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Abstract

In this paper we present three results concerning the unification problem in the description logic &% ,. The
logic # %, is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and bottom
constructors, without any form of negation. Subsumption in & Z, can be decided in polynomial time. Although
we do not solve the unification problem itself, we establish three related findings. First, we show that unification
in &, is of type nullary, a result inspired by a similar theorem for the modal logic K. Second, we reduce the
unification problem in &, to the unification problem in &%, equipped with a forward TBox. Third, we
revisit the known result that the matching problem in &%, can be solved in polynomial time and provide a new
algorithm for it.
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1. Introduction

In this paper, we focus on a small description logic, # £, which extends the constructors of its sister
logic & £, by adding the bottom concept. We present three results: the unification type of # &, is
nullary, inspired by a similar result for the modal logic K (see [1]); the unification problem in %%,
can be reduced to the one in # %, with a special TBox, corresponding to [2]; and we present a simple-
to-implement algorithm which solves the matching problem in %, in polynomial time.

2. The description logics # <, and ¥ <,

All notions in this chapter are introduced for %, . To obtain their equivalents in # %, simply omit
1. In the description logic # %, (complex) concepts are generated from two disjoint sets N and Np,
reffered to as concept names and role names, by the following grammar:
C::=T|L|A|CRNC|Vr.C,where A€ Np,r € Ni.

An interpretation of concepts in %, is a pair I = (Al, ), where Al is a non-empty domain of
elements and -/ is an interpreting function defined on concept names and role names as follow: T/ = Al;
1l =@; Al c Al forany A € Np; ! € Al x AL, for any r € Ni, and extended to all complex concepts
in the usual way: (Cn D) = cIn Dl (vrC)! = {d € AT | Ve € Al[(d,e) € ¥l - e € CT]}
(W.O)! = (VrVry...¥r,.O) where v =r; ...r, € Ng .

A concept may be reduced with the following reductions to an equivalent concept (interpreted by the
same set in any interpretation): Cr1T, TMC ~» C;CrL, LMC ~» L;Vr.T ~ T; Vr.(CnD) ~ Vr.CrVr.D.
We call a concept C reduced iff none of the reduction rules applies.

For convenience, we will use the notation Vv.a for the concept of the form: Vri(Vry(...(Vr,.2))),
where v =ry ..., and « is either T or L or a concept name A. A concept of this form is called a particle.
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The word v over Ny is called the role word of the particle Vv.a. For role words v,v’, by v < v/ we
denote that v is a prefix of v’.

It is easy to see that any concept is equivalent to a conjunction of particles, C = V.o M-+ 11 V.01,
where vy, ..., v, are possibly empty words over Ny. In fact because of properties of conjunction, we
identify a reduced concept with a set of particles in such a conjunction.

Let C be an & £, -reduced concept. We define rd(C) (role depth) and size(C) (size) recursively: if
C=AorC=TorC = 1, then rd(C) = size(C) = 0; if C = D N E, then rd(C) = max({rd(D),rd(E)})
and size(C) = size(D) + size(E); if C = Vr.C’, rd(C) = rd(C’) + 1 and size(C) = size(C’) + 1.

Subsumption between concepts C C D obtains iff for all interpretations I, C! C D!. Equivalence:
C=Diff CC Dand D C C. For any concept C, we have L C CandC E T.In #Z, let C and
D ={Py,..., P,} be reduced concepts. Then C C D iif for every P € D, one of the following holds:

(1) P C, (2) P = Vv.a, where « is a concept name or L, and there exists Vv'.L € C such that v <.

3. Unification problem in &,

In order to define a unification problem, we partition the set of concept names N into two disjoint
sets: variables (Var) and constants (Cons). A variable is thus a concept name that may be substituted
by any concept while a constant cannot be substituted.

A substitution is a mapping from Var to the set of all # £ | -concepts. It is extended to all concepts
in the usual way. The unification problem (unification problem) is defined by its input
I = {C; C° Dy,...,C, C° D,}; and the output is “yes” if there is a substitution that makes these
subsumptions true, or “no” otherwise. Without loss of generality, we can assume that Dy, ..., D, are
particles. A substitution o is a unifier for the unification problem I' = {C; c’ P,..,C, C° P}iff
o(Cy) C o(Py),...,0(C,) E o(Py,). In this case, we say that the problem is unifiable.

Let I’ be an unification problem with the set of variables V and unifiers o,y. We say that o is more
general than y (or y is less general than o), if there is a substitution 7 such that y(X) = 7(c(X)), for all
X € V.1f a unifier is more general than any other unifier, we call it a most general unifier (an mgu) of T.

A set IT of unifiers of a given unification problem T' is called a complete set of unifiers if every unifier
of T is less general than some element of I1. For a given unification problem I' we define four unification
types (from "best” to "worst”) based on the existence and cardinality of its complete set. The problem
has unification type: unitary if there exists complete set of unifiers consisting of one unifier o; finitary
if it has finite compete set of unifiers, but has no most general unifier; infinitary if it has an infinite
minimal complete set of unifiers; nullary (or zero) if it has no minimal complete set of unifiers. The
unification type of a logic (¥ &£, in our case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove that # | has nullary unification type by showing that the unification
problem I = {X C’ Vr.X} has no minimal complete set of unifiers. To this end, we introduce the set U
of substitutions consisting of:

oo(X)=1; 0,(X)=XnVrXn..nVr XV, forn>1; o0(X) =T.

One can easily check that 0,(X) C 0,(Vr.X), for each« € N U {T}.

It can also be shown that the set U is complete for I'. Let o be a unifier for T not equal to o and let
0, € U where n = rd(c(X)). Then o(X) = o(0,,(X)).

At this point we know that U is a complete set of unifiers of . To complete the argument, we observe
that there is no minimal complete set of unifiers for I'. It can be easily shown that: g, ; is more general
that 0, but ¢;, is not more general than o;,,, for each n > 0. Using a proof by contradiction we obtain
the result:

Theorem 1. The type of the unification problemT is nullary.



5. Reduction from &, to ¥ %, with a TBox

A FZ, TBox (TBox for short) is a finite set of FZ-subsumptions. A model of a TBox J is an
interpretation I such that Ef. C F!/ forall EC F € J. Let C and D be concepts. We say that C is
subsumed by D w.r.t. a TBox I (written C Cg D) if C! C D! for each model I of 7. We say that o is a
unifier of a unification problem I w.r.t. a TBox  if 6(C) Cg o(D) foreach CC D €T.

Let C be an | concept, and B be a constant, that does not appear in C. By Cg we denote the
F £Ly-concept obtained from C by replacing all occurrences of L with the constant B. For s = C C D,
sg = Cg T Dg. Given a finite set I' of # <, -subsumptions, we define the corresponding set I'g of
F Zy-subsumptions by I'g = {sg | s € T'}. For a given finite set of subsumptions I', No(T) is the set of
all concept names occuring in I', Ng(I') is the set of all role names occuring in I'. For a given signature
> =< 8¢, Sg >, where S is a finite subset of N and Sy, is a finite subset of Ny, we define the following

TBox: 9”32 ={BLC A| forevery A € Sc}U{B C Vr.B| foreveryr € Sg}. To simplify notation, we

henceforth denote 7, B<NC({S})’NR({S})> as I3, and express < No(I), Nx(T') > as 2(I).

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions between con-
cept names:

Theorem 2. An FZ, -subsumption s of the form C C D obtains iff Cg Eg Dp.

If o is a unifier of an # £, unification problem I' of the minimal size where size of ¢ is sum of
{size(c(X)) where X is in domain of ¢}, then the signature of ¢ is contained in X(T'). Therefore:

Theorem 3. LetT be a unification problem in # £, . ThenT has an ¥ < -unifier iff T'g has an
F Ly-unifier w.r.t. the TBox 932(F).

We showed that the unification problem in %, can be reduced to a unification problem in &%
with a TBox. This does not give us a solution for the unification in &% |, since unification in # %
with a TBox is not solved. However, it show that the unification problem in & %, with a TBox is more
difficult than unification in # &, .

6. Matching in & | is polynomial

The matching problem is a special kind of a unification problem C =7 D, where C contains no variables.
In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-complete in & %,
whereas for a restricted form of TBoxes, namely forward TBoxes, the complexity drops to PSpace. We
can transfer this result to %, via Theorem 3, obtaining that matching in %, is in PSpace. In
[4] (see Theorem 3.8) it was shown that matching in # &, is polynomial. Here, we present another
simple-to-implement algorithm which solves the matching problem in %%, in polynomial time.

Algorithm 1 Matching

Input: C =’ D, where C does not contain variables, D = EMVv,. X, M- mMVv,.X,, where E does not contain variables, X, ..., X,
are (not necessarily different) variables, and v, ..., v, are words over Ny.
Output: True if there is a matcher, False otherwise.

procedure MarcHING(C =’ D)
if C Z E then
‘ return False
else
for all Vv.A € C such that Vv.A € E and there is no Vv'.L € E where v <v do
Find Vv..X; such that v < v (v, is a prefix of v)
L if no Vv.X; is found then
| return False

L return True

A A A S o T

One can see that the algorithm must terminate in time polynomial in the size of the problem. In order
to justify the correctness of Algorithm 1 we define a special substitution &. For every X occurring in



D, 6(X) := [ {Vua | Vv.X € Dand Vvu.a € C where «a is a constant or 1}. Next we prove that a
matching problem C =7 D has a unifier iff the substitution & is a unifier. The correctness follows from
the fact that the algorithm computes the substitution &.

7. Conclusions

We have presented three results related to the unification problem in %, . The unification type of
F L, turns out to be nullary. Hence, # £, has the same type as the description logics €<, # %,
and o/ €. The second result, reduction of the unification problem in &%, to unification in ¥ %
modulo a TBox 7 BZ implies that the unification problem in # %, is easier than the one in %, with a
TBox. It is even easier than the unification in F %, with a forward TBox. As the third result, we have
presented a simple algorithm that solves matching in polynomial time.
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