
Around Unification in ℱℒ⊥– Three Related Problems
(Extended Abstract)
Barbara Morawska1, Sławomir Kost1

1Institute of Computer Science, University of Opole, Poland

Abstract
In this paper we present three results concerning the unification problem in the description logic ℱℒ⊥. The
logic ℱℒ⊥ is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and bottom
constructors, without any form of negation. Subsumption inℱℒ⊥ can be decided in polynomial time. Although
we do not solve the unification problem itself, we establish three related findings. First, we show that unification
in ℱℒ⊥ is of type nullary, a result inspired by a similar theorem for the modal logic K. Second, we reduce the
unification problem in ℱℒ⊥ to the unification problem in ℱℒ0, equipped with a forward TBox. Third, we
revisit the known result that the matching problem inℱℒ⊥ can be solved in polynomial time and provide a new
algorithm for it.

Keywords
description logic, unification type

1. Introduction

In this paper, we focus on a small description logic, ℱℒ⊥, which extends the constructors of its sister
logic ℱℒ0 by adding the bottom concept. We present three results: the unification type of ℱℒ⊥ is
nullary, inspired by a similar result for the modal logic 𝐾 (see [1]); the unification problem in ℱℒ⊥
can be reduced to the one in ℱℒ0 with a special TBox, corresponding to [2]; and we present a simple-
to-implement algorithm which solves the matching problem in ℱℒ⊥ in polynomial time.

2. The description logics ℱℒ0 and ℱℒ⊥
All notions in this chapter are introduced for ℱℒ⊥. To obtain their equivalents in ℱℒ0, simply omit
⊥. In the description logic ℱℒ⊥, (complex) concepts are generated from two disjoint sets 𝑁𝐶 and 𝑁𝑅,
reffered to as concept names and role names, by the following grammar:
𝐶 ∶∶= ⊤ ∣ ⊥ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐶 ∣ ∀𝑟 .𝐶, where 𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅.
An interpretation of concepts in ℱℒ⊥ is a pair 𝐼 = (Δ𝐼 , ⋅𝐼 ), where Δ𝐼 is a non-empty domain of

elements and ⋅𝐼 is an interpreting function defined on concept names and role names as follow: ⊤𝐼 = Δ𝐼 ;
⊥𝐼 = ∅; 𝐴𝐼 ⊆ Δ𝐼 , for any 𝐴 ∈ 𝑁𝐶 ; 𝑟 𝐼 ⊆ Δ𝐼 × Δ𝐼 , for any 𝑟 ∈ 𝑁𝑅, and extended to all complex concepts
in the usual way: (𝐶 ⊓ 𝐷)𝐼 = 𝐶 𝐼 ∩ 𝐷𝐼 ; (∀𝑟 .𝐶)𝐼 = {𝑑 ∈ Δ𝐼 ∣ ∀𝑒 ∈ Δ𝐼 [(𝑑, 𝑒) ∈ 𝑟 𝐼 → 𝑒 ∈ 𝐶 𝐼 ]};
(∀𝑣 .𝐶)𝐼 = (∀𝑟1∀𝑟2 …∀𝑟𝑛.𝐶)𝐼 where 𝑣 = 𝑟1 … 𝑟𝑛 ∈ 𝑁𝑅+.

A concept may be reducedwith the following reductions to an equivalent concept (interpreted by the
same set in any interpretation): 𝐶⊓⊤, ⊤⊓𝐶 ⇝ 𝐶; 𝐶⊓⊥, ⊥⊓𝐶 ⇝ ⊥; ∀𝑟.⊤ ⇝ ⊤; ∀𝑟.(𝐶⊓𝐷) ⇝ ∀𝑟.𝐶⊓∀𝑟.𝐷.
We call a concept 𝐶 reduced iff none of the reduction rules applies.

For convenience, we will use the notation ∀𝑣.𝛼 for the concept of the form: ∀𝑟1(∀𝑟2(… (∀𝑟𝑛.𝛼))),
where 𝑣 = 𝑟1 … 𝑟𝑛 and 𝛼 is either ⊤ or ⊥ or a concept name 𝐴. A concept of this form is called a particle.

This research is part of the project No 2022/47/P/ST6/03196 within the POLONEZ BIS programme co-
funded by the National Science Centre and the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 945339. For the purpose of Open
Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission.

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
barbara.morawska@uni.opole.pl (B. Morawska); skost@uni.opole.pl (S. Kost)
0000-0003-4724-7206 (B. Morawska); 0000-0003-1898-9489 (S. Kost)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:barbara.morawska@uni.opole.pl
mailto:skost@uni.opole.pl
https://orcid.org/0000-0003-4724-7206
https://orcid.org/0000-0003-1898-9489
https://creativecommons.org/licenses/by/4.0/deed.en


The word 𝑣 over 𝑁𝑅 is called the role word of the particle ∀𝑣.𝛼 . For role words 𝑣 , 𝑣 ′, by 𝑣 ≤ 𝑣 ′ we
denote that 𝑣 is a prefix of 𝑣 ′.

It is easy to see that any concept is equivalent to a conjunction of particles, 𝐶 = ∀𝑣1.𝛼1 ⊓⋯⊓∀𝑣𝑛.𝛼𝑛,
where 𝑣1, … , 𝑣𝑛 are possibly empty words over 𝑁𝑅. In fact because of properties of conjunction, we
identify a reduced concept with a set of particles in such a conjunction.
Let 𝐶 be an ℱℒ⊥-reduced concept. We define 𝑟𝑑(𝐶) (role depth) and 𝑠𝑖𝑧𝑒(𝐶) (size) recursively: if

𝐶 = 𝐴 or 𝐶 = ⊤ or 𝐶 = ⊥, then 𝑟𝑑(𝐶) = 𝑠𝑖𝑧𝑒(𝐶) = 0; if 𝐶 = 𝐷 ⊓ 𝐸, then 𝑟𝑑(𝐶) = 𝑚𝑎𝑥({𝑟𝑑(𝐷), 𝑟𝑑(𝐸)})
and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐷) + 𝑠𝑖𝑧𝑒(𝐸); if 𝐶 = ∀𝑟.𝐶′, 𝑟𝑑(𝐶) = 𝑟𝑑(𝐶′) + 1 and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐶′) + 1.
Subsumption between concepts 𝐶 ⊑ 𝐷 obtains iff for all interpretations 𝐼 , 𝐶 𝐼 ⊆ 𝐷𝐼 . Equivalence:

𝐶 ≡ 𝐷 iff 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶. For any concept 𝐶, we have ⊥ ⊑ 𝐶 and 𝐶 ⊑ ⊤. In ℱℒ⊥, let 𝐶 and
𝐷 = {𝑃1, … , 𝑃𝑛} be reduced concepts. Then 𝐶 ⊑ 𝐷 iif for every 𝑃 ∈ 𝐷, one of the following holds:
(1) 𝑃 ∈ 𝐶 , (2) 𝑃 = ∀𝑣.𝛼 , where 𝛼 is a concept name or ⊥, and there exists ∀𝑣 ′.⊥ ∈ 𝐶 such that 𝑣 ′ ≤ 𝑣 .

3. Unification problem in ℱℒ⊥
In order to define a unification problem, we partition the set of concept names 𝑁𝐶 into two disjoint
sets: variables (𝑉 𝑎𝑟 ) and constants (𝐶𝑜𝑛𝑠). A variable is thus a concept name that may be substituted
by any concept while a constant cannot be substituted.
A substitution is a mapping from 𝑉 𝑎𝑟 to the set of all ℱℒ⊥-concepts. It is extended to all concepts

in the usual way. The unification problem (unification problem) is defined by its input
Γ = {𝐶1 ⊑? 𝐷1, … , 𝐶𝑛 ⊑? 𝐷𝑛}; and the output is “yes” if there is a substitution that makes these
subsumptions true, or “no” otherwise. Without loss of generality, we can assume that 𝐷1, … , 𝐷𝑛 are
particles. A substitution 𝜎 is a unifier for the unification problem Γ = {𝐶1 ⊑? 𝑃1, … , 𝐶𝑛 ⊑? 𝑃𝑛} iff
𝜎(𝐶1) ⊑ 𝜎(𝑃1), … , 𝜎(𝐶𝑛) ⊑ 𝜎(𝑃𝑛). In this case, we say that the problem is unifiable.
Let Γ be an unification problem with the set of variables 𝑉 and unifiers 𝜎, 𝛾 . We say that 𝜎 is more

general than 𝛾 (or 𝛾 is less general than 𝜎 ), if there is a substitution 𝜏 such that 𝛾 (𝑋) ≡ 𝜏(𝜎(𝑋)), for all
𝑋 ∈ 𝑉 . If a unifier is more general than any other unifier, we call it amost general unifier (an mgu) of Γ.
A set Π of unifiers of a given unification problem Γ is called a complete set of unifiers if every unifier

of Γ is less general than some element of Π. For a given unification problem Γwe define four unification
types (from ”best” to ”worst”) based on the existence and cardinality of its complete set. The problem
has unification type: unitary if there exists complete set of unifiers consisting of one unifier 𝜎; finitary
if it has finite compete set of unifiers, but has no most general unifier; infinitary if it has an infinite
minimal complete set of unifiers; nullary (or zero) if it has no minimal complete set of unifiers. The
unification type of a logic (ℱℒ⊥ in our case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove thatℱℒ⊥ has nullary unification type by showing that the unification
problem Γ = {𝑋 ⊑? ∀𝑟.𝑋 } has no minimal complete set of unifiers. To this end, we introduce the set 𝑈
of substitutions consisting of:
𝜎0(𝑋) = ⊥; 𝜎𝑛(𝑋) = 𝑋 ⊓ ∀𝑟.𝑋 ⊓ … ⊓ ∀𝑟𝑛−1.𝑋 ⊓ ∀𝑟𝑛.⊥, for 𝑛 ≥ 1; 𝜎⊤(𝑋) = ⊤.
One can easily check that 𝜎𝛼 (𝑋) ⊑ 𝜎𝛼 (∀𝑟 .𝑋), for each 𝛼 ∈ ℕ ∪ {⊤}.

It can also be shown that the set 𝑈 is complete for Γ. Let 𝜎 be a unifier for Γ not equal to 𝜎⊤ and let
𝜎𝑛 ∈ 𝑈 where 𝑛 = 𝑟𝑑(𝜎(𝑋)). Then 𝜎(𝑋) ≡ 𝜎(𝜎𝑛(𝑋)).
At this point we know that 𝑈 is a complete set of unifiers of Γ. To complete the argument, we observe

that there is no minimal complete set of unifiers for Γ. It can be easily shown that: 𝜎𝑛+1 is more general
that 𝜎𝑛, but 𝜎𝑛 is not more general than 𝜎𝑛+1, for each 𝑛 ≥ 0. Using a proof by contradiction we obtain
the result:

Theorem 1. The type of the unification problem Γ is nullary.



5. Reduction from ℱℒ⊥ to ℱℒ0 with a TBox

A ℱℒ0 TBox (TBox for short) is a finite set of ℱℒ0-subsumptions. A model of a TBox 𝒯 is an
interpretation 𝐼 such that 𝐸𝐼 ⊆ 𝐹 𝐼 for all 𝐸 ⊑ 𝐹 ∈ 𝒯 . Let 𝐶 and 𝐷 be concepts. We say that 𝐶 is
subsumed by 𝐷 w.r.t. a TBox 𝒯 (written 𝐶 ⊑𝒯 𝐷) if 𝐶 𝐼 ⊆ 𝐷𝐼 for each model 𝐼 of 𝒯 . We say that 𝜎 is a
unifier of a unification problem Γ w.r.t. a TBox 𝒯 if 𝜎(𝐶) ⊑𝒯 𝜎(𝐷) for each 𝐶 ⊑ 𝐷 ∈ Γ.
Let 𝐶 be an ℱℒ⊥ concept, and 𝐵 be a constant, that does not appear in 𝐶. By 𝐶𝐵 we denote the

ℱℒ0-concept obtained from 𝐶 by replacing all occurrences of ⊥ with the constant 𝐵. For 𝑠 = 𝐶 ⊑ 𝐷,
𝑠𝐵 = 𝐶𝐵 ⊑ 𝐷𝐵. Given a finite set Γ of ℱℒ⊥-subsumptions, we define the corresponding set Γ𝐵 of
ℱℒ0-subsumptions by Γ𝐵 = {𝑠𝐵 ∣ 𝑠 ∈ Γ}. For a given finite set of subsumptions Γ, 𝑁𝐶 (Γ) is the set of
all concept names occuring in Γ, 𝑁𝑅(Γ) is the set of all role names occuring in Γ. For a given signature
Σ =< 𝑆𝐶 , 𝑆𝑅 >, where 𝑆𝐶 is a finite subset of 𝑁𝐶 and 𝑆𝑅 is a finite subset of 𝑁𝑅, we define the following
TBox: 𝒯 Σ𝐵 = {𝐵 ⊑ 𝐴 ∣ for every 𝐴 ∈ 𝑆𝐶 } ∪ {𝐵 ⊑ ∀𝑟.𝐵 ∣ for every 𝑟 ∈ 𝑆𝑅}. To simplify notation, we
henceforth denote 𝒯 <𝑁𝐶 ({𝑠}),𝑁𝑅({𝑠})>𝐵 as 𝒯 𝑠𝐵 , and express < 𝑁𝐶(Γ), 𝑁𝑅(Γ) > as Σ(Γ).

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions between con-
cept names:

Theorem 2. An ℱℒ⊥-subsumption 𝑠 of the form 𝐶 ⊑ 𝐷 obtains iff 𝐶𝐵 ⊑𝒯 𝑠𝐵 𝐷𝐵.
If 𝜎 is a unifier of an ℱℒ⊥ unification problem Γ of the minimal size where size of 𝜎 is sum of

{𝑠𝑖𝑧𝑒(𝜎(𝑋)) where 𝑋 is in domain of 𝜎}, then the signature of 𝜎 is contained in Σ(Γ). Therefore:
Theorem 3. Let Γ be a unification problem in ℱℒ⊥. Then Γ has an ℱℒ⊥-unifier iff Γ𝐵 has an
ℱℒ0-unifier w.r.t. the TBox 𝒯 Σ(Γ)

𝐵 .
We showed that the unification problem in ℱℒ⊥ can be reduced to a unification problem in ℱℒ0
with a TBox. This does not give us a solution for the unification in ℱℒ⊥, since unification in ℱℒ0
with a TBox is not solved. However, it show that the unification problem inℱℒ0 with a TBox is more
difficult than unification in ℱℒ⊥.

6. Matching in ℱℒ⊥ is polynomial

The matching problem is a special kind of a unification problem 𝐶 ≡? 𝐷, where 𝐶 contains no variables.
In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-complete in ℱℒ0,
whereas for a restricted form of TBoxes, namely forward TBoxes, the complexity drops to PSpace. We
can transfer this result to ℱℒ⊥ via Theorem 3, obtaining that matching in ℱℒ⊥ is in PSpace. In
[4] (see Theorem 3.8) it was shown that matching in ℱℒ⊥ is polynomial. Here, we present another
simple-to-implement algorithm which solves the matching problem in ℱℒ⊥ in polynomial time.

Algorithm 1 Matching
Input: 𝐶 ≡? 𝐷,where 𝐶 does not contain variables, 𝐷 = 𝐸⊓∀𝑣1.𝑋1⊓⋯⊓∀𝑣𝑛 .𝑋𝑛 , where 𝐸 does not contain variables, 𝑋1, … , 𝑋𝑛
are (not necessarily different) variables, and 𝑣1, … , 𝑣𝑛 are words over 𝑁𝑅.
Output: True if there is a matcher, False otherwise.
1: procedureMatching(𝐶 ≡? 𝐷)
2: if 𝐶 ⋢ 𝐸 then
3: return False
4: else
5: for all ∀𝑣.𝐴 ∈ 𝐶 such that ∀𝑣.𝐴 ∉ 𝐸 and there is no ∀𝑣 ′.⊥ ∈ 𝐸 where 𝑣 ′ ≤ 𝑣 do
6: Find ∀𝑣𝑖.𝑋𝑖 such that 𝑣𝑖 ≤ 𝑣 (𝑣𝑖 is a prefix of 𝑣 )
7: if no ∀𝑣𝑖.𝑋𝑖 is found then
8: return False
9: return True

One can see that the algorithmmust terminate in time polynomial in the size of the problem. In order
to justify the correctness of Algorithm 1 we define a special substitution 𝜎̂ . For every 𝑋 occurring in



𝐷, 𝜎̂ (𝑋 ) ∶= ⨅{∀𝑢.𝛼 ∣ ∀𝑣 .𝑋 ∈ 𝐷 and ∀𝑣𝑢.𝛼 ∈ 𝐶 where 𝛼 is a constant or ⊥}. Next we prove that a
matching problem 𝐶 ≡? 𝐷 has a unifier iff the substitution 𝜎̂ is a unifier. The correctness follows from
the fact that the algorithm computes the substitution 𝜎̂ .

7. Conclusions

We have presented three results related to the unification problem in ℱℒ⊥. The unification type of
ℱℒ⊥ turns out to be nullary. Hence, ℱℒ⊥ has the same type as the description logics ℰℒ , ℱℒ0,
and 𝒜ℒ𝒞 . The second result, reduction of the unification problem in ℱℒ⊥ to unification in ℱℒ0
modulo a TBox 𝒯 Σ𝐵 implies that the unification problem inℱℒ⊥ is easier than the one inℱℒ0 with a
TBox. It is even easier than the unification in ℱℒ0 with a forward TBox. As the third result, we have
presented a simple algorithm that solves matching in polynomial time.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT based on GPT-4o in order to: Grammar
and spelling check. After using this tool, the authors reviewed and edited the content as needed and
take full responsibility for the publication’s content.

References

[1] E. Jerábek, Blending margins: the modal logic K has nullary unification type, J. Log. Comput. 25
(2015) 1231–1240. doi:10.1093/LOGCOM/EXT055.

[2] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Efficient tbox reasoning with value restrictions
using the ℱℒ0wer reasoner., Theory and Practice of Logic Programming 22 (2022) 162–192.

[3] F. Baader, O. Fernández Gil, P. Marantidis, Matching in the description logic FL0 with respect to
general tboxes (extended abstract), in: M. Simkus, G. Weddell (Eds.), Proceedings of the 32nd In-
ternational Workshop on Description Logics (DL’19), volume 2373 of CEUR Workshop Proceedings,
CEUR-WS, 2019.

[4] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Matching in description logics, Journal of
Logic and Computation 9 (1999) 411–447.

http://dx.doi.org/10.1093/LOGCOM/EXT055

	1 Introduction
	2 The description logics FL0 and FL⊥
	3 Unification problem in FL⊥
	4 Type nullary result
	5 Reduction from FL⊥ to FL0 with a TBox
	6 Matching in FL⊥ is polynomial
	7 Conclusions

