
Reliable Reference for a DL Knowledge Base under Data
Update
Enamul Haque

1
, David Toman

1
and Grant Weddell

1

1Cheriton School of Computer Science, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada

Abstract
Earlier work has shown how Russell’s notion of proper definite descriptions can be captured as referring

expressions: concept descriptions that are known to be singular. Concept descriptions are a more general and

transparent way of communicating answers to queries. In general, how long such answers can be relied on will

depend on how long facts about entities are not altered via data update, that is, on revisions to the underlying

ABox of a KB. In this paper, we show how a simple variety of dynamic constraints can be added to a KB to ensure

user specified durations on how long query answers must be able to be relied on.

Keywords
referring expressions, data update, dynamic constraints

1. Introduction

A knowledge base 𝒦 expressed in terms of a description logic (DL) will consist of a TBox, a finite set of

subsumptions characterizing information relevant to the underlying domain of an application, and an

ABox, a finite set of assertions that introduce specific domain facts. In this paper, we consider where 𝒦
is expressed in a dialect of the FunDL family of DLs [1] for which logical consequence of subsumptions

and assertions in 𝒦 is computationally tractable. FunDL dialects are feature logics that replace roles,
arbitrary binary relations, with features, arbitrary partial functions, and include a means of expressing

subsumptions that capture a variety of equality generating dependencies via a concept constructor

called a path functional dependency (PFD).

Examples of a TBox and ABox defining a knowledge base 𝒦 that are expressed in our DL are given

in Figure 1 for a hypothetical university domain about STUDENTs, EMPloyees, BuiLDings, and so on.

Here, room1, "Davis Center" and 5678 are examples of so-called individual names, with the latter two

also called literal values such as strings and integers. The subsumptions use PFDs (underlined) that will

ensure, for example, that no two rooms will have a unique combination of a room number and the name

of the building in which they reside. This ensures any structure of 𝒦 will have the same interpretation

for each of the following two concepts that employ the nominal concept constructor:

{room1}, and

ROOM ⊓ ∃𝑟𝑛𝑢𝑚.{5678} ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.{"Davis Center"}. (1)

The second concept is an example of a referring expression as introduced in [2], or, as Russell would

say, a proper definite description.
1

This earlier work introduced the notion of a referring expression type
(𝑅𝑡) for specifying possible referring expressions for individuals. The syntax for an 𝑅𝑡 was adapted in

[4] for specifying concepts intended to serve as more transparent and readable referring expressions

for individuals that are expressed as concepts. Based on this syntax, an 𝑅𝑡 “generating” this referring

expression for room1 in our university domain is as follows:

ROOM ⊓ ∃𝑟𝑛𝑢𝑚.⟨?⟩ ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.⟨?⟩

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ enamul.haque@uwaterloo.ca (E. Haque); david@uwaterloo.ca (D. Toman); gweddell@uwaterloo.ca (G. Weddell)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

For Russell, such expressions are well-formed formulae free in one variable that hold for exactly one element of a domain [3].

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:enamul.haque@uwaterloo.ca
mailto:david@uwaterloo.ca
mailto:gweddell@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0/deed.en

Note that occurrences of “⟨?⟩” serve as placeholders for nominals, and that an 𝑅𝑡 is therefore a pattern

language for concepts.

One might expect that relying on the second referring expression in (1) to faithfully refer to room1

will always “work”, that room numbers, the buildings in which rooms reside and the names of buildings

are permanent facts that will never change. However, now consider the following four concepts:

(i) {rob};
(ii) PERSON ⊓ ∃𝑠𝑠𝑛.{1234};
(iii) STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321}; and

(iv) EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}.

(2)

We will see that referring expressions (ii) and (iii) are in the language generated by an 𝑅𝑡 defined as the

following pattern:

(STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.⟨?⟩) ; (PERSON ⊓ ∃𝑠𝑠𝑛.⟨?⟩) (3)

Note that the occurrence of “;” in this 𝑅𝑡 expresses a preference for referring expression (iii) over

referring expression (ii) in (2). Here again, any structure of 𝒦 will have the same interpretation for each

of the concepts. However, in this case, referring to rob via referring expressions (iii) or (iv) will only

work for as long as rob continues to be student and an employee, a circumstance that might no longer

be true in some future update to the ABox.

It is this kind of effect that sensible data update can have on referring expressions that is our primary

concern. In particular, we introduce a form of dynamic constraint that can be added to 𝒦 to ensure the

efficacy of a referring expression.

To illustrate, if the facts that rob is a student and that his student number is 321 are implied by 𝒦,

consider where 𝒦 should also ensure that any data update on the ABox in which he continues to be a

student must also preserve knowledge of this number. We augment the above mentioned FunDL dialect

for capturing 𝒦 to incorporate a form of dynamic constraint to ensure this, in particular, a dynamic

constraint of the form

(STUDENT, 𝑠𝑛𝑢𝑚).

The constraint is dynamic in the sense that it fails to hold when also considering any data update to the

ABox in which rob remains a student but in which knowledge of this student number is either removed

or updated.

Our main result introduces the procedure ChooseRE(𝑎,𝐶,𝒦) where 𝑎 is an individual name, 𝐶
a concept expressing a “duration requirement” and 𝒦 a knowledge base that now includes dynamic

constraints, such as the above, and an 𝑅𝑡. The procedure attempts to compute the most preferred

referring expression in the language generated by 𝑅𝑡 for referring to 𝑎 that can be relied on for as long

as 𝑎 is known to be a 𝐶 .

For example, assume the TBox and ABox of 𝒦 are as given in Figure 1, where it has additional dynamic

constraints such as the above, and where it has the𝑅𝑡 given by (3). ThenChooseRE(rob, STUDENT,𝒦)
would return referring expression (iii) in (2) and ChooseRE(rob,PERSON,𝒦) would return referring

expression (ii). However, if the fact that Rob’s student number is 321 was not in the ABox, then the first

call would also return referring expression (ii).

To summarize, our contributions revolve around the ChooseRE procedure. In particular, we introduce

a variety of dynamic constraints relating to individuals and their feature values and incorporate such

constraints in the computation of referring expressions for individuals that (a) are more general and

transparent ways of communicating references to individuals, for example, in answers to queries, and

(b) can be trusted to reliably refer for a specified duration.

The remainder of the paper is organized as follows. Section 2 provides the needed background

relating to our FunDL dialect, to referring expressions, and to our new dynamic constraints. Procedure

ChooseRE is then introduced in Section 3. In Section 4, we consider a number of additional issues

relating to “unique name” possibilities, to counting, and to incremental ways to guarantee the existence

of referring expressions. Summary comments are given in a final subsection.

TBox = { ROOM ⊑ (∃𝑟𝑛𝑢𝑚.⊤) ⊓ (∃𝑖𝑛.BLD) ⊓ ROOM : 𝑟𝑛𝑢𝑚, 𝑖𝑛.𝑛𝑎𝑚𝑒 → id ,
BLD ⊑ (∃𝑛𝑎𝑚𝑒.⊤) ⊓ BLD : 𝑛𝑎𝑚𝑒 → id ,
PERSON ⊑ (∃𝑠𝑠𝑛.⊤) ⊓ (∃𝑙𝑛𝑎𝑚𝑒.⊤) ⊓ PERSON : 𝑠𝑠𝑛 → id ,
STUDENT ⊑ PERSON ⊓ (∃𝑠𝑛𝑢𝑚.⊤) ⊓ STUDENT : 𝑠𝑛𝑢𝑚 → id ,
EMP ⊑ PERSON ⊓ (∃𝑒𝑛𝑢𝑚.⊤) ⊓ (∃𝑙𝑜𝑐.ROOM) ⊓ EMP : 𝑒𝑛𝑢𝑚 → id }

ABox = { ROOM(room1), 𝑟𝑛𝑢𝑚(room1) = 5678, 𝑖𝑛(room1) = bld1,
BLD(bld1), 𝑛𝑎𝑚𝑒(bld1) = "Davis Center",
PERSON(rob), 𝑠𝑠𝑛(rob) = 1234, 𝑙𝑛𝑎𝑚𝑒(rob) = "Smith",
STUDENT(rob), 𝑠𝑛𝑢𝑚(rob) = 321,
PERSON(robin), 𝑠𝑠𝑛(robin) = 1234, 𝑙𝑛𝑎𝑚𝑒(robin) = "Smith",
EMP(robin), 𝑒𝑛𝑢𝑚(robin) = 77, 𝑙𝑜𝑐(robin) = room1 }

Figure 1: University Subsumptions and Assertions.

Syntax Semantics: Defn of “(·)ℐ”

𝐶 ::=⊥ ∅
| 𝐶 : Pf1, ...,Pf𝑘 → Pf0 {𝑥 | ∀𝑦.((𝑦 ∈ 𝐶ℐ ∧ (

⋀︀𝑘
𝑖=0{𝑥, 𝑦} ⊆ (∃Pf𝑖.⊤)ℐ)

(
⋀︀𝑘

𝑖=1 Pf
ℐ
𝑖 (𝑥) = Pfℐ𝑖 (𝑦))) → (Pfℐ0 (𝑥) = Pfℐ0 (𝑦)))}

| ⊤ △ℐ

| A Aℐ ⊆ △ℐ

| ∃Pf.𝐶 {𝑥 | ∃𝑦.(𝑦 ∈ 𝐶ℐ ∧ Pfℐ(𝑥) = 𝑦)}
| 𝐶1 ⊓ 𝐶2 𝐶ℐ

1 ∩ 𝐶ℐ
2

| {𝑎} {𝑎ℐ}
| ∃𝑓−1.𝐶 {𝑓ℐ(𝑥) | 𝑥 ∈ 𝐶ℐ}

Figure 2: Syntax and semantics of concept descriptions.

2. Definitions

We now formally define the artifacts introduced in our introductory comments, beginning with the

definition of concepts and TBoxes for a member of the FunDL family of DLs with decidable complexity

of logical consequence for subsumptions and for assertions. Recall that members of this family replace

roles with partial functions, and that concepts also serve the role of referring expressions. Also note

that we distinguish a countably infinite subset of individual names that are literal values such as strings

or integers and for which we adopt the unique name assumption.

Definition 1 (FunDL Concepts, Referring Expressions, and TBoxes). Let F, PC, IN, and D be respective
countably infinite sets of feature names {𝑓1, 𝑓2, . . .}, primitive concept names {A1,A2, . . .}, individual
names {𝑎1, 𝑎2, . . .}, and a countably infinite subset of IN that are literal values. A path expression is
defined by the grammar “Pf ::= 𝑓.Pf | id” for 𝑓 ∈ F and a concept by the grammar on the left-hand-side
of Figure 2. Concepts generated by the second production are called path functional dependencies (PFDs).2

A referring expression (𝑅𝑒) is a concept description parsed by the last six productions in Figure 2; these
are intended to assert the existence of individuals with complex properties.

A subsumption is an expression of the form 𝐶1 ⊑ 𝐶2, where the 𝐶𝑖 are FunDL concepts parsed by the
first six productions in Fig. 2. A terminology (TBox) 𝒯 consists of a finite set of subsumptions.

The semantics of concepts and path expressions is defined with respect to a structure ℐ = (△ℐ , ·ℐ), where
△ℐ is a domain of “individuals” including “literal values”, and where ·ℐ is an interpretation function that

2

Recall that such concepts are the above-mentioned means of capturing equality generating dependencies.

fixes the interpretations of primitive concepts 𝐴 to be subsets of △ℐ and primitive features 𝑓 to be partial
functions 𝑓ℐ : △ℐ → △ℐ . The interpretation function also satisfies the unique name assumption (UNA)
for literal values, that is, that (𝑎1)ℐ ̸= (𝑎2)

ℐ for any pair of distinct 𝑎1 and 𝑎2 in D. The interpretation
is extended in the natural way to path expressions: idℐ = 𝜆𝑥.𝑥, (𝑓.Pf)ℐ = Pfℐ ∘𝑓ℐ ; and to concept
descriptions as indicated on the right-hand-side of Figure 2.

A structure ℐ satisfies a subsumption 𝐶1 ⊑ 𝐶2 if 𝐶ℐ
1 ⊆ 𝐶ℐ

2 , and is a model of a TBox 𝒯 if it satisfies
all subsumptions in 𝒯 . A subsumption is a logical consequence of a TBox, written 𝒯 |= (𝐶1 ⊑ 𝐶2), when
every model of 𝒯 also satisfies 𝐶1 ⊑ 𝐶2.

Given a TBox 𝒯 , a referring expression 𝐶 is singular with respect to 𝒯 if |𝐶ℐ | ≤ 1 for any model ℐ of
𝒯 . □

Unfortunately, an unrestricted use of the first six concept constructors in Fig. 2 in TBox subsumptions

still leads to undecidability of KB consistency and logical implication questions [5]. To regain decidability,

all PFDs in the TBox must appear on right-hand sides of subsumptions and must conform to the following

forms:

1. C : Pf1, . . . ,Pf .Pf𝑖, . . . ,Pf𝑘 → Pf or

2. C : Pf1, . . . ,Pf .𝑓1, . . . ,Pf𝑘 → Pf .𝑓2

With these restrictions, reasoning tasks become complete for EXPTIME. Further restrictions are needed

to obtain PTIME reasoning algorithms for the above tasks. The most general form of such restrictions

(to date) has been developed in [6].

Referring expression types are now defined. Recall from our introductory comments that these

were first introduced in [2], and that the version presented here is from later work in [4] which adapts

earlier syntax to conform with referring expressions expressed as concepts. In this version, we have

made a minor revision to enable such types to distinguish the case in which “feature paths” lead more

specifically to literal values. The discussion that follows on how a referring expression type can be

diagnosed at “compile time” to determine if all generated referring expressions are singular w.r.t. a

given TBox is also from [4]. This entails the introduction of a couple of useful auxiliary functions that

is used in later sections.

Definition 2 (FunDL Referring Expression Types). A referring expression type (𝑅𝑡) is defined by the
following grammar:3

𝑅𝑡 ::= A | {?} | ⟨?⟩ | ∃Pf.𝑅𝑡 | 𝑅𝑡 ⊓𝑅𝑡 | 𝑅𝑡 ;𝑅𝑡

We define the language of referring expressions inhabiting 𝑅𝑡, ℒ(𝑅𝑡), as follows:

ℒ(A)= {A}
ℒ({?})= {{𝑎} | 𝑎 ∈ IN}
ℒ(⟨?⟩)= {{𝑎} | 𝑎 ∈ D}

ℒ(∃Pf.𝑅𝑡)= {∃Pf.𝐶 | 𝐶 ∈ ℒ(𝑅𝑡)}
ℒ(𝑅𝑡1 ⊓𝑅𝑡2)= {𝐶1 ⊓ 𝐶2 | 𝐶1 ∈ ℒ(𝑅𝑡1) and 𝐶2 ∈ ℒ(𝑅𝑡2)}
ℒ(𝑅𝑡1;𝑅𝑡2))=ℒ(𝑅𝑡1) ∪ ℒ(𝑅𝑡2)

Also, we write Norm(𝑅𝑡) to refer to an exhaustive application of the following rewrite rules to 𝑅𝑡:

𝑅𝑡 ⊓ (𝑅𝑡1;𝑅𝑡2) ↦→ 𝑅𝑡 ⊓𝑅𝑡1;𝑅𝑡 ⊓𝑅𝑡2
(𝑅𝑡1;𝑅𝑡2) ⊓𝑅𝑡 ↦→ 𝑅𝑡1 ⊓𝑅𝑡;𝑅𝑡2 ⊓𝑅𝑡
∃Pf.(𝑅𝑡1;𝑅𝑡2) ↦→ ∃Pf.𝑅𝑡1;∃Pf.𝑅𝑡2

□

3

This is a pattern language obtained by abstracting nominals in referring expressions, and by admitting a final production to

express preference among referring expressions [2]. Also note that such a preference only becomes an issue when more than

one referring expression for an individual is possible in an ABox, in particular, in defining our ChooseRE procedure in the

next section.

The definition of Norm(𝑅𝑡) is a simple variant of referring expression type normalization defined

in [2], and the following are consequences: (1) ℒ(𝑅𝑡) = ℒ(Norm(𝑅𝑡)), and (2) all preference operators
(“;”) are at the top level of Norm(𝑅𝑡). We call the maximal “;”-free parts of Norm(𝑅𝑡) preference-free
components.

Given a TBox 𝒯 and a referring expression type 𝑅𝑡, the following auxiliary functions will enable a

static test for singularity of referring expressions in ℒ(𝑅𝑡):

Con(A)=A
Con({?})=⊤
Con(⟨?⟩)=⊤

Con(∃Pf ′.𝑅𝑡)=∃Pf ′.Con(𝑅𝑡)
Con(𝑅𝑡1 ⊓𝑅𝑡1)=Con(𝑅𝑡1) ⊓ Con(𝑅𝑡2)

Pfs(A)= { }
Pfs({?})= {id}
Pfs(⟨?⟩)= {id}

Pfs(∃Pf ′.𝑅𝑡)= {Pf ′ .Pf | Pf ∈ Pfs(𝑅𝑡)}
Pfs(𝑅𝑡1 ⊓𝑅𝑡1)=Pfs(𝑅𝑡1) ∪ Pfs(𝑅𝑡2)

The functions extract a FunDL concept and a set of path expressions leading to nominals from a

preference-free referring expression type. A straightforward variation of the ideas presented in [2],

Theorem 20, yields the following formulation of the static test:

Theorem 1 (from [4]). Let 𝒯 be a TBox and 𝑅𝑡 a referring expression type. Then all referring expressions
in ℒ(𝑅𝑡) are singular if and only if for every preference-free component 𝑅𝑡′ of Norm(𝑅𝑡):

𝒯 |= Con(𝑅𝑡′) ⊑ Con(𝑅𝑡′) : Pfs(𝑅𝑡′) → id .

□

The definition of our dynamic constraints now follows and includes a definition of ABoxes and of

data update. Note that a finite set of dynamic constraints and a (single) referring expression type are

now included as part of the definition of a knowledge base and that we have taken a very general view

of what constitutes data update: replacing an ABox with an entirely new ABox. More discussion will

follow.

Definition 3 (FunDL ABoxes, Dynamic Constraints and Data Update). An assertion box (ABox) 𝒜
consists of a finite set of assertions of the form 𝐶(𝑎1), 𝑎1 = 𝑎2, or 𝑓(𝑎1) = 𝑎2, where 𝐶 is a concept and
the 𝑎𝑖 are individual names.

A dynamic constraint has the form (𝐶,Pf), and we write 𝒲 to refer to a WBox, a finite set of dynamic
constraints.

A knowledge base 𝒦 is a four-tuple (𝒯 ,𝒜,𝒲, 𝑅𝑡).
A structure ℐ satisfies 𝒜 when it satisfies each assertion in 𝒜, that is, when (𝑎1)

ℐ ∈ 𝐶ℐ , (𝑎1)ℐ = (𝑎2)
ℐ

and 𝑓ℐ((𝑎1)
ℐ) = (𝑎2)

ℐ . 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) is consistent if there exists a structure over 𝒦, that is, that
satisfies 𝒯 and 𝒜.

A data update is an ABox 𝒜, and qualifies as an update on 𝒦 = (𝒯 ,𝒜′,𝒲, 𝑅𝑡) if 𝒦 is consistent,
𝒦′ = (𝒯 ,𝒜,𝒲, 𝑅𝑡), also written 𝒦/𝒜, is also consistent, and if 𝒦 and 𝒜 also satisfy each dynamic
constraint (𝐶,Pf) in 𝒲 , written (𝒦,𝒜) |= (𝐶,Pf). This holds when:

for any ℐ1 over 𝒦, ℐ2 over 𝒦/𝒜 and individuals 𝑎1 and 𝑎2, if (𝑎1)ℐ1 ∈ 𝐶ℐ1 ,
(𝑎1)

ℐ2 ∈ 𝐶ℐ2 and Pfℐ1((𝑎1)
ℐ1) = (𝑎2)

ℐ1 then Pfℐ2((𝑎1)
ℐ2) = (𝑎2)

ℐ2 .
(4)

More generally, we write 𝒦 |= (𝐶,Pf) when (𝒦,𝒜) |= (𝐶,Pf) for any data update 𝒜 on 𝒦. □

Our notion of a data update is based on the notion of a transaction on a relational database that

updates only the contents of tables and is consistency preserving, that is consists of inserts, updates

and deletes on a given collection of tables for which all integrity constraints continue to hold. Also,

in earlier work, we have considered where an 𝑅𝑡 was attached to each free variable of a query [2]

and, more recently, where an 𝑅𝑡 is attached instead to primitive concepts in the context of a DL-based

knowledge base [4]. It turns out in the latter case that a single 𝑅𝑡 obtained by using “;” to “catenate”

those attached to some primitive concept, thus establishing a global preference for how to refer to any

object, suffices.

Observe that dynamic constraints cannot disqualify the ABox of a consistent knowledge base 𝒦 from

also qualifying as a data update on 𝒦, nor can revising such constraints of a consistent knowledge base

lead to its inconsistency. This leads immediately to the following:

Theorem 2. Let 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) be a consistent knowledge base and 𝒞 a subsumption or assertion.
Then 𝒦 |= 𝒞 iff (𝒯 ,𝒜, { }, 𝑅𝑡) |= 𝒞, that is, admitting dynamic constraints in a knowledge base are a
conservative extension w.r.t. logical consequence of subsumptions or assertions. □

3. Ensuring Durations for Referring Expressions

We now define procedure ChooseRE(𝑎,𝐶,𝒦) for computing more transparent and readable referring

expressions for an individual 𝑎 in knowledge base 𝒦 that can be relied on for duration 𝐶 , that is, for as

long as 𝑎 is known to be an instance of concept 𝐶 . The procedure uses the definition of ToRE given in

[4] for computing a referring expression that works “in the here and now” for a given “;”-free 𝑅𝑡′. In

particular, ToRE is called in an iterative fashion on the sequence of such 𝑅𝑡′ in Norm(𝑅𝑡) until finding

a referring expression that also satisfies a subsumption relating to 𝐶 and 𝑅𝑡′. In addition, durability

requires that 𝒦 itself satisfies a durability condition.

Note that, unlike the case in [4], it is now possible that different referring expressions are obtained for

the same individual name due to alternative choices for 𝐶 , that is, for durations. Again, more discussion

will follow.

Definition 4 (Choosing a Referring Expression). Let 𝑎 be an individual name, 𝐶 a concept and 𝒦 =
(𝒯 ,𝒜,𝒲, 𝑅𝑡) a consistent knowledge base, and assume Norm(𝑅𝑡) = 𝑅𝑡1; . . . ;𝑅𝑡𝑘. 𝒦 is durable when
the following holds:

𝒦 |= (Con(𝑅𝑡𝑖),Pf), for 1 ≤ 𝑖 ≤ 𝑘 and all Pf ∈ Pfs(𝑅𝑡𝑖). (5)

We define ToRE(𝑎,𝑅𝑡𝑖,𝒦) to be the result of the following recursive definition of ToRE(𝑎,𝑅𝑡𝑖, id ,𝒦) on
the structure of 𝑅𝑡𝑖:

ToRE(𝑎,A,Pf,𝒦)=A if 𝒦 |= 𝑎 : ∃Pf.A, undefined otherwise;
ToRE(𝑎, {?},Pf,𝒦)= {𝑎′} if 𝒦 |= 𝑎 : ∃Pf.{𝑎′} for some 𝑎′ ∈ IN, undefined otherwise;
ToRE(𝑎, ⟨?⟩,Pf,𝒦)= {𝑎′} if 𝒦 |= 𝑎 : ∃Pf.{𝑎′} for some 𝑎′ ∈ D, undefined otherwise;

ToRE(𝑎,∃Pf ′.𝑅𝑡,Pf,𝒦)=∃Pf ′.ToRE(𝑎,𝑅𝑡,Pf .Pf ′,𝒦); and
ToRE(𝑎,𝑅𝑡1 ⊓𝑅𝑡2,Pf,𝒦)=ToRE(𝑎,𝑅𝑡1,Pf,𝒦) ⊓ ToRE(𝑎,𝑅𝑡2,Pf,𝒦) if both are defined,

undefined otherwise.

We write ChooseRE(𝑎,𝐶,𝒦) to return a concept 𝐶 ′ for the least 𝑖 ≤ 𝑘 for which the following hold, and
to be undefined otherwise:

1. 𝒦 |= 𝐶 ⊑ Con(𝑅𝑡𝑖),
2. ToRE(𝑎,𝑅𝑡𝑖, id ,𝒦) is defined and returns 𝐶 ′. □

See earlier work [7, 8] for more effective ways of computing the second and third cases of ToRE by

appealing to logical consequence in FunDL knowledge bases based on a binary search that assumes

access to a total ordering of individual names IN. This earlier work also shows how standard classification

can be employed to compute the first case of ToRE.

Building on our university domain, consider where the TBox and ABox for 𝒦 are as given in Figure 1.

Also assume the dynamic constraints and referring expression type for 𝒦 are as given in Figure 3.

Observe that the 𝑛𝑎𝑚𝑒 of a person and the 𝑙𝑜𝑐ation of an employee office are really the only kinds

WBox = { (ROOM, 𝑟𝑛𝑢𝑚), (ROOM, 𝑖𝑛), (BLD, 𝑛𝑎𝑚𝑒),
(PERSON, 𝑠𝑠𝑛), (STUDENT, 𝑠𝑛𝑢𝑚), (EMP, 𝑒𝑛𝑢𝑚) }

𝑅𝑡 = ROOM ⊓ ∃𝑟𝑛𝑢𝑚.⟨?⟩ ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.⟨?⟩ ;
BLD ⊓ ∃𝑛𝑎𝑚𝑒.⟨?⟩ ;
STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.⟨?⟩ ; EMP ⊓ ∃𝑒𝑛𝑢𝑚.⟨?⟩ ; PERSON ⊓ ∃𝑠𝑠𝑛.⟨?⟩

Figure 3: University Dynamic Constraints and Referring Expression Type.

of facts that can updated. Then the following lists examples of calls to ChooseRE and the referring

expression returned as a consequence:

ChooseRE(rob, STUDENT,𝒦) → STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321}
ChooseRE(rob,PERSON,𝒦) → PERSON ⊓ ∃𝑠𝑠𝑛.{1234}
ChooseRE(room1,ROOM,𝒦) → ROOM ⊓ ∃𝑟𝑛𝑢𝑚.{5678} ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.{"Davis Center"}
ChooseRE(rob,EMP ⊓ ∃𝑙𝑜𝑐.𝑖𝑛.𝑛𝑎𝑚𝑒.{"David Center"},𝒦) → EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}

Note that the first three are as reported in our introductory comments. The fourth shows another

referring expression for rob that is requested to last for as long as he is an employee with an office

located in the David Center building.

Theorem 3. Let 𝑎 be an individual name, 𝐶1 a concept and 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) a consistent knowl-
edge base that is durable and for which all referring expressions in ℒ(𝑅𝑡) are singular w.r.t. 𝒯 . If
ChooseRE(𝑎,𝐶1,𝒦) is defined and returns concept 𝐶2, then 𝐶ℐ1

2 = 𝐶ℐ2
2 = {(𝑎)ℐ1} for any ℐ1 over 𝒦,

any data update 𝒜′ on 𝒦 and any ℐ2 over 𝒦/𝒜′.

Proof. (sketch) By induction on the structure of the concept 𝐶2 generated by ToRE(𝑎,𝑅𝑡𝑖, id ,𝒦) for

some 𝑅𝑡𝑖. The invariant of the structural induction is {Pf .Pf ′ | Pf ′ ∈ Pfs(𝑅𝑡)} ⊆ Pfs(𝑅𝑡𝑖) where

𝑅𝑡 and Pf are the second and third arguments of the recursive calls to ToRE in Definition 4. Then in

the first base case 𝒦 |= 𝑎 : ∃Pf.A holds as Con(𝑅𝑡𝑖) ⊑ ∃Pf.A and in the second and third case we

have Pf ∈ Pfs(𝑅𝑡𝑖) and thus, due to the requirement 𝒦 |= (Con(𝑅𝑡𝑖),Pf) for all Pf ∈ Pfs(𝑅𝑡𝑖) and

condition (4), we get Pf reaches the same constant 𝑎′ starting from 𝑎 in ℐ2 as it reached in ℐ1 (when

constructing 𝐶2 using ToRE).

Recall that logical consequence for subsumptions is decidable. Thus, by Theorem 2, the only out-

standing computational issue with ChooseRE(𝑎,𝐶1,𝒦) concerns logical consequence for dynamic

constraints, that is, to determine if 𝒦 |= (𝐶,Pf) for some 𝒦, 𝐶 and Pf . To this end, we define two

inference axioms:

𝒦 |= (𝐶1,Pf), 𝒦 |= 𝐶2 ⊑ 𝐶1

𝒦 |= (𝐶2,Pf)
(6)

𝒦 |= (𝐶1,Pf1), 𝒦 |= 𝐶1 ⊑ ∃Pf1.𝐶2, 𝒦 |= (𝐶2,Pf2)

𝒦 |= (𝐶1,Pf1 .Pf2)
(7)

A sound procedure to decide if 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) |= (𝐶,Pf) based on these axioms can operate by

first checking if 𝐶 is not satisfiable or if Pf is id and returning true if this is the case. If 𝐶 is satisfiable

and Pf is not id , the procedure can then proceed in an iterative manner on the sequence of feature

names occurring in Pf . In particular, if Pf has the form 𝑓.Pf ′, check if there exists a 𝐶1 and 𝐶2 where

(𝐶1, 𝑓) ∈ 𝒲 , 𝒦 |= 𝐶 ⊑ 𝐶1 and 𝒦 |= 𝐶1 ⊑ ∃𝑓.𝐶2, and then recurse on deciding if 𝒦 |= (𝐶2,Pf
′) if

Pf ′ is not id .

4. Discussion

4.1. On UNA and Counting

As with individual names that are not literal values for which the UNA applies, referring expressions

can in principle co-refer to the same object in a structure for a given 𝒦. This was indeed the case in our

introductory example (2):

{rob} PERSON ⊓ ∃𝑠𝑠𝑛.{1234} STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321} EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}

On the other hand, literal values (elements of D) will be distinct since we have assumed the UNA for

literal values. Hence, referring expressions in ℒ(⟨?⟩) will inherit this property. In the following we

show how the UNA can be lifted to more complex referring expression types. In this way we ensure

that referring expressions that inhabit these types also obey this lifted variant of UNA: syntactically

distinct referring expressions must always refer to distinct domain elements. The following condition

on referring expression types lifts UNA to more complex referring expression types:

• Let Norm(𝑅𝑡) = 𝑅𝑡1; . . . ;𝑅𝑡𝑘 be “{?}”-free referring expression type such that 𝒦 |= Con(𝑅𝑡𝑖)⊓
Con(𝑅𝑡𝑗) ⊑ ⊥ for all 𝑖 < 𝑗 ≤ 𝑘. Then ℒ(𝑅𝑡) obeys lifted UNA.

Note that, e.g., stronger lower bounds for counting are enabled by detecting lifted UNA.

4.2. On Guaranteeing the Existence of Referring Expressions

The procedure for choosing a referring expression in Definition 4 may fail to return an appropriate

referring expression. We focus on the situation in which the reason for failure is entirely due to where

ToRE(𝑎,𝑅𝑡𝑖,𝒦) is not defined, i.e., where 𝒦 does not entail sufficiently many facts about the individual

𝑎 in question.

One can strengthen definition (4) of the semantics of a dynamic constraint (𝐶,Pf) to ensure, whenever

𝒦 |= 𝐶(𝑎) become true, ToRE(𝑎,𝑅𝑡𝑖,𝒦) will then succeed and produces a referring expression in

ℒ(𝑅𝑡𝑖) that refers to 𝑎 with the duration 𝐶 . This additional requirement for (𝐶,Pf) is as follows:

for any ℐ1 over 𝒦, ℐ2 over 𝒦/𝒜 and individual 𝑎1, if (𝑎1)
ℐ1 ̸∈ 𝐶ℐ1

and

(𝑎1)
ℐ2 ∈ 𝐶ℐ2

then there is 𝑎2 such that Pfℐ2((𝑎1)
ℐ2) = (𝑎2)

ℐ2
.

(8)

Note that we still require 𝒦 to be durable, in particular that the following holds:

𝒦 |= (Con(𝑅𝑡𝑖),Pf), for 1 ≤ 𝑖 ≤ 𝑘 and all Pf ∈ Pfs(𝑅𝑡𝑖),

and that these now satisfy both conditions (4) and (8). In addition, we need to require that for Pf ∈
LitPfs(𝑅𝑡𝑖) the constant 𝑎2 in (8) is in D (i.e., the path ends in a literal as prescribed by 𝑅𝑡𝑖). The

auxiliary function LitPfs is defined as follows:

LitPfs(A)= { }
LitPfs({?})= { }
LitPfs(⟨?⟩)= {id}

LitPfs(∃Pf ′.𝑅𝑡)= {Pf ′ .Pf | Pf ∈ LitPfs(𝑅𝑡)}
LitPfs(𝑅𝑡1 ⊓𝑅𝑡1)= LitPfs(𝑅𝑡1) ∪ LitPfs(𝑅𝑡2)

With this stronger requirement, ToRE(𝑎,𝑅𝑡𝑖,𝒦) always returns an appropriate referring expression

for any 𝑎 that will persist as long as 𝐶(𝑎) holds. Hence, evolving 𝒦 via data updates starting from an

empty ABox guarantees the existence of referring expressions for any individual for which such an

expression can exist.

4.3. Summary Comments

We have developed dynamic constraints—constraints on allowed ABox changes—that make referring

expressions durable relative to concept membership of the objects they identify. This way we can

guarantee that, e.g., the value of the feature snum can be used to identify PERSONs as long as they are

STUDENTs, but ceases to be reliable when a PERSON ceases to be a STUDENT (and we have to revert

to other ways of identifying such objects). This durability of referring expressions relative to concept

membership has many applications, for example, when one considers physical representation of such

objects in multi-level storage systems (such as caches). We also introduced conditions under which

the existence of appropriate referring expressions is guaranteed for all objects belonging to a given

concept description. Last, we studied how UNA for constant symbols can be lifted to complex referring

expressions.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] S. McIntyre, D. Toman, G. E. Weddell, FunDL - A family of feature-based description logics, with

applications in querying structured data sources, in: Description Logic, Theory Combination, and

All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday, 2019, pp. 404–430.

[2] A. Borgida, D. Toman, G. Weddell, On referring expressions in query answering over first order

knowledge bases, in: Proc. Principles of Knowledge Representation and Reasoning, KR 2016, 2016,

pp. 319–328.

[3] B. Russell, On denoting, Mind 14 (1905) 479–493. URL: http://www.jstor.org/stable/2248381.

[4] A. Borgida, E. Franconi, D. Toman, G. E. Weddell, Understanding document data sources using

ontologies with referring expressions, in: AI 2022: Advances in Artificial Intelligence, volume 13728

of LNCS, Springer, 2022, pp. 367–380.

[5] D. Toman, G. E. Weddell, On Keys and Functional Dependencies as First-Class Citizens in Description

Logics, J. Aut. Reasoning 40 (2008) 117–132.

[6] S. McIntyre, A. Borgida, D. Toman, G. E. Weddell, On limited conjunctions and partial features in

parameter-tractable feature logics, in: The Thirty-Third AAAI Conference on Artificial Intelligence,

AAAI 2019, 2019, pp. 2995–3002.

[7] J. Pound, D. Toman, G. E. Weddell, J. Wu, Query algebra and query optimization for concept assertion

retrieval, in: V. Haarslev, D. Toman, G. E. Weddell (Eds.), Proceedings of the 23rd International

Workshop on Description Logics (DL 2010), volume 573 of CEUR Workshop Proceedings, 2010.

[8] J. Pound, D. Toman, G. E. Weddell, J. Wu, An assertion retrieval algebra for object queries over

knowledge bases, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd International Joint

Conference on Artificial Intelligence, 2011, IJCAI/AAAI, 2011, pp. 1051–1056.

http://www.jstor.org/stable/2248381

	1 Introduction
	2 Definitions
	3 Ensuring Durations for Referring Expressions
	4 Discussion
	4.1 On UNA and Counting
	4.2 On Guaranteeing the Existence of Referring Expressions
	4.3 Summary Comments

