 |=2 𝛽. Finally, if 𝛽 = 𝐴[𝑋1, . . . , 𝑋𝑛] ≡ 𝐷,
because 𝒥 is a fixpoint of the one-step expansion, we know that applying the one-step expansion to 𝒥
does not change the interpretation of 𝛽. Then we know that for the interpretation of 𝐴[𝑋1, . . . , 𝑋𝑛]
this means that 𝐴[𝑋1, . . . , 𝑋𝑛]

𝒥 ,𝜂 = 𝐷𝒥 ,𝜂 and 𝒥 |=2
𝜂 𝛽.

Therefore, we have shown that there is a model 𝒥 such that 𝒥 |= 𝒦.
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