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Abstract

We propose a method for generating evaluation datasets for ABox abduction algorithms, using diverse real-world
knowledge bases, logical consequences as observations to ensure meaningfulness, justifications to guarantee
explanations exist, and ontology modules to constrain the search space.
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1. Introduction

Abduction [1, 2] is a form of inference that explains an observation by identifying its possible causes
(explanations). We focus specifically on ABox abduction, where both the observation and its explanations
consist of ABox assertions. To enable meaningful comparison and evaluation of ABox abduction
algorithms, a suitable dataset of ABox abduction problems is needed. Such a dataset should include
multiple real-world knowledge bases, each with meaningful observations. For each observation, it
should provide abducibles (a set representing the search space) of varying sizes. Additionally, the
ABox abduction problems should vary in the number and length of explanations. Datasets in existing
evaluations suffer from several limitations, including use of only one knowledge base [3]; artificial
automatically generated observations [3, 4, 5]; observations that may have no explanations [4]; limited
diversity in explanation length and number [3]; and weak constraints on the search space [6, 7, 3, 4, 5].
Building on prior approaches, we have begun constructing an evaluation dataset that addresses these
shortcomings.

2. Construction of a Robust Evaluation Dataset

To generate meaningful, non-artificial observations and reduce the search space without losing expla-
nations, we propose two methods: one for generating observations (applicable to any knowledge base)
and another for generating abducibles (applicable to any ABox abduction problem). For simplicity, the
methods are defined for atomic concept assertions but extend easily to all atomic assertions and their
complements. Applying these methods to diverse real-world knowledge bases enables the construction
of a robust evaluation dataset.

Real-World Knowledge Bases: Koopmann et al. [4] proposed to use the 2015 OWL Reasoner Com-
petition Corpus'[8], providing 1,920 diverse real-world ontologies, as a suitable set of knowledge bases
for the evaluation of abduction algorithms. To focus only on relevant ontologies with the potential to
produce interesting problems, we defined the following requirements: consistency; consistency check
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time < 30 seconds; individual count > 1. After applying these requirements, we obtained 865 ontologies
as candidate knowledge bases.

Consequences as Observations: Although many knowledge bases are available, we are not aware of
real-world use cases with predefined observations; therefore, observations must be generated separately.
We aim to generate meaningful observations O by selecting logical consequences of a knowledge base
K. To ensure explanatoriness (KC [~ O), each K must be modified to no longer entail observation O.
This is done by removing at least one assertion from each justification of O, i.e., from a minimal set of
axioms responsible for the entailment of O [9]. Our approach is described in Algorithm 1.

The core idea is to “corrupt” KL by removing assertions that can later be recovered as explanations
through ABox abduction. As ABox abduction yields only ABox assertions, other axiom types cannot be
removed during the modification of .

Algorithm 1 Generating ABox Abduction Problems

Input: knowledge base
Output: a set of ABox abduction problems P
1: Ps + {}
2: concequences < {A(%) |t € N1, A € No,K = A(i), A(z) ¢ K} > generate observations
3: for A(z) in concequences do > compute observation justifications
4: J(A(%)) < get the ABox parts of justifications for A(¢) using OWLExplanation
5: end for
6
7
8

: for A(%) in concequences do > generate ABox abduction problems
n < get the size of the largest justification in J(A(¢))
: for x in (1,n) do
9: Kz +— K

10: for just in J(A(7)) do

11: toDelete + randomly select min(zx, |just|) assertions from just

12: Ke < Kz \ toDelete > modify K
13: end for

14: Ps — Ps U{P = (K, A(2))}

15: end for

16: end for

17: return P,

To explore a wider range of possibilities, we generated multiple modified knowledge bases for each
observation by progressively removing more assertions, aiming to produce different explanations for
the same observation.

Module-Based Abducibles: During evaluation, it is useful to examine how algorithms perform
with search spaces of varying sizes. However, reducing the search space requires a careful strategy to
preserve explanations.

We propose using module extraction [10, 11], a technique that extracts a meaningful fragment of an
ontology while preserving all axioms relevant to the complete meaning of a given signature. This tech-
nique can be used to generate module abducibles, i.e., assertions relevant to an observation O, excluding
symbols unlikely to appear in explanations: Abdyeque = {A(7) | i € Ni, A € N¢ from X(module)}.
Specifically, the T-module, which includes all subclasses of the atomic classes in the signature of O, as
explanations typically involve concepts subsumed by the concept in O.

To differentiate within Abd,dqule When generating abducibles of a given size, we prioritise assertions
involving individuals from O, as they are more likely to appear in explanations.

3. Analysis of Generated Inputs

Generating ABox Abduction Problems: The observation generation process applied to 865 knowl-
edge bases resulted in 37,042 ABox abduction problems. The largest ABox part of a justification
contained 12 assertions, and the maximum number of justifications for an observation was 38 (all with
a single-assertion ABox part). Over 90% of observations had one justification with a single-element
ABox part.



Table 1
ABox Abduction Problem Test Sample

ABox abd. problems  |Abddefauit|  |Abdmodue] |Se|  (lengthn: |[{€ ] € € Sg, |E] = n})

ont155_obs46 31,078 6,396 58 (1:58)
ont155_obs167 31,078 20,090 192 (1:192)
ont394_obs27 3,760 2,544 90 (1:90)
ont568_obs61 40,132 8,509 17 (1:17)
ont934_obs01 16,023 15 876 4 (1), (3:2), (4:1)
ont1117_obs45 599,844 36 5 (1:5)
Table 2
Explanation Coverage for Different Abducibles Generation Methods
Generation |Abd|
method 10 25 50 100 250 500
(a) 55% 58% 67% 79% 88% 88%
(b) 4% 12% 18% 18% 20% 23%
(c) 1% 1% 0% 1% 2% 4%

In theory, more justifications should lead to more explanations, and justifications with more assertions
should lead to longer explanations. In practice, justifications may contain complex assertions that
cannot be reconstructed by algorithms limited to atomic assertions and their complements. Additionally,
observations may have explanations beyond those found in the justifications. Therefore, given the large
number of generated problems, identifying those with interesting properties is challenging without
additional information.

Generating Abducibles: To analyse abducible generation, we selected a sample of ABox abduction
problems (Table 1) by applying MergeXplain (MXP)? [13] with Abdgetaurr = {A(i) | A € Ng,i €
Ny from X( U O)} to a random subset of the generated problems. MergeXplain returns a set of expla-
nations, Sg, containing all explanations of length 1 and, if present, at least one additional explanation of
a greater length. We selected the final sample based on the number and length of explanations. Notably,
only one problem (ont934_obs01) in the subset produced explanations of varying lengths, including
some longer than one.

For each problem in the sample, we generated module abducibles, Abd,,,quie, Which on average re-
duced the search space to 46%. Abd,,oquie consistently included all explanations found by MergeXplain,
ensuring none were lost.

To generate abducibles of varying sizes, three methods were applied: (a) module abducibles prioritising
assertions with individuals from the observation (our proposed approach), (b) module abducibles without
prioritisation, and (c) completely random selection. Each method was used to generate abducibles of
sizes 10, 25, 50, 100, 250, and 500, and was run three times per size to obtain averaged results. For each

method and size, we report the percentage of explanation assertions covered by the generated Abd
lexpl. assertions in Abd]|
min(]Abd|,|expl. assertions])

most 10 explanation assertions, and the maximum possible coverage is bounded by the total number of
explanation assertions). The results (Table 2) were averaged over all problems and runs. Method (a)
was the most successful, consistently generating sets that covered the highest number of explanation
assertions across all sizes. At sizes 250 and 500, it achieved full coverage for all problems except
ont934_obs01, where it generated no more than two explanation assertions per Abd set. Still, even on
this problem, it outperformed the other methods, which on average generated none. Out of 108 runs,
the generated set contained no explanation assertions in 5 cases for method (a) (all for ont934_obs01),
57 for method (b), and 78 for method (c).

sets, relative to their size, computed as (e.g., a set of size 10 can cover at

*MXP was run using CATS [12]: https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver


https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver

4. Discussion and Outlook

The dataset generation process needs refinement, especially in producing ABox abduction problems.
To narrow down the generated problems and focus on the most relevant ones, we plan to analyse the
ABox parts of justifications. Since many observations produce only single-assertion explanations, we
aim to use observations composed of multiple assertions.

In contrast, for generating abducibles, the module-based approach prioritising individuals from the
observation seems promising.
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