CEUR-WS.org/Vol-4091/paper24.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

Maximum Entropy Reasoning via Model Counting in
(Description) Logics that Count (Extended Abstract)

Franz Baader?, Anton Clauflnitzer?

' TU Dresden, Institute of Theoretical Computer Science, Dresden, Germany
? Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany

Abstract

This extended abstract reports on work that was published in the proceedings of FLAIRS-38. In previous work it
was shown that the logic ALCME, which extends the description logic (DL) ALC with probabilistic conditionals,
has domain-lifted inference. In the FLAIRS-38 paper, we extend this result from the base logic ALC to two logics
that can count, the two-variable fragment C? of first-order logic (FOL) with counting quantifiers, and the DL
ALCSCC, which can formulate expressive counting constraints on role successors and is not a fragment of FOL.
As an auxiliary result, we prove that model counting in ALCSCC can be realized in a domain-liftable way.
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1. Introduction

Description logics (DLs) [1, 2] are a well-investigated family of logic-based knowledge representation
formalisms, which can be used to formalize the terminological knowledge of an application domain in a
machine-processable way. For instance, large medical ontologies such as SNOMED CT! and Galen®
have been developed using an appropriate DL. While classical DLs are often sufficient for formalizing
certain knowledge like the definition of medical terminology, they cannot adequately express uncertain
knowledge, which may, e.g., be needed for medical diagnosis. Using a non-medical example, the concept
of a father can be formalized by the concept inclusion (CI) Father T Human 1 Male M Jchild. Human,
which says that fathers are male humans that have a human child. However, a statement like “Rich
persons usually have rich children” should not be expressed with a CI since it does not hold for all rich
persons. It is more appropriate to use a probabilistic conditional (PC) of the form (Vchild.Rich | Person1
Rich)[p], where the probability p may be based on statistical knowledge or express the degree of a
subjective belief. The CI and PC of our example can be phrased in the probabilistic DL ALCME [3, 4, 5],
which extends the well-known DL ALC with probabilistic conditionals that are interpreted based on the
aggregating semantics and the maximum entropy principle. Compared to other probabilistic extensions
of DL (such as [6, 7, 8]), ALCME has the advantage that the aggregating semantics smoothly combines
the statistical and the subjective view on probabilities and that the maximum entropy approach fulfills
a number of reasonable commonsense principles [9, 10, 11]. Like other approaches for probabilistic
reasoning in a first-order setting, the aggregating semantics assumes that interpretations are built
over a fixed finite domain A. To be able to deal with large domain sizes, one needs reasoning to be
domain-lifted [12], which means that inferences can be drawn in time polynomial in the size of A. The
main results of [4, 3, 5] are that ALCME allows for domain-lifted inference.

In the FLAIRS-38 paper [13], we extend these results from the base logic ALC to logics that can count.
Number restrictions [14, 15] are DL concept constructors that can express simple numerical constraints
on the number of role successors of an individual, such as that it has three children that are rich, and
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only two that are not rich, whereas cardinality restrictions on concepts [16, 17] can constrain the overall
number of elements of a concept, e.g., expressing that there are more than 500,000 rich people living
in Florida. Description logics offering such counting features are contained in C2, the two-variable
fragment of FOL with counting quantifiers, and are thus decidable [18, 19]. In [20, 21] it was recently
shown that (extended versions of) model counting in C? can be realized in a domain-liftable way. We
use this result in [13] to prove that C2ME allows for domain-lifted inference. The DL ALCSCC [22]
offers more expressive counting constraints on role successors, which in general cannot be expressed
in C? or even full FOL [23]. For example, in ALCSCC we can describe persons that have more rich
than non-rich children without specifying how many children of each type the person actually has,
and in ALCSCCME we can say that, with a high probability (say .8), rich persons have more rich than
non-rich children. We show in [13] that (an extended version of) model counting in ALCSCC can be
realized in a domain-liftable way, and use this result to prove that ALCSCCME allows for domain-lifted
inference.

In the following, we briefly sketch the main results obtained in [13]. More details can be found in the
full paper [13].

2. Concept-Constrained Model Counting

Model counting usually asks how many models over a given finite domain A a given sentence has.
In [13], we consider a slightly extended version of this task, called concept-constrained model counting,
where the underlying logic is either C? or ALCSCC. Concepts C of ALCSCC and their extensions C’
as well as ALCSCC TBoxes and their models are defined in [22]. For the two-variable fragment C? of
FOL with counting quantifiers, concepts C' are formulas with one free variable x, and their extension
C! consists of those elements of I that make the formula true when substituted for x. A C2 TBox is a
sentence (i.e., formula without free variables) of C2.
Let 7 be a TBox, 1, ..., C), concepts, ¢, ..., c, non-negative integers, and A a finite set. Then

ceme(T,Ch, ..., Cyyc1y. .0 co, A)

is defined to be the number of models I of 7 with domain A that satisfy |C/| = ¢; (1 < i < ). We
say that concept-constrained model counting is domain-liftable if this number can be computed in
polynomial time in the size of the input A (i.e., where the other inputs of the function ccme are assumed
to be of constant size).

Theorem 1 ([13]). Concept-constrained model counting in C* and in ALCSCC is domain-liftable.

For C2, this is an easy consequence of the results on model counting in C? in [20] (Proposition 4
together with Theorem 4). For ALCSCC, this is explicitly proved in [13], and constitutes one of the
main results of this paper.

3. The Logics ALCSCCME and 2"

In the following, let £ be either ALCSCC or C2. In the logic LME, we consider probabilistic conditionals
(PCs) of the form (D | C)[p], where C, D are L concepts and p is a rational number. An £ knowledge
base K = (T,C) consists of an £ TBox 7 together with a finite set C of PCs. To define the semantics
of such a knowledge base I, we follow [3, 4] and consider interpretations over a fixed, finite domain
A of the signature of K. We denote the (finite) set of all these interpretations with Z* and the set of
probability distributions P: T2 — [0, 1] over 72 with B2. The distribution P € B is a model of
K = (T,C) if all interpretations I that are not models of 7 satisfy P(I) = 0 and the following holds
for all PCs (F; | E;)[p;] in C: Y ;c7a P(I) - |Ef| > 0 and

> PI)-|E[nFf|=p;- Y P(I)-|E]| (1)
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This semantics for PCs is called aggregating semantics [10]. A knowledge base with at least one
model is consistent. Using the fact that concept-constrained model counting for £ is domain-liftable
(see Theorem 1), consistency checking for £ME is shown to be also domain-liftable in [13].

Theorem 2 ([13]). Consistency of an LME knowledge base IC for a finite domain A can be checked in
time polynomial in |A|.

Instead of reasoning w.r.t. all models of a consistent knowledge base, we use the maximum entropy
distribution as preferred model. In fact, as pointed out in [3], according to Paris, this distribution is
the most appropriate choice of model in this setting. The entropy of a probability distribution P is
— > reza P(I) - logy P(I), where we use the convention 0 - co = 0. For every consistent knowledge
base IC = (7, C), there is exactly one model of K with maximal entropy, i.e., the optimization problem

- Z ) - logy P(I) < max with the conditions
IezA

Y P(I)=1, Y P(I)|E"| > 0for (F|E)[p] €C,

IezA IeTA
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VIeTI?: P(I)>0and P(I) =0if I j~ T,

has exactly one solution P,QAE [10].

Instead of solving this optimization problem directly, one usually considers the dual optimization
problem, whose solutions represent PME in a compact way. Assume that C = {(F; | E;)[pi] | i =
1,...,n} and define the functions f; (1 < i < n)as f;(I) := |Ef N F!| — p;|E!|. An application of
the Lagrange multiplier method to the above optimization problem then yields PME(I) = 0if I & T

and PME(I) = ag af R AT = T, where the values «; > 0 are solutions to the equations
-1
Z[GIAJ):Tfi< )041 .. fn( = 0,i=1,...,n,and ag = (ZIEZA I)=Taf1( : "0‘7{"(1)) is

normalization constant.

Since the numbers «; are solutions of a non-linear optimization problem, they can in general only
be approximated (e.g., using Newton’s method). Following [3], we do not investigate this approx-
imation process here, but assume that a rational approximation 3 € QZ, of the exact solution
a = (ai,...,ap) € RYjis given. For such an approximation 3 = (1, .. ., 3,), the induced probabil-
ity distribution P,'? on Z2 is defined in [3] as

WD)
pery <[B! B0 DT
0 else,
where the normalization constant f3j is defined analogously to «y.

It is shown in [13] that domain-lifted inference w.r.t. P,’? is possible. The main step towards achieving
this result is the following theorem.

Theorem 3. Let E, F' be L concepts, K = (T,C) withC = {(D; | C;)[pi] | 1 < i < n} a consistent

L knowledge base where p; = s;/t; for natural numbers s;,t;, and let P,g be an approximation of
the maximum entropy distribution, as defined above. Then we can compute (in time polynomial in
|A|) a polynomial P(X,...,X,) in n indeterminates and with rational coefficients such that p :=

P(Y/Br, ..., /Bn) satisfies P{ |= (F | E)[p].
Employing results from the theory of algebraic field extensions [24, 25], this theorem is used in [13]
to show the following domain-liftability result.

Corollary 1. Let E, F' be L concepts, q € [0, 1] a rational number, KC = (T, C) a consistent L knowledge
base, and Pfg a rational approximation of the maximum entropy distribution. Then Pg E (F|E)[q] and
P,? = E C F can be decided in time polynomial in |A|.



As pointed out in [13], it would also be interesting to know, for a given rational number ¢, whether ¢
is larger or smaller than the probability p for which P,/g = (F'| E)[p] holds. At the point of submitting
the final version of [13], we were able to show that this problem is decidable (see [26]), but it was not
clear to us whether deciding the problem can be done in time polynomial in |A|. More recently, we
were able to show domain-liftability also for this problem.
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