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1. Introduction

This extended abstract summarizes results from [1], where we propose a practical method for learning
axioms in a Description Logic (DL) ontology using techniques from probably approximately correct (PAC)
learning. The goal is to support ontology-mediated query answering (OMQA) [2, 3] by approximating
an unknown TBox 7 through interaction with a domain expert oracle that can decide whether a concept
inclusion (CI) C' C D is entailed by 7. Such an oracle may be instantiated in different ways—for
example, as a human domain expert; a large language model (LLM); a dataset representative of the
domain; or a large, complex ontology from which a smaller, focused one is to be distilled.

Our method learns subsumption relationships among a finite set C of concept descriptions, called the
base set. This base set constrains the search space of candidate axioms and can be chosen to suit the
application—e.g., all concept names, combinations of concept names with existential restrictions up to a
fixed role depth, or a tailored selection relevant to the user. We do not fix a particular DL or a set of
constructors; our results apply to arbitrary DLs that support conjunction.

The algorithm also employs a sampling oracle that generates CIs over C according to a fixed but
arbitrary distribution D. Given €, 0 € (0, 1), it runs in time polynomial in the relevant parameters and
returns a TBox 7 such that, with probability at least 1 —  (over the algorithm’s random choices), the
probability (under D) that a CI over C is entailed by exactly one of 7 and 7 is at most e.

We also show how to direct the learning process toward subsumptions that are particularly relevant
to a given ABox A, by adapting the distribution D. This enables the learned axioms to improve recall in
query answering over incomplete datasets. Experimental evaluation on benchmark ontologies confirms
the effectiveness of our approach.

For related work on ontology learning in DLs, see [4, 5, 6, 7, 8, 9, 10, 11, 12].

2. PAC Learning of Concept Inclusions

Let 7 be a TBox, C be a base set of concept descriptions over its signature, and D be a probability
distribution on CIs of the form [ | X C D, where X C C and D € C. For 0 < € < 1, we say that a set
T of such Cls is an e-C-approximation of T if

Pr(q|(TEq) < (T'#q) <o

where ¢ is such a CI. 7" is called a lower e-C-approximation if T = T
We base our solution on an algorithm for exactly learning propositional Horn formulas [13], which
requires two types of queries: membership and equivalence queries. We simulate membership queries
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using subsumption queries. We modify the equivalence oracle so that, instead of returning a model of
exactly one of the two non-equivalent Horn formulas, it returns the GCI corresponding to an Horn
clause that is entailed by exactly one of the two formulas. A probably approximately correct algorithm
is obtained by replacing each call to this equivalence oracle with an appropriate number of calls to a
suitable sampling oracle. Please see [1] for more details.

3. Varying the Query Distribution

Our definition of approximation involves a distribution D of subsumption queries. This distribution is
meant to reflect the interests of the user of the ontology we are trying to learn. In a basic scenario, we
may assume that users explicitly pose subsumption queries to the ontology and that D is the distribution
of these queries.

A more practically relevant scenario is given by ontology-mediated query answering [2, 3]: Given a
query (a concept description) ¢ and a knowledge base K = (7, .A), find all instances of ¢ in K. The
TBox 7 may be only partially known or not known at all, in which case we may use our PAC algorithm
to learn its approximation through interaction with an expert or from a representative dataset. In
this setting, an approximation may be considered good if it ensures high precision and recall of query
answering.

Definition 1. Let K = (T, .A) be a knowledge base, T’ be a TBox, and q be a query. Using certain-answer
semantics [2], we define cert(q, K) as the set of individual names a from A satisfying K = q(a). The
precision and recall of T’ for q on K are, respectively,

] ’ Cert(qv (Tlv A)) m Cert(‘b lC)‘ ! ’ Cert(q7 (T/a A)) m Cert(Qv IC)‘
q _ q _
PR = @Ay, R TR = [cert(q, K)| '

If the denominator is 0, then the value of the corresponding measure is defined to be 1.

There are two standard ways to aggregate precision and recall for several queries: macroaveraging
and microaveraging [14].

Definition 2. Let K = (T, .A) be a knowledge base, T’ be a TBox, and Q be a finite set of queries. The
macro precision and recall of T’ for Q on K are the average values of the precision and recall over all
queries from Q):

PUT', K
ZQEQ ( ) and RY

ZqEQ Rq (’7’/7 IC)
‘Q| macro *

Pglacro T/7IC =
LY @

(T'.K) =

The micro precision P%. (77, K) and micro recall RY

micro micro

> qeq | cert(q, (T, A)) Neert(q, (T, A))| nd > qeq | cert(q, (T, A)) Neert(q, (T, A))|
>qeq | cert(q, (T7, A))| > geq | cert(q, (T, A))|

The goal in our OMQA scenario is to learn an approximation 7’ of 7 with high values of the
macro/micro precision and recall for some set Q of queries. If 77 is a lower approximation of 7, then
the precision for every query is 1, and so are the macro and micro precision. In this case, we aim to
maximize the recall. Next we describe a heuristic approach to choosing the distribution of subsumption
queries in the learning algorithm so as to increase the micro recall on a given ABox A.

Consider a subsumption query [ | X T D. If we care about micro recall, it seems particularly important
to ask this query whenever [ | X has a lot of instances in Ky = (&, A), since a positive answer to the
query would then allow us to correctly assert D(z) for many individuals x. Therefore, a reasonable
approach seems to be to generate the left-hand sides [ | X’ of subsumption queries proportionally to
| cert([ | X, Ko)|- Regarding the right-hand sides, if D(x) rarely occurs in A, this may be due to two
reasons: D is a rare concept, or D is a generalization of other concepts and D(x) can be inferred

(T',K) are defined, respectively, as




Table 1
€ and lower e-approximations for the ore_ont_5596 ontology

€ e-approximation lower e-approximation
A-induced uniform A-induced
Macro P/R | Micro P/R | |T'| | Macro/Micro R | |T'| | Macro/Micro R | |T’|
¢y - 1.0/ 0.57 1.0/0.10 0
0.1 1.0/0.75 1.0/0.70 7.4 0.71/0.62 24.4 0.75/0.70 6.6
0.01 0.99/0.98 0.99/0.99 | 24.8 0.78 /0.69 30.6 0.97/0.98 21.2
0.005 1.0/ 0.98 1.0/ 0.99 26 0.76 / 0.71 33 0.98/0.99 25.8
Cy - 1.0/0.73 1.0/0.36 0
0.1 0.98/0.84 0.97/0.83 7.4 0.85/0.80 28.4 0.82/0.80 6.2
0.01 0.99/0.98 0.99/0.99 | 30.8 0.85/0.81 38 0.97/0.98 29.4
0.005 0.99/0.99 0.99/0.99 | 37.8 0.87/0.84 41 0.99/0.99 34.8

from the target TBox 7 together with what is explicitly asserted in .A about z. We cannot tell which
of the two it is; so we may want to assume the second case to be on the safe side. Then, we may
want to generate the right-hand sides D of subsumption queries with probabilities proportional to
|Ind(A) \ cert(D, Ko)|, i.e., to the number of individuals that are not (yet) known to be instances of D.

A problem with this approach is that B T C' cannot be learned if B has no instances in Ky. To
address this, we need to change the distribution on the fly, so as to take into account what has already
been learned. Thus, having learned A C B, we update Iy by replacing 7o = @ with 71 = {A C B}
and recalculate the probabilities involved in sampling premises with respect to K1 = (71,.4). Now,
| cert(B, K1)| > 0, which makes it possible to learn B C C.

This was the method used in the experiments we presented in [1]. However, it prioritizes concepts
[ ] X with a large number of instances in .A even when these instances are the same for many different
X. This may sometimes negatively affect precision or recall for certain concepts in C. Instead, when
sampling left-hand sides of Cls, we should try to maximize the coverage of individuals in .A. Therefore, in
the experiments presented here, we adopt the following two-stage approach: first sample an individual
a from A uniformly at random and then sample a subset of {C € C | a € cert(C, K;)} also uniformly
at random.

4. Experimental Evaluation

We implemented our approach in a prototype tool, PAcLo’, and evaluated it in the OMQA context. The
expert was simulated using the target TBox 7 i.e., the response to a subsumption query ¢ is positive if
and only if 7 = ¢. Subsumption queries were answered with the ELK reasoner [15]. We set § = 0.001
to ensure a high probability of obtaining the desired approximation and averaged results over five runs.
Each setting is defined by a signature, an approximation type (e- or lower e-approximation), and a query
distribution D (uniform or A-induced, as described in the previous section).

We tested on six KBs: four generated with OWL2Bench [16] and two from the ORE 2015 reposi-
tory [17]. Due to space constraints, we report results here only for the KB ore_ont_5596; results for the
other KBs can be found in [1]. The ore_ont 5596 KB contains 58 class names, 33 role names, 322 GClIs,
112,320 individuals, 32,990 class assertions and 190,149 role assertions. Two base sets were considered:
C; with all class names and Cs that adds 3r.T for each role r, yielding 93 concepts in total. We measure
the macro and micro recall on the query set () = C;. The results are shown in Table 1.

For each of C; and Co, the first line represents the precision and recall of the empty 77, i.e., the quality
of query answering based only on the ABox. This serves our baseline. We omit e-approximations with
the uniform distribution, since it provides hardly any improvement over the baseline. The best macro
and micro recall values for each € are shown in bold. The column |7”| contains the number of axioms
learned.

'https://github.com/sertkaya/paclo
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Overall, A-induced distributions yield substantially higher recall, particularly for micro recall. Lower
approximations typically have slightly reduced recall, but may be preferable when perfect precision
is required. Lower approximations for the uniform distribution do show some improvement over the
baseline, but usually smaller than those for the A-induced distribution and with larger sets of GClIs.
Note that the perfect recall may not be achievable with a fixed base set C, since 7 may contain axioms
mixing concepts from and outside C.
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