CEUR-WS.org/Vol-4091/paper26.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

Reliable Reference for a DL Knowledge Base under Data
Update

Enamul Haque’, David Toman’ and Grant Weddell’

Cheriton School of Computer Science, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada

Abstract

Earlier work has shown how Russell’s notion of proper definite descriptions can be captured as referring
expressions: concept descriptions that are known to be singular. Concept descriptions are a more general and
transparent way of communicating answers to queries. In general, how long such answers can be relied on will
depend on how long facts about entities are not altered via data update, that is, on revisions to the underlying
ABox of a KB. In this paper, we show how a simple variety of dynamic constraints can be added to a KB to ensure
user specified durations on how long query answers must be able to be relied on.

Keywords
referring expressions, data update, dynamic constraints

1. Introduction

A knowledge base K expressed in terms of a description logic (DL) will consist of a TBox, a finite set of
subsumptions characterizing information relevant to the underlying domain of an application, and an
ABox, a finite set of assertions that introduce specific domain facts. In this paper, we consider where K
is expressed in a dialect of the FunDL family of DLs [1] for which logical consequence of subsumptions
and assertions in X is computationally tractable. FunDL dialects are feature logics that replace roles,
arbitrary binary relations, with features, arbitrary partial functions, and include a means of expressing
subsumptions that capture a variety of equality generating dependencies via a concept constructor
called a path functional dependency (PFD).

Examples of a TBox and ABox defining a knowledge base C that are expressed in our DL are given
in Figure 1 for a hypothetical university domain about STUDENTSs, EMPloyees, BuiLDings, and so on.
Here, room1, "Davis Center" and 5678 are examples of so-called individual names, with the latter two
also called literal values such as strings and integers. The subsumptions use PFDs (underlined) that will
ensure, for example, that no two rooms will have a unique combination of a room number and the name
of the building in which they reside. This ensures any structure of X will have the same interpretation
for each of the following two concepts that employ the nominal concept constructor:

{room1}, and)
ROOM M Irnum.{5678} M Jin.name.{"Davis Center"}.

The second concept is an example of a referring expression as introduced in [2], or, as Russell would
say, a proper definite description.! This earlier work introduced the notion of a referring expression type
(Rt) for specifying possible referring expressions for individuals. The syntax for an Rt was adapted in
[4] for specifying concepts intended to serve as more transparent and readable referring expressions
for individuals that are expressed as concepts. Based on this syntax, an Rt “generating” this referring
expression for room1 in our university domain is as follows:

ROOM M Irnum.(?) M Jin.name.(?)

g-DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland
& enamul haque@uwaterloo.ca (E. Haque); david@uwaterloo.ca (D. Toman); gweddell@uwaterloo.ca (G. Weddell)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

For Russell, such expressions are well-formed formulae free in one variable that hold for exactly one element of a domain [3].

mailto:enamul.haque@uwaterloo.ca
mailto:david@uwaterloo.ca
mailto:gweddell@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0/deed.en

Note that occurrences of “(7)” serve as placeholders for nominals, and that an Rt is therefore a pattern
language for concepts.

One might expect that relying on the second referring expression in (1) to faithfully refer to room1
will always “work”, that room numbers, the buildings in which rooms reside and the names of buildings
are permanent facts that will never change. However, now consider the following four concepts:

(i) {rob};

(i) PERSON M 3ssn.{1234};

(i) STUDENT M 3snum.{321}; and
(iv) EMP M 3enum.{77}.

(2)

We will see that referring expressions (ii) and (iii) are in the language generated by an Rt defined as the
following pattern:
(STUDENT M 3snum.(?)) ; (PERSON M 3ssn.(7)) (3)

Note that the occurrence of “;” in this Rt expresses a preference for referring expression (iii) over
referring expression (ii) in (2). Here again, any structure of KC will have the same interpretation for each
of the concepts. However, in this case, referring to rob via referring expressions (iii) or (iv) will only
work for as long as rob continues to be student and an employee, a circumstance that might no longer
be true in some future update to the ABox.

It is this kind of effect that sensible data update can have on referring expressions that is our primary
concern. In particular, we introduce a form of dynamic constraint that can be added to K to ensure the
efficacy of a referring expression.

To illustrate, if the facts that rob is a student and that his student number is 321 are implied by K,
consider where /C should also ensure that any data update on the ABox in which he continues to be a
student must also preserve knowledge of this number. We augment the above mentioned FunDL dialect
for capturing K to incorporate a form of dynamic constraint to ensure this, in particular, a dynamic
constraint of the form

(STUDENT, snum).

The constraint is dynamic in the sense that it fails to hold when also considering any data update to the
ABox in which rob remains a student but in which knowledge of this student number is either removed
or updated.

Our main result introduces the procedure ChooseRE(a, C, K) where a is an individual name, C'
a concept expressing a “duration requirement” and X a knowledge base that now includes dynamic
constraints, such as the above, and an Rt. The procedure attempts to compute the most preferred
referring expression in the language generated by Rt for referring to a that can be relied on for as long
as a is known to be a C'.

For example, assume the TBox and ABox of K are as given in Figure 1, where it has additional dynamic
constraints such as the above, and where it has the Rt given by (3). Then ChooseRE(rob, STUDENT,)
would return referring expression (iii) in (2) and ChooseRE(rob, PERSON, K) would return referring
expression (ii). However, if the fact that Rob’s student number is 321 was not in the ABox, then the first
call would also return referring expression (ii).

To summarize, our contributions revolve around the ChooseRE procedure. In particular, we introduce
a variety of dynamic constraints relating to individuals and their feature values and incorporate such
constraints in the computation of referring expressions for individuals that (a) are more general and
transparent ways of communicating references to individuals, for example, in answers to queries, and
(b) can be trusted to reliably refer for a specified duration.

The remainder of the paper is organized as follows. Section 2 provides the needed background
relating to our FunDL dialect, to referring expressions, and to our new dynamic constraints. Procedure
ChooseRE is then introduced in Section 3. In Section 4, we consider a number of additional issues
relating to “unique name” possibilities, to counting, and to incremental ways to guarantee the existence
of referring expressions. Summary comments are given in a final subsection.

TBox = { ROOM C (Frnum.T) M (Jin.BLD) M ROOM : rnum, in.name — id,
BLD C (3name.T) N BLD : name — id,
PERSON C (3ssn.T) M (Jlname.T) MPERSON : ssn — id,
STUDENT C PERSON M (3snum.T) M STUDENT : snum — id,
EMP C PERSON M (Jenum.T) M (3loc. ROOM) M EMP : enum — id }

ABox = { ROOM(room1), rnum(room1) = 5678, in(room1) = bld1,
BLD(bld1), name(bld1) = "Davis Center",
PERSON(rob), ssn(rob) = 1234, Iname(rob) = "Smith",
STUDENT(rob), snum(rob) = 321,
PERSON(robin), ssn(robin) = 1234, Iname(robin) = "Smith",
EMP (robin), enum(robin) = 77, loc(robin) = room1 }

Figure 1: UNIVERSITY SUBSUMPTIONS AND ASSERTIONS.

SYNTAX SEMANTICS: DEFN OF “(+)%”

C:=1 0
| C:Pfy,..,Pf = Pfy {2 |Vy.((y € CT A (Ao {z,y} € (3PF..T)T)
(Aizi P (2) = P (y))) = (Pf (x) = P ()}

| T A

| A AT C AT

| 3PF.C {z | 3y.(y € CT APF(2) =)}
| CinCy ctncyg

| {a} {a”}

| 3ft.e {f*(z) |z € C*}

Figure 2: SYNTAX AND SEMANTICS OF CONCEPT DESCRIPTIONS.

2. Definitions

We now formally define the artifacts introduced in our introductory comments, beginning with the
definition of concepts and TBoxes for a member of the FunDL family of DLs with decidable complexity
of logical consequence for subsumptions and for assertions. Recall that members of this family replace
roles with partial functions, and that concepts also serve the role of referring expressions. Also note
that we distinguish a countably infinite subset of individual names that are literal values such as strings
or integers and for which we adopt the unique name assumption.

Definition 1 (FunDL Concepts, Referring Expressions, and TBoxes). Let F, PC, IN, and D be respective
countably infinite sets of feature names { f1, fa, ...}, primitive concept names {A1, Ag, ...}, individual
names {ai, as, ...}, and a countably infinite subset of IN that are literal values. A path expression is
defined by the grammar “Pf ::= f.Pf | id” for f € F and a concept by the grammar on the left-hand-side
of Figure 2. Concepts generated by the second production are called path functional dependencies (PFDs).?

A referring expression (Re) is a concept description parsed by the last six productions in Figure 2; these
are intended to assert the existence of individuals with complex properties.

A subsumption is an expression of the form C1 T Cs, where the C; are FunDL concepts parsed by the
first six productions in Fig. 2. A terminology (TBox) T consists of a finite set of subsumptions.

The semantics of concepts and path expressions is defined with respect to a structure T = (AL, 1), where
AT is a domain of “individuals” including “literal values’, and where -~ is an interpretation function that

*Recall that such concepts are the above-mentioned means of capturing equality generating dependencies.

fixes the interpretations of primitive concepts A to be subsets of AT and primitive features f to be partial
functions fT : AT — AT. The interpretation function also satisfies the unique name assumption (UNA)
for literal values, that is, that (a1)* # (a2)? for any pair of distinct a; and ag in D. The interpretation
is extended in the natural way to path expressions: id* = \x.z, (f.PHT = PfZ ofZ; and to concept
descriptions as indicated on the right-hand-side of Figure 2.

A structure T satisfies a subsumption C1 C Cy if CT C C%, and is a model of a TBox T if it satisfies
all subsumptions in T . A subsumption is a logical consequence of a TBox, written T |= (C1 C Cy), when
every model of T also satisfies C1 T Cs.

Given a TBox T, a referring expression C' is singular with respect to 7 if |CZ| < 1 for any model T of
T. O

Unfortunately, an unrestricted use of the first six concept constructors in Fig. 2 in TBox subsumptions
still leads to undecidability of KB consistency and logical implication questions [5]. To regain decidability,
all PFDs in the TBox must appear on right-hand sides of subsumptions and must conform to the following
forms:

L. C:Pfl?"'apf-Pfi,-..,Pfk—)PfOI'
2. C:Pfy,...,Pf.f1,....,Pfp > Pf.fy

With these restrictions, reasoning tasks become complete for EXPTIME. Further restrictions are needed
to obtain PTIME reasoning algorithms for the above tasks. The most general form of such restrictions
(to date) has been developed in [6].

Referring expression types are now defined. Recall from our introductory comments that these
were first introduced in [2], and that the version presented here is from later work in [4] which adapts
earlier syntax to conform with referring expressions expressed as concepts. In this version, we have
made a minor revision to enable such types to distinguish the case in which “feature paths” lead more
specifically to literal values. The discussion that follows on how a referring expression type can be
diagnosed at “compile time” to determine if all generated referring expressions are singular w.r.t. a
given TBox is also from [4]. This entails the introduction of a couple of useful auxiliary functions that
is used in later sections.

Definition 2 (FunDL Referring Expression Types). A referring expression type (Rt) is defined by the
following grammar:’

Rt == A|{?}|(?) | 3Pf.Rt | RtM Rt | Rt; Rt
We define the language of referring expressions inhabiting Rt, L(Rt), as follows:

L(A)={A}

L{?})={{a} [a € IN}

L((?))={{a} | a € D}

L(IPf.Rt)={3Pf.C | C € L(Rt)}

ﬁ(Rtl 1 Rtg) {01 nCy | C e ﬁ(Rtl) and Cy € E(RtQ)}
L(Rty; Rty)) = L(Rt1) U L(Rta)

Also, we write Norm(Rt) to refer to an exhaustive application of the following rewrite rules to Rt:

RtM (Rtl; Rtg) — Rt Rty; Rt M Rty
(Rt1; Rtg) MRt — Rt M Rt; Rto M Rt
EPf.(Rtl; Rtg) — EPf.Rtl; HP'FRtQ

*This is a pattern language obtained by abstracting nominals in referring expressions, and by admitting a final production to
express preference among referring expressions [2]. Also note that such a preference only becomes an issue when more than
one referring expression for an individual is possible in an ABox, in particular, in defining our ChooseRE procedure in the
next section.

The definition of Norm(Rt) is a simple variant of referring expression type normalization defined
in [2], and the following are consequences: (1) L(Rt) = L(Norm(Rt)), and (2) all preference operators
(%;”) are at the top level of Norm(Rt). We call the maximal “;’-free parts of Norm(Rt) preference-free
components.

Given a TBox 7 and a referring expression type Rt, the following auxiliary functions will enable a
static test for singularity of referring expressions in L(Rt):

Con(A) = Pfs(A)={}
CO“({7}):T Pfs({?}) = {ud}
Con((7))=T Pfs((?)) = {id}
Con(3Pf'.Rt) = 3PF'.Con(Rt) Pfs(3PF.Rt) — {Pf'. Pf | Pf € Pfs(Rt)}
Con(Rt1 1 Rtl) = Con(Rtl) M COH(RtQ) PfS(Rtl M Rtl) = Pfs (Rtl) U PfS(RtQ)

The functions extract a FunDL concept and a set of path expressions leading to nominals from a
preference-free referring expression type. A straightforward variation of the ideas presented in [2],
Theorem 20, yields the following formulation of the static test:

Theorem 1 (from [4]). Let T be a TBox and Rt a referring expression type. Then all referring expressions
in L(Rt) are singular if and only if for every preference-free component Rt' of Norm(Rt):

T = Con(Rt') C Con(Rt') : Pfs(Rt") — id .
U

The definition of our dynamic constraints now follows and includes a definition of ABoxes and of
data update. Note that a finite set of dynamic constraints and a (single) referring expression type are
now included as part of the definition of a knowledge base and that we have taken a very general view
of what constitutes data update: replacing an ABox with an entirely new ABox. More discussion will
follow.

Definition 3 (FunDL ABoxes, Dynamic Constraints and Data Update). An assertion box (ABox) A
consists of a finite set of assertions of the form C(a1), a1 = as, or f(a1) = ag, where C' is a concept and
the a; are individual names.

A dynamic constraint has the form (C, Pf), and we write WV to refer to a WBox, a finite set of dynamic
constraints.

A knowledge base K is a four-tuple (T, A, W, Rt).

A structure T satisfies A when it satisfies each assertion in A, that is, when (a1)* € C%, (a1)* = (a2)*
and f((a1)%) = (ag)t. K = (T, A, W, Rt) is consistent if there exists a structure over K, that is, that
satisfies T and A.

A data update is an ABox A, and qualifies as an update on K = (T, A, W, Rt) if K is consistent,

= (T, A, W, Rt), also written K /A, is also consistent, and if KC and A also satisfy each dynamic
constraint (C, Pf) in W, written (K, A) |= (C, Pf). This holds when:

for any T, over KC, Ty over K/ A and individuals a1 and as, if (a1)™ € CT1,)
(a1)®2 € C*2 and PF2 ((a1)™1) = (ag)™ then Pf™2((a1)™2) = (a2)™2.

More generally, we write KC |= (C, Pf) when (K, A) = (C, Pf) for any data update A on K. O

Our notion of a data update is based on the notion of a transaction on a relational database that
updates only the contents of tables and is consistency preserving, that is consists of inserts, updates
and deletes on a given collection of tables for which all integrity constraints continue to hold. Also,
in earlier work, we have considered where an Rt was attached to each free variable of a query [2]
and, more recently, where an Rt is attached instead to primitive concepts in the context of a DL-based
knowledge base [4]. It turns out in the latter case that a single Rt obtained by using “;” to “catenate”

those attached to some primitive concept, thus establishing a global preference for how to refer to any
object, suffices.

Observe that dynamic constraints cannot disqualify the ABox of a consistent knowledge base X from
also qualifying as a data update on K, nor can revising such constraints of a consistent knowledge base
lead to its inconsistency. This leads immediately to the following:

Theorem 2. Let K = (7, A, W, Rt) be a consistent knowledge base and C a subsumption or assertion.
Then K = C iff (T, A,{ }, Rt) = C, that is, admitting dynamic constraints in a knowledge base are a

conservative extension w.r.t. logical consequence of subsumptions or assertions. (]

3. Ensuring Durations for Referring Expressions

We now define procedure ChooseRE(a, C, K) for computing more transparent and readable referring
expressions for an individual a in knowledge base K that can be relied on for duration C, that is, for as
long as a is known to be an instance of concept C. The procedure uses the definition of ToRE given in
[4] for computing a referring expression that works “in the here and now” for a given “;"-free Rt’. In
particular, TORE is called in an iterative fashion on the sequence of such Rt’ in Norm(Rt) until finding
a referring expression that also satisfies a subsumption relating to C' and R¢'. In addition, durability
requires that K itself satisfies a durability condition.

Note that, unlike the case in [4], it is now possible that different referring expressions are obtained for
the same individual name due to alternative choices for C, that is, for durations. Again, more discussion
will follow.

Definition 4 (Choosing a Referring Expression). Let a be an individual name, C' a concept and K =
(T, A, W, Rt) a consistent knowledge base, and assume Norm(Rt) = Rty;...; Rtg. K is durable when
the following holds:

K [= (Con(Rt;), Pf), for1 < i < k and all Pf € Pfs(Rt;). (5)

We define ToRE(a, Rt;, K) to be the result of the following recursive definition of TORE(a, Rt;, id,) on
the structure of Rt;:

ToRE(a, A, Pf,K)=Aif K |= a : 3Pf.A, undefined otherwise;
ToRE(a, {7}, Pf,K)={d'} if £ = a : IPf.{d’} for some o’ € IN, undefined otherwise;
ToRE(a, (), Pf,K)={d'} if K |= a : IPf.{a'} for some a’' € D, undefined otherwise;
ToRE(a, 3Pf'.Rt, Pf, K) = 3Pf. ToRE(a, Rt, Pf . Pf’, KC); and
ToRE(a, Rty M Rty, Pf, K) = ToRE(a, Rty, Pf, K) M ToRE(a, Rts, Pf, K) if both are defined,
undefined otherwise.

We write ChooseRE(a, C, K) to return a concept C' for the least i < k for which the following hold, and
to be undefined otherwise:

1. K = C C Con(Rt;),
2. ToRE(a, Rt;, id, K) is defined and returns C". O

See earlier work [7, 8] for more effective ways of computing the second and third cases of ToRE by
appealing to logical consequence in FunDL knowledge bases based on a binary search that assumes
access to a total ordering of individual names IN. This earlier work also shows how standard classification
can be employed to compute the first case of ToRE.

Building on our university domain, consider where the TBox and ABox for K are as given in Figure 1.
Also assume the dynamic constraints and referring expression type for K are as given in Figure 3.
Observe that the name of a person and the location of an employee office are really the only kinds

WBox = { (ROOM, rnum), (ROOM, in), (BLD, name),
(PERSON, ssn), (STUDENT, snum), (EMP, enum) }

Rt = ROOM M Jrnum.(?) N Jin.name.(?) ;
BLD M 3name.(?) ;
STUDENT M 3snum.(?) ; EMP M Jenum.(?) ; PERSON M Jssn.(?)

Figure 3: UNIVERSITY DYNAMIC CONSTRAINTS AND REFERRING EXPRESSION TYPE.

of facts that can updated. Then the following lists examples of calls to ChooseRE and the referring
expression returned as a consequence:

ChooseRE
ChooseRE
ChooseRE
ChooseRE

rob, STUDENT,) — STUDENT 1 Jsnum.{321}

rob, PERSON, K) — PERSON M 3ssn.{1234}

room1l, ROOM, K) — ROOM M Irnum.{5678} M Jin.name.{"Davis Center"}
rob, EMP M 3loc.in.name.{"David Center"},) — EMP M Jenum.{77}

o~ o~~~

Note that the first three are as reported in our introductory comments. The fourth shows another
referring expression for rob that is requested to last for as long as he is an employee with an office
located in the David Center building.

Theorem 3. Let a be an individual name, C a concept and K = (T, A, W, Rt) a consistent knowl-
edge base that is durable and for which all referring expressions in L(Rt) are singular w.rt. T. If
ChooseRE(a, C, K) is defined and returns concept Cs, then C+* = C22 = {(a)™'} for any I, over K,
any data update A" on K and any Iy over /A’

Proof. (sketch) By induction on the structure of the concept Co generated by ToRE(a, Rt;, id, K) for
some Rt;. The invariant of the structural induction is {Pf.Pf' | Pf' € Pfs(Rt)} C Pfs(Rt;) where
Rt and Pf are the second and third arguments of the recursive calls to ToRE in Definition 4. Then in
the first base case K |= a : 3Pf.A holds as Con(Rt;) C 3Pf.A and in the second and third case we
have Pf € Pfs(Rt;) and thus, due to the requirement K = (Con(Rt;), Pf) for all Pf € Pfs(Rt;) and
condition (4), we get Pf reaches the same constant o’ starting from a in 7 as it reached in Z; (when
constructing Cy using ToRE). O

Recall that logical consequence for subsumptions is decidable. Thus, by Theorem 2, the only out-
standing computational issue with ChooseRE(a, C1, K) concerns logical consequence for dynamic
constraints, that is, to determine if K |= (C, Pf) for some K, C' and Pf. To this end, we define two
inference axioms:

K= (Cy,Pf), KECyCC)
K k= (C2, Pf)

K = (C1,Pf1), K = C1 C 3Pf1.Co, K |= (Cq, Pf2)
K |: (Cl, Pfl . Pfg)

A sound procedure to decide if £ = (7, A, W, Rt) |= (C, Pf) based on these axioms can operate by
first checking if C'is not satisfiable or if Pf is id and returning true if this is the case. If C' is satisfiable
and Pf is not id, the procedure can then proceed in an iterative manner on the sequence of feature
names occurring in Pf. In particular, if Pf has the form f. Pf’, check if there exists a C} and Cy where
(C1,f) e W,K = CE Cpand K |= C; C 3f.Co, and then recurse on deciding if K |= (Cy, Pf') if
Pf’ is not id.

(6)

(7)

4. Discussion

4.1. On UNA and Counting

As with individual names that are not literal values for which the UNA applies, referring expressions
can in principle co-refer to the same object in a structure for a given K. This was indeed the case in our
introductory example (2):

{rob} PERSON Mdssn.{1234} STUDENT M 3snum.{321} EMP M Jenum.{77}

On the other hand, literal values (elements of D) will be distinct since we have assumed the UNA for
literal values. Hence, referring expressions in £((7)) will inherit this property. In the following we
show how the UNA can be lifted to more complex referring expression types. In this way we ensure
that referring expressions that inhabit these types also obey this lifted variant of UNA: syntactically
distinct referring expressions must always refer to distinct domain elements. The following condition
on referring expression types lifts UNA to more complex referring expression types:

« Let Norm(Rt) = Rty;. . .; Rt be {7} -free referring expression type such that /C = Con(Rt;) M
Con(Rt;) C L foralli < j < k. Then L(Rt) obeys lifted UNA.

Note that, e.g., stronger lower bounds for counting are enabled by detecting lifted UNA.

4.2. On Guaranteeing the Existence of Referring Expressions

The procedure for choosing a referring expression in Definition 4 may fail to return an appropriate
referring expression. We focus on the situation in which the reason for failure is entirely due to where
ToRE(a, Rt;, K) is not defined, i.e., where C does not entail sufficiently many facts about the individual
a in question.

One can strengthen definition (4) of the semantics of a dynamic constraint (C, Pf) to ensure, whenever
K |= C(a) become true, ToRE(a, Rt;, K) will then succeed and produces a referring expression in
L(Rt;) that refers to a with the duration C'. This additional requirement for (C, Pf) is as follows:

for any Z; over K, I, over K /A and individual a1, if (a1)?* ¢ C** and ®)
(a1)®2 € C”2 then there is ay such that Pf22((a1)%2) = (as)™2.

Note that we still require K to be durable, in particular that the following holds:
K |= (Con(Rt;),Pf), for 1 <i < k and all Pf € Pfs(Rt;),

and that these now satisfy both conditions (4) and (8). In addition, we need to require that for Pf €
LitPfs(Rt;) the constant as in (8) is in D (i.e., the path ends in a literal as prescribed by Rt;). The
auxiliary function LitPfs is defined as follows:

LitPfs(A) = { }
LitPfs({7}) ={ }
LitPfs((?)) = {id}

LitPfs(IPf.Rt) = {Pf'. Pf | Pf € LitPfs(Rt)}
LitPfs(Rt, M Rty) = LitPfs(Rty) U LitPfs(Rty)

With this stronger requirement, ToRE(a, Rt;, K) always returns an appropriate referring expression
for any a that will persist as long as C'(a) holds. Hence, evolving K via data updates starting from an
empty ABox guarantees the existence of referring expressions for any individual for which such an
expression can exist.

4.3. Summary Comments

We have developed dynamic constraints—constraints on allowed ABox changes—that make referring
expressions durable relative to concept membership of the objects they identify. This way we can
guarantee that, e.g., the value of the feature snum can be used to identify PERSONSs as long as they are
STUDENTS, but ceases to be reliable when a PERSON ceases to be a STUDENT (and we have to revert
to other ways of identifying such objects). This durability of referring expressions relative to concept
membership has many applications, for example, when one considers physical representation of such
objects in multi-level storage systems (such as caches). We also introduced conditions under which
the existence of appropriate referring expressions is guaranteed for all objects belonging to a given
concept description. Last, we studied how UNA for constant symbols can be lifted to complex referring
expressions.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] S. McIntyre, D. Toman, G. E. Weddell, FunDL - A family of feature-based description logics, with
applications in querying structured data sources, in: Description Logic, Theory Combination, and
All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday, 2019, pp. 404-430.

[2] A.Borgida, D. Toman, G. Weddell, On referring expressions in query answering over first order
knowledge bases, in: Proc. Principles of Knowledge Representation and Reasoning, KR 2016, 2016,
pp. 319-328.

[3] B.Russell, On denoting, Mind 14 (1905) 479-493. URL: http://www.jstor.org/stable/2248381.

[4] A.Borgida, E. Franconi, D. Toman, G. E. Weddell, Understanding document data sources using
ontologies with referring expressions, in: Al 2022: Advances in Artificial Intelligence, volume 13728
of LNCS, Springer, 2022, pp. 367-380.

[5] D.Toman, G. E. Weddell, On Keys and Functional Dependencies as First-Class Citizens in Description
Logics, J. Aut. Reasoning 40 (2008) 117-132.

[6] S. McIntyre, A. Borgida, D. Toman, G. E. Weddell, On limited conjunctions and partial features in
parameter-tractable feature logics, in: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAT 2019, 2019, pp. 2995-3002.

[7] J.Pound, D. Toman, G. E. Weddell, J. Wu, Query algebra and query optimization for concept assertion
retrieval, in: V. Haarslev, D. Toman, G. E. Weddell (Eds.), Proceedings of the 23rd International
Workshop on Description Logics (DL 2010), volume 573 of CEUR Workshop Proceedings, 2010.

[8] J. Pound, D. Toman, G. E. Weddell, J. Wu, An assertion retrieval algebra for object queries over
knowledge bases, in: T. Walsh (Ed.), JCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, 2011, IJJCAI/AAAI, 2011, pp. 1051-1056.

http://www.jstor.org/stable/2248381

	1 Introduction
	2 Definitions
	3 Ensuring Durations for Referring Expressions
	4 Discussion
	4.1 On UNA and Counting
	4.2 On Guaranteeing the Existence of Referring Expressions
	4.3 Summary Comments

