CEUR-WS.org/Vol-4091/paper30.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

Around Unification in &, - Three Related Problems
(Extended Abstract)

Barbara Morawska’, Stawomir Kost!

!Institute of Computer Science, University of Opole, Poland

Abstract

In this paper we present three results concerning the unification problem in the description logic &% ,. The
logic # %, is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and bottom
constructors, without any form of negation. Subsumption in & Z, can be decided in polynomial time. Although
we do not solve the unification problem itself, we establish three related findings. First, we show that unification
in &, is of type nullary, a result inspired by a similar theorem for the modal logic K. Second, we reduce the
unification problem in &, to the unification problem in &%, equipped with a forward TBox. Third, we
revisit the known result that the matching problem in &%, can be solved in polynomial time and provide a new
algorithm for it.

Keywords
description logic, unification type

1. Introduction

In this paper, we focus on a small description logic, # £, which extends the constructors of its sister
logic & £, by adding the bottom concept. We present three results: the unification type of # &, is
nullary, inspired by a similar result for the modal logic K (see [1]); the unification problem in %%,
can be reduced to the one in # %, with a special TBox, corresponding to [2]; and we present a simple-
to-implement algorithm which solves the matching problem in %, in polynomial time.

2. The description logics # <, and ¥ <,

All notions in this chapter are introduced for %, . To obtain their equivalents in # %, simply omit
1. In the description logic # %, (complex) concepts are generated from two disjoint sets N and Np,
reffered to as concept names and role names, by the following grammar:
C::=T|L|A|CRNC|Vr.C,where A€ Np,r € Ni.

An interpretation of concepts in %, is a pair I = (Al,), where Al is a non-empty domain of
elements and -/ is an interpreting function defined on concept names and role names as follow: T/ = Al;
1l =@; Al c Al forany A € Np; ! € Al x AL, for any r € Ni, and extended to all complex concepts
in the usual way: (Cn D) = cIn Dl (vrC)! = {d € AT | Ve € Al[(d,e) € ¥l - e € CT]}
(W.O)! = (VrVry...¥r,.O) where v =r; ...r, € Ng .

A concept may be reduced with the following reductions to an equivalent concept (interpreted by the
same set in any interpretation): Cr1T, TMC ~» C;CrL, LMC ~» L;Vr.T ~ T; Vr.(CnD) ~ Vr.CrVr.D.
We call a concept C reduced iff none of the reduction rules applies.

For convenience, we will use the notation Vv.a for the concept of the form: Vri(Vry(...(Vr,.2))),
where v =ry ..., and « is either T or L or a concept name A. A concept of this form is called a particle.

This research is part of the project No 2022/47/P/ST6/03196 within the POLONEZ BIS programme co-
funded by the National Science Centre and the European Union’s Horizon 2020 research and innovation

* Xk

*
*
*

programme under the Marie Sklodowska-Curie grant agreement No. 945339. For the purpose of Open

* 5k

Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission.

’:Q‘DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland
& barbara.morawska@uni.opole.pl (B. Morawska); skost@uni.opole.pl (S. Kost)

® 0000-0003-4724-7206 (B. Morawska); 0000-0003-1898-9489 (S. Kost)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:barbara.morawska@uni.opole.pl
mailto:skost@uni.opole.pl
https://orcid.org/0000-0003-4724-7206
https://orcid.org/0000-0003-1898-9489
https://creativecommons.org/licenses/by/4.0/deed.en

The word v over Ny is called the role word of the particle Vv.a. For role words v,v’, by v < v/ we
denote that v is a prefix of v’.

It is easy to see that any concept is equivalent to a conjunction of particles, C = V.o M-+ 11 V.01,
where vy, ..., v, are possibly empty words over Ny. In fact because of properties of conjunction, we
identify a reduced concept with a set of particles in such a conjunction.

Let C be an & £, -reduced concept. We define rd(C) (role depth) and size(C) (size) recursively: if
C=AorC=TorC = 1, then rd(C) = size(C) = 0; if C = D N E, then rd(C) = max({rd(D),rd(E)})
and size(C) = size(D) + size(E); if C = Vr.C’, rd(C) = rd(C’) + 1 and size(C) = size(C’) + 1.

Subsumption between concepts C C D obtains iff for all interpretations I, C! C D!. Equivalence:
C=Diff CC Dand D C C. For any concept C, we have L C CandC E T.In #Z, let C and
D ={Py,..., P,} be reduced concepts. Then C C D iif for every P € D, one of the following holds:

(1) P C, (2) P = Vv.a, where « is a concept name or L, and there exists Vv'.L € C such that v <.

3. Unification problem in &,

In order to define a unification problem, we partition the set of concept names N into two disjoint
sets: variables (Var) and constants (Cons). A variable is thus a concept name that may be substituted
by any concept while a constant cannot be substituted.

A substitution is a mapping from Var to the set of all # £ | -concepts. It is extended to all concepts
in the usual way. The unification problem (unification problem) is defined by its input
I = {C; C° Dy,...,C, C° D,}; and the output is “yes” if there is a substitution that makes these
subsumptions true, or “no” otherwise. Without loss of generality, we can assume that Dy, ..., D, are
particles. A substitution o is a unifier for the unification problem I' = {C; c’ P,..,C, C° P}iff
o(Cy) C o(Py),...,0(C,) E o(Py,). In this case, we say that the problem is unifiable.

Let I’ be an unification problem with the set of variables V and unifiers o,y. We say that o is more
general than y (or y is less general than o), if there is a substitution 7 such that y(X) = 7(c(X)), for all
X € V.1f a unifier is more general than any other unifier, we call it a most general unifier (an mgu) of T.

A set IT of unifiers of a given unification problem T' is called a complete set of unifiers if every unifier
of T is less general than some element of I1. For a given unification problem I' we define four unification
types (from "best” to "worst”) based on the existence and cardinality of its complete set. The problem
has unification type: unitary if there exists complete set of unifiers consisting of one unifier o; finitary
if it has finite compete set of unifiers, but has no most general unifier; infinitary if it has an infinite
minimal complete set of unifiers; nullary (or zero) if it has no minimal complete set of unifiers. The
unification type of a logic (¥ &£, in our case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove that # | has nullary unification type by showing that the unification
problem I = {X C’ Vr.X} has no minimal complete set of unifiers. To this end, we introduce the set U
of substitutions consisting of:

oo(X)=1; 0,(X)=XnVrXn..nVr XV, forn>1; o0(X) =T.

One can easily check that 0,(X) C 0,(Vr.X), for each« € N U {T}.

It can also be shown that the set U is complete for I'. Let o be a unifier for T not equal to o and let
0, € U where n = rd(c(X)). Then o(X) = o(0,,(X)).

At this point we know that U is a complete set of unifiers of . To complete the argument, we observe
that there is no minimal complete set of unifiers for I'. It can be easily shown that: g, ; is more general
that 0, but ¢;, is not more general than o;,,, for each n > 0. Using a proof by contradiction we obtain
the result:

Theorem 1. The type of the unification problemT is nullary.

5. Reduction from &, to ¥ %, with a TBox

A FZ, TBox (TBox for short) is a finite set of FZ-subsumptions. A model of a TBox J is an
interpretation I such that Ef. C F!/ forall EC F € J. Let C and D be concepts. We say that C is
subsumed by D w.r.t. a TBox I (written C Cg D) if C! C D! for each model I of 7. We say that o is a
unifier of a unification problem I w.r.t. a TBox if 6(C) Cg o(D) foreach CC D €T.

Let C be an | concept, and B be a constant, that does not appear in C. By Cg we denote the
F £Ly-concept obtained from C by replacing all occurrences of L with the constant B. For s = C C D,
sg = Cg T Dg. Given a finite set I' of # <, -subsumptions, we define the corresponding set I'g of
F Zy-subsumptions by I'g = {sg | s € T'}. For a given finite set of subsumptions I', No(T) is the set of
all concept names occuring in I', Ng(I') is the set of all role names occuring in I'. For a given signature
> =< 8¢, Sg >, where S is a finite subset of N and Sy, is a finite subset of Ny, we define the following

TBox: 9”32 ={BLC A| forevery A € Sc}U{B C Vr.B| foreveryr € Sg}. To simplify notation, we

henceforth denote 7, B<NC({S})’NR({S})> as I3, and express < No(I), Nx(T') > as 2(I).

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions between con-
cept names:

Theorem 2. An FZ, -subsumption s of the form C C D obtains iff Cg Eg Dp.

If o is a unifier of an # £, unification problem I' of the minimal size where size of ¢ is sum of
{size(c(X)) where X is in domain of ¢}, then the signature of ¢ is contained in X(T'). Therefore:

Theorem 3. LetT be a unification problem in # £, . ThenT has an ¥ < -unifier iff T'g has an
F Ly-unifier w.r.t. the TBox 932(F).

We showed that the unification problem in %, can be reduced to a unification problem in &%
with a TBox. This does not give us a solution for the unification in &% |, since unification in # %
with a TBox is not solved. However, it show that the unification problem in & %, with a TBox is more
difficult than unification in # &, .

6. Matching in & | is polynomial

The matching problem is a special kind of a unification problem C =7 D, where C contains no variables.
In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-complete in & %,
whereas for a restricted form of TBoxes, namely forward TBoxes, the complexity drops to PSpace. We
can transfer this result to %, via Theorem 3, obtaining that matching in %, is in PSpace. In
[4] (see Theorem 3.8) it was shown that matching in # &, is polynomial. Here, we present another
simple-to-implement algorithm which solves the matching problem in %%, in polynomial time.

Algorithm 1 Matching

Input: C =’ D, where C does not contain variables, D = EMVv,. X, M- mMVv,.X,, where E does not contain variables, X, ..., X,
are (not necessarily different) variables, and v, ..., v, are words over Ny.
Output: True if there is a matcher, False otherwise.

procedure MarcHING(C =’ D)
if C Z E then
‘ return False
else
for all Vv.A € C such that Vv.A € E and there is no Vv'.L € E where v <v do
Find Vv..X; such that v < v (v, is a prefix of v)
L if no Vv.X; is found then
| return False

L return True

A A A S o T

One can see that the algorithm must terminate in time polynomial in the size of the problem. In order
to justify the correctness of Algorithm 1 we define a special substitution &. For every X occurring in

D, 6(X) := [{Vua | Vv.X € Dand Vvu.a € C where «a is a constant or 1}. Next we prove that a
matching problem C =7 D has a unifier iff the substitution & is a unifier. The correctness follows from
the fact that the algorithm computes the substitution &.

7. Conclusions

We have presented three results related to the unification problem in %, . The unification type of
F L, turns out to be nullary. Hence, # £, has the same type as the description logics €<, # %,
and o/ €. The second result, reduction of the unification problem in &%, to unification in ¥ %
modulo a TBox 7 BZ implies that the unification problem in # %, is easier than the one in %, with a
TBox. It is even easier than the unification in F %, with a forward TBox. As the third result, we have
presented a simple algorithm that solves matching in polynomial time.

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT based on GPT-40 in order to: Grammar
and spelling check. After using this tool, the authors reviewed and edited the content as needed and
take full responsibility for the publication’s content.

References

[1] E. Jerabek, Blending margins: the modal logic K has nullary unification type, J. Log. Comput. 25
(2015) 1231-1240. doi:10.1093/LOGCOM/EXT055.

[2] F.Baader, R. Kisters, A. Borgida, D. L. McGuinness, Efficient tbox reasoning with value restrictions
using the & Z0wer reasoner., Theory and Practice of Logic Programming 22 (2022) 162-192.

[3] F. Baader, O. Fernandez Gil, P. Marantidis, Matching in the description logic FLO with respect to
general tboxes (extended abstract), in: M. Simkus, G. Weddell (Eds.), Proceedings of the 32nd In-
ternational Workshop on Description Logics (DL’19), volume 2373 of CEUR Workshop Proceedings,
CEUR-WS, 2019.

[4] F. Baader, R. Kiisters, A. Borgida, D. L. McGuinness, Matching in description logics, Journal of
Logic and Computation 9 (1999) 411-447.

http://dx.doi.org/10.1093/LOGCOM/EXT055

	1 Introduction
	2 The description logics FL0 and FL⊥
	3 Unification problem in FL⊥
	4 Type nullary result
	5 Reduction from FL⊥ to FL0 with a TBox
	6 Matching in FL⊥ is polynomial
	7 Conclusions

