CEUR-WS.org/Vol-4091/paper34.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

CATS Solver: The Rise of Hybrid Abduction Algorithms

Jakub Kloc, Janka Boborova, Martin Homola and Jilia Pukancova

Comenius University in Bratislava, Mlynska dolina, 842 41 Bratislava, Slovakia

Abstract

The state-of-the-art complete algorithms to solve ABox abduction in DL include the original Reiter’s algorithm
for minimal hitting sets alongside its more recent updates: Wotawa’s HST and Pill and Quaritch’s RC-Tree. On
the other hand, incomplete methods that quickly find some but not all solutions include Junker’s QuickXplain and
MergeXplain by Shchekotykhin et al. We present CATS, a new modular ABox abduction solver. It implements
all the said algorithms together with the hybrid MHS-MXP, recently introduced by Homola et al., and two new
analogous variants: HST-MXP and RCT-MXP, based on HST and RC-Tree, respectively. The user can choose any
of the eight algorithms. The solver uses the JFact reasoner as a black box and thus allows any DL expressivity
up to SROZQ. The modular implementation served as a test bed for an evaluation and comparison of the
implemented algorithms, which we conducted over the LUBM ontology. Out of the complete algorithms, the

hybrid ones were proven to find explanations faster, and they were also more memory-efficient.

Keywords

Description logics, ABox abduction, abduction algorithms, solver, empirical evaluation

1. Introduction

Abduction [1, 2] is a fundamental way of reasoning, alongside induction
and deduction. Its objective is to provide hypothetical explanations for a
given observation that is not entailed by the available knowledge. As an
ampliative form of reasoning, it generates genuinely new knowledge that
cannot be derived through classical deductive reasoning. In the context
of description logics (DL) and ontologies, it was long considered a non-
standard reasoning problem [2]; however, recently it has been receiving
more and more attention [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. DL-based
abduction has been applied in various domains, such as ontology engi-

neering [15], ontology debugging [16] and repair [17], medical diagnosis Figure 1: CATS logo

[18, 19, 20, 21, 22], system diagnosis [23], multimedia interpretation [24],
and e-commerce [25].

There are various types of algorithms that can be utilized to solve an abduction problem. Our
research focuses mainly on those that offer the following advantageous properties [26]: (1) Applicability
to knowledge bases of any expressivity, or even to any logic (with entailment and model-theoretic
semantics); (2) Completeness, meaning they guarantee finding all possible explanations; (3) Black-box
reasoning, allowing supporting reasoning tasks required for computing explanations to be delegated to

an external reasoner; (4) Requiring no additional information about the problem.

One such algorithm is the well-explored Reiter’s minimal hitting set algorithm (MHS) [27], along
with its hybrid version, MHS-MXP [28], which combines Reiter’s algorithm with the efficient but
incomplete divide-and-conquer MergeXplain (MXP) method [29]. Both were implemented in the MHS-
MXP abduction solver [28], currently one of the few publicly available abduction solvers [30, 13], and

the only one supporting multiple algorithms.

?-DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland

& kloc4@uniba.sk (J. Kloc); boborova@fmph.uniba.sk (J. Boborova); homola@fmph.uniba.sk (M. Homola);
pukancova@fmph.uniba.sk (J. Pukancova)

&7 https://dai.fmph.uniba.sk/~homola/ (M. Homola); https://dai.fmph.uniba.sk/~pukancova/ (J. Pukancova)
® 0009-0002-7487-9962 (J. Boborova); 0000-0001-6384-9771 (M. Homola); 0009-0001-3505-0716 (J. Pukancova)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:kloc4@uniba.sk
mailto:boborova@fmph.uniba.sk
mailto:homola@fmph.uniba.sk
mailto:pukancova@fmph.uniba.sk
https://dai.fmph.uniba.sk/~homola/
https://dai.fmph.uniba.sk/~pukancova/
https://orcid.org/0009-0002-7487-9962
https://orcid.org/0000-0001-6384-9771
https://orcid.org/0009-0001-3505-0716
https://creativecommons.org/licenses/by/4.0/deed.en

However, the MHS-MXP solver has notable shortcomings. It suffers from memory management
issues, with one of its evaluations resulting in out-of-memory errors in 57% of cases [31]. Additionally,
it adopts a modified version of Reiter’s MHS algorithm that preserves completeness at the cost of
sacrificing some of the original optimizations, which, when combined, may lead to the omission of
explanations [32].

To address this limitation, we explore alternatives to Reiter’s algorithm that aim to resolve the
incompleteness of MHS in a more efficient manner, namely, Wotawa’s Hitting Set Tree (HST) algorithm
[33] and RC-Tree (RCT) algorithm [34]. We apply them to solve the abduction problem, and propose
new hybrid algorithms by combining them with the MergeXplain method. We then present an improved
version of the solver that supports MHS, HST and RC-Tree, together with their hybrid versions MHS-
MXP, HST-MXP and RCT-MXP, and the two incomplete algorithms MergeXplain and QuickXplain [35].
This new version, rebranded as CATS (Comenius Abduction Team Solver), is freely available!.

Finally, we provide an empirical evaluation of the algorithms on a dataset derived from the LUBM
ontology [36], focusing on the cumulative amount of computed explanations over time. The results
show a significant advantage of the hybrid algorithms, particularly MHS-MXP and RCT-MXP. We also
show that the hybrid algorithms are more efficient in memory usage.

2. Preliminaries

2.1. Description Logics

The vocabulary of ALC [37, 38] consists of three countable, mutually disjoint sets of non-logical symbols:
individuals (denoted N7), atomic concepts (denoted N¢) and roles (denoted Ng). ALC concepts are
recursively built using the following grammar: C, D := A | =C' | CMD | CUD | Vr.C' | 3r.C, where
A € Nc and r € Np. The logical symbols used in the grammar, called constructors, are as follows: —
(complement), M (concept intersection), LI (concept union), 3 (existential restriction), V (value restriction).
The semantics is defined using an interpretation Z = (AZ, -Z), which consists of a non-empty domain
AT and an interpretation function -Z such that: a* € A7 for every a € Ny; CF A for every concept
C;rt C AT x AT for every r € Ng. A DL knowledge base (KB) K = (T, .A) consists of a TBox T
(intensional knowledge) and an ABox A (extensional knowledge), whilst 7 contains general concept
inclusion (GCI) axioms in form C' = D for any concepts C, D, and A contains concept assertions a: C,
and role assertions a,b: R for a,b € N;, R € Np, and any concept C.

An interpretation 7 satisfies an axiom ¢ (Z |= ¢) if and only if: if $ = C T D then CT C DZ; if
¢ = C(a) then a* € C%;if ¢ = R(a,b) then (a?,b?) € R. T is a model of a KB K (Z = K) if and
only if it satisfies all axioms in K. K is consistent if and only if it has a model. K entails ¢ (K |= ¢) if
and only if ¢ is satisfied by every model of K.

2.2. Abduction

In an ABox abduction problem [28, 2], we are looking for explanations for a given DL knowledge base
IC and an observations O (an ABox assertion), as defined below.

Definition 1 (ABox abduction problem). Let abducibles Abd be a finite set of ABox axioms, background
knowledge K a DL knowledge base, and observation O an ABox axiom. An explanation of an ABox

abduction problem P = (IC, Q') is a finite set of ABox axioms & C Abd such that K U € |= O.

The space of possible explanations is limited to axioms from the set of abducibles Abd. They are also
typically limited to so-called desired explanations, i.e., (in this work) they must be consistent (£ U K is
consistent); relevant (O [~ £); explanatory (K [~ O); and minimal (there is no other explanation £’ s.t.
ENCé).

The ABox abduction problem can be reduced to a consistency-checking problem [39]: LU €& = Oif
and only if £' = K U & U {—0} is inconsistent, i.e., K' has no models. It has been established that

'https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver

https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver

finding all minimal explanations of some P = (I, O) corresponds w.r.t. Abd to finding all minimal
hitting sets of F', where F is the collection of negated models of K U {—0} w.r.t. Abd [11, 27].

Definition 2 (Minimal hitting set). Given a collection of sets F', a hitting set for F' is a set H such that
H NS 0 forevery set S € F. A hitting set H for F' is minimal if there is no other hitting set H' for F
such that H' C H.

Definition 3 (Negated model w.r.t. Abd). Given a model Z, its negation w.r.t. Abd is a finite set of ABox
axioms defined as {—¢ € Abd | T |= ¢}, where ¢ is an atomic (concept/role) assertion.

2.2.1. Reiter’s Minimal Hitting Set Algorithm

A classical algorithm for computing all minimal hitting sets, introduced by Reiter [27], was adapted for
ABox abduction [11]. It builds a hitting set tree (HS-tree) in breadth-first order, where each node n is
labelled by £(n) - a negated model of K' = K U H(n) U {—~0}, where H(n) is the set of edge-labels
from the root to n. For each element o € L(n) there is a child n, of n where the edge (n, n,) is labelled
by L£(n,n,) = o. Each path H(n) is thus a “candidate” hitting set, and its construction continues
until it no longer can be extended, i.e., if L U H(n) U {=0} no longer has a model, then H (n) is an
explanation and the branch closes.

The algorithm uses three pruning conditions: the first two close nodes whose paths H (n) are redun-
dant w.r.t. other existing paths; the last one removes whole subtrees that are found to be unnecessary,
because all hitting sets that could be found in them can also be found in another part of the tree. How-
ever, applying all the conditions can lead to loss of explanations [32]. One way to retain completeness is
to omit the third condition at the cost of losing the optimization. With this applied, all explanations of
size x are guaranteed to be found in the xth level of the tree. The algorithm though cannot detect when
all explanations are found and it continues building the tree as long as new branches can be generated.

2.2.2. RC-Tree Algorithm

Several alternatives to Reiter’s algorithm aim to address its incompleteness. One such method is the
RC-Tree (RCT) algorithm [34].?

Instead of closing nodes with duplicate paths, RCT never creates such paths in the first place. Every
node n is assigned an exclusion set 6(n), containing axioms that n cannot use to generate child edges.
This includes axioms already used by n’s ancestors and siblings, assuring that every path under n will
be unique. Using this strategy, RCT tries to create a tree that is as small as possible, but still sufficient to
find all explanations.

However, this means that removing a subtree with the third pruning condition would prevent some
subsets of abducibles from ever being generated, even possible explanations. To prevent this, every
pruning updates the s in the tree — axioms that disappeared from the tree are removed from s and
they are used to generate new edges, no longer redundant. This way, unlike Reiter’s algorithm, RCT
can create branches in any level of the tree, not only the last one. This approach requires more memory
(storing fs) and repeated tree traversal.

2.2.3. HST Algorithm

Wotawa’s Hitting Set Tree (HST) algorithm [33], another variant of Reiter’s method, also ensures that
duplicate paths cannot be created. Instead of navigating through the search space based on the negated
models, the algorithm systematically enumerates every possible combination of abducible axioms.
However, at any given point, this only includes abducibles that have appeared in at least one negated
model so far, since unused axioms cannot be part of any minimal hitting set (per Definition 2). To track
this, every time a new axiom is encountered in a negated model, HST assigns it a unique integer index
(the approach to generating all combinations uses integer intervals) . Unlike Reiter’s and RC-Tree, HST

*Though these hitting set algorithms are not adapted for DL abduction, we use abduction-related terminology for simplicity.

uses negated models only for this purpose. Once all abducibles are numbered, the models are no longer
needed to be stored nor obtained anew.

2.2.4. MHS-MXP Algorithm

Reiter’s algorithm also inspired MHS-MXP [28], the only approach here specifically designed for ABox
abduction. It leverages the MergeXplain (MXP) algorithm [29], which finds minimal inconsistent axiom
sets using repeated calls to QuickXplain (QXP) [35]. QXP is much faster than Reiter’s method but
can find only one explanation. MXP improves this by finding multiple explanations but still cannot
guarantee completeness.

MHS-MXP builds a HS-tree, but instead of consistency checks, it calls MXP using the current node’s
path. This allows MHS-MXP to: (1) find multiple explanations per node; (2) discover explanations of size
x before reaching tree depth x; (3) and skip generating branches that cannot lead to valid explanations.
Thanks to the third property, the algorithm can determine that all possible explanations have already
been found and terminate even before the whole search space has been explored.

3. CATS solver

CATS (Comenius Abduction Team Solver) is a new version of the MHS-MXP solver, the original Java
implementation of MHS-MXP [28] that also supported Reiter’s MHS algorithm. It introduces significant
changes to the code-base and functionality, most notably, a wider collection of abduction algorithms.

We implemented RC-Tree and HST, adapting them to the context of ABox abduction for the first
time. Analogously to MHS-MXP being based on MHS, we also "hybridized" RCT and HST, introducing
two brand new algorithms: RCT-MXP and HST-MXP. Additionally, we implemented the two fast,
but incomplete methods, QuickXplain and MergeXplain, which were already present in the code as
components of MHS-MXP. This brings the total number of available algorithms to 8.

The solver uses the OWL API to delegate consistency checks to an external reasoner. In the case of a
successful consistency check, the algorithms require a representation of a model found by the reasoner.
This functionality is currently implemented only by JFact [28].

3.1. Usage

An abduction problem and run parameters (such as the algorithm to be used, the abducibles, etc.) can
be passed to the solver using either of the following: (1) a structured input file and a command-line
application; (2) a graphical application; (3) a programmatical Java API [40]. The explanations found
are saved into log files. Unlike the previous version, CATS log files track detailed statistics about the
solver’s run, such as memory used, counts of created nodes, branches, prunings, consistency checks,
etc.

Abducibles can be set either directly or by specifying allowed individuals and concepts. If none are
provided, all combinations of C'(a) and =C'(a) from the background knowledge are used; negations can
be disabled to reduce their number. Solver performance depends heavily on abducible size, which in-
creases computational load. Additionally, MHS-MXP has been shown to perform poorly with negations,
as MXP identifies any set containing both C'(a) and —=C'(a) as a possible explanation [28].

3.2. Implementation

The MHS-MXP solver implementation kept the code of the two original algorithms in the same class,
differentiating between them with if-else blocks. This, however, made it hard to reasonably extend
the code. We reworked this basic approach using the composition-over-inheritance [41] principle, creating
a modular architecture where the solver’s behaviour is composed of multiple objects realizing abstract
interfaces.

The main interfaces are ITreeBuilder, which determines how the HS-tree is built, and
INodeProcessor, which handles what should occur in each node - i.e., a consistency check, an
MXP or QXP call. Consequently, any algorithm can be trivially hybridized by combining its tree builder
with the MXP node processor. Simultaneously, the RootOnlyTreeBuilder class, used in the MXP and
QXP implementation, can be used to run an operation just once. This provides the flexibility to abstract
away from the HS-tree and implement any abduction algorithm with inputs and outputs matching the
interfaces.

Apart from refactoring the code-base, we also identified multiple bugs. Our main focus was on the
memory errors encountered in a past evaluation [31]. We discovered the culprit in the process of storing
negated models, which created large numbers of redundant objects. A new approach is used in CATS,
fixing the error and making the solver suitable for experiments on bigger ontologies than before.

The implementation includes various optimizations. Most notably, MHS and HST, alongside their
hybrid versions, don’t have to remember the whole HS-tree — they only store unprocessed nodes (those
awaiting expansion and checks). In the case of MHS, this was already the case in the MHS-MXP solver
and was made possible thanks to the omission of Reiter’s third pruning condition. We implemented
multiple other optimizations to prevent redundant objects and actions.

Some other changes in the new version include: more accurate time measuring; more reliable time-out
mechanism; and automated tests, previously fully absent, to verify the algorithms’ correctness and
detect mistakes during development.

4. Evaluation

4.1. Methodology

We used the dataset of ABox abduction problems® from the previous evaluation [28]. The abduction
problems for the evaluation were grouped as S;—Ss, where each S; contains problems with explanations
of size i. All problems share the same background knowledge (the LUBM ontology [36]) and have the
same two sets of abducibles: {C(a), ~C(a) | a € N;,C € N¢} (with negations) and {C(a) | a €
N, C € N¢ '} (without negations), using the vocabulary from the background knowledge and the given
observation. The former set of abducibles is considered “favourable” for the hybrids and the latter
“unfavourable” (see Section 3.1). Later groups are not inherently harder, but larger explanations mean
more of the search space must be explored and thus a deeper HS-tree must be built. Each problem has
the same set of (desired) explanations, regardless of whether negations are allowed or not.

For each group, 5 problems were selected. Each algorithm ran twice with and twice without negations.
The time limit was reduced from 4 to 2 hours, as in the previous evaluation, not much of interesting
data was obtained from the runs after 2 hours.

The solver* was run on a server with the Ubuntu 24.04.1 operating system, using Java version
1.8.0_412. The server had 24 2.2 GHz processors and 64GB of RAM. Each run of the solver had 4GB of
memory allocated to the JVM.

4.2. Results and Interpretation
4.2.1. Number of Explanations over Time

Figures 2 and 3 show the average number of explanations found over time without and with negations,
respectively. Each figure presents results for input groups S;-Ss and then all inputs combined. The
X-axis shows time (seconds), and each curve (one per algorithm) tracks the cumulative number of
explanations found (Y-axis), averaged over all runs in the group.

Each graph is scaled to highlight the most relevant data. The Y-axis adjusts to the graph’s maximum
value, while the X-axis ends at either the 7200-second limit or when all curves plateau. An early X-axis

*Evaluation inputs: https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver/tree/main/in/d12025
*CATS version 2.0.0: https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver/releases/tag/v2.0.0

https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver/tree/main/in/dl2025
https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver/releases/tag/v2.0.0

cutoff does not imply early termination — only that no further explanations were found. However, each
curve ends at the maximal runtime encountered for that algorithm: if it is present for the whole 2 hours,
the algorithm hit the time-out at least once (see Section 4.2.2 for more details). If it breaks earlier, no
run of that algorithm lasted longer than the curve’s endpoint.

Without Negations. In S;, MXP and all hybrid algorithms found all explanations around the same
time, slightly ahead of base algorithms (MHS, HST, RC-Tree), confirming MXP’s effectiveness at
identifying all size-1 explanations in the root.

From S, on, base algorithms begin to lag. HST-MXP is also significantly slower by S; and barely
progressing in Ss (39.8 explanations by 5106.5s). MHS-MXP and RCT-MXP overall perform similarly to
each other: RCT-MXP is faster in S4 and leads early in Ss, but plateaus around 3000-4000s, allowing
MHS-MXP to pull ahead. This suggests RCT-MXP may scale less efficiently on deeper HS-trees due to
its need to store and traverse the entire structure.

Among base algorithms, RC-Tree performed the best in S; and S;, while HST was the slowest and
least effective. None of the base algorithms found any explanations in Sy or Ss. This highlights a
limitation of previous evaluations: while they showed MHS could not guarantee all size-4 explanations
before timeout, they did not reveal whether any size-4 explanations were found.

—e— MHS —e— HST RCT QXP —+— MXP
—&— MHS-MXP —&— HST-MXP —&— RCT-MXP
all inputs S1 S2
6 — 60 o
300
40
4
S 200
=
3 20
w100 2
= %
o
o -
i) 0 & 0 0
g 0 1000 2000 3000 4000 5000 6000 7000 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0 50 100 150 200 250 300
3]
e S3 S4 S5
<]
S 1000
© 150 300
=)
= 750
n 100 200
500
50 e
:: 100 250
0 01 0000000900000 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

Figure 2: Average explanations found over time, cases without negations

With Negations. With negations allowed, base algorithms were generally faster than hybrids and
MXP in S; and S,, echoing previous results — except for HST, which lagged behind all complete
algorithms in S,. In S, it needed nearly two hours to match incomplete MXP’s output. This reinforces
HST as likely the least effective complete algorithm. Upon further inspection, we found that HST usually
assigned number indices to all of the abducibles right at the beginning of its runs. As it generates
combinations of numbered abducibles, this essentially turns HST into a brute-force method, generating
all possible combinations of abducibles without using any strategy or heuristics.

Earlier evaluations portrayed MHS-MXP as consistently worse than MHS in cases with negations.
This setting is indeed disadvantageous for hybrids, leading to low explanation counts and slow initial
growth compared to cases without negations. However, from S; onward, hybrids proved faster and

more productive than base algorithms, which found no explanations of size 4 or 5. Though neither
guaranteed completeness, hybrids clearly performed better.

Notably, HST-MXP - generally the weakest hybrid - led among hybrids during a 1000-2000s window;,
and was the fastest in S, and S4. While RCT-MXP found slightly more total explanations, HST-MXP may
be more effective when prioritizing early results in a limited time. QXP failed to find any explanations,
illustrating its low effectiveness with non-trivial abducibles.

—e— MHS —e— HST RCT QXP —&— MXP
—=— MHS-MXP —=— HST-MXP —#— RCT-MXP
all inputs S1 S2
60
6
4 40
o
=)
=
& 2 20
(%21
=
o
=] 0 011
g 0 1000 2000 3000 4000 5000 6000 7000 0 5 10 15 20 25 0 1000 2000 3000 4000 5000 6000 7000
]
o S3 S4 S5
- 30
80
g 40
% 60 30 20
40 20
10
20 10
0 01 \—o—eo—o—o—o—o—C—o oo~ 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

Figure 3: Average explanations found over time, cases with negations

4.2.2. Early Termination

In practice, it matters not only how many explanations an algorithm finds, but also whether it can
terminate naturally instead of running unnecessarily long after all explanations are found.

QXP and MXP always terminated early, while all base algorithm runs and all hybrid runs with
negations hit the time-out. Only hybrids without negations occasionally finished early (see Table1l).
Since HST-MXP usually timed out, we focused on MHS-MXP and RCT-MXP. Their average run times
were similar, with RCT-MXP slightly faster in S, and Ss, and notably faster in Ss. As it also finished
early in two more cases, it appears marginally more effective in this respect.

Table 1
Number of runs of hybrid algorithms that ended before time-out and average finish time (sec) of MHS-MXP and
RCT-MXP runs that terminated before the time limit

Number of runs ended before time-out | Avg time before time-out
Input group | MHS-MXP | HST-MXP | RCT-MXP | MHS-MXP | RCT-MXP
S 10 10 10 0.68 0.75
S, 10 0 10 9.76 9.04
S3 10 1 10 1205.04 391.07
Sy 8 0 10 1487.67 1744.87
Ss 2 0 2 767.51 667.75

Note that MXP can always find all explanations of size 1. This means that in S; cases, the hybrids are

able to find all explanations in their root and ideally should terminate almost immediately. However,
negations in abducibles are in conflict with the hybrids’ ability to terminate early, causing them to
always hit time-out in S; with negations enabled. As it stands, MXP is the only algorithm that could
find all explanations and then terminate in S; with negations.

4.2.3. Memory Usage

To plot memory usage over time, we recorded the average memory per HS-tree level. We applied linear
interpolation between checkpoints for each run, then averaged the results across all runs - separately
for cases with and without negations. Input groups were not distinguished, as their differences were
minimal.

—e— MHS o— HST RCT QXP —4+— MXP
—=— MHS-MXP —&— HST-MXP —=— RCT-MXP

= negations no negations
E 1400 1400
Nt
= 1200 1200
=
=
>, 1000 1000
D)
=
o 800 800
w
S 600 600 pd
2 r
g 400 400
§ 200 200
vl ®
0 0 1000 2000 3000 4000 5000 6000 7000 0 0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

Figure 4: Average memory used by the Java Virtual Machine over time

The methodology is reflected in the graphs: cases with negations show smooth curves due to longer
times needed to complete tree levels, resulting in fewer records. Most records appear early or at timeout,
with the rest interpolated. This is especially true for the curves that are mostly straight (MHS, HST and
HST-MXP with negations; all base algorithms without negations) - these algorithms had almost no
records between 1000 seconds and the timeout.

Without negations, faster level completions yield more real data, producing more uneven curves.
RC-Tree and RCT-MXP, which revisit levels frequently, have the jaggedest curves.

Without negations, algorithms fall into three groups: RCT(-MXP) uses the most memory and MHS(-
MXP) slightly more than HST(-MXP). Interestingly, hybrids generally start less memory demanding
than their base versions, but the gap narrows over time. With negations, RC-Tree and RCT-MXP are
still the most memory-intensive, though the differences are smaller. Once again, base algorithms use
more memory than hybrids.

RCT(-MXP)’s high memory use is expected due to storing the full HS-tree and more data per node.
HST(-MXP)’s lower usage than MHS(-MXP) is surprising, possibly tied to pruning behaviour (never
duplicates a path) or model storage, though causes are unclear without analysing the deeper metrics.

Although we mostly focus on the complete algorithms, it is practical to explore properties of MXP
in the S; cases, where it can always find all explanations. Table 2 shows average memory usage of
complete algorithms in S;. As MXP does not need to construct a tree, it is obviously less memory-heavy
than the others. The exception is the hybrids without negations. In those cases, hybrids can terminate
right after the root and essentially are the same as MXP.

Table 2
Average total memory usage in the S; group (in MB)

Negations | MHS | HST | RCT | MHS-MXP | HST-MXP | RCT-MXP | MXP

no 767.31 | 667.74 | 953.83 152.75 153.78 151.92 152.44
yes 750.16 | 797.84 | 787.22 625.55 550.46 625.74 284.47

5. Conclusions

We have described CATS Solver, a new ABox abduction solver for DL implementing eight algo-
rithms. CATS is based on the JFact reasoner as a black box, and it supports any DL expressivity
up to SROZQ/OWL 2. The modular implementation of the solver enables the user to freely choose an
algorithm best suited for a given application. For instance, if just one of a few explanations needs to be
found, the incomplete but fast methods QuickXplain and MergeXplain may be used. If one wishes to
find as many explanations as possible, one of the five complete algorithms may be used. The solver
offers a command-line and graphical user interface, together with an API Java library.

The modular implementation of the algorithms also enables us to compare them. To this end, we
have conducted an empirical evaluation of all eight algorithms on a dataset derived from the LUBM
ontology. The results showed that out of the classic algorithms, including Reiter’s MHS, Wotawa’s
HST and Pill and Quaritch’s RC-Tree performed the best most of the time, followed by MHS, with HST
performing constantly worse than the two. As a more interesting result, all three hybrid algorithms
perform significantly better than any of the three classic versions. The difference in performance of
the hybrids is much more fine-grained with HST-MXP being the slowest most of the time (but also the
fastest in a small number of cases), while MHS-MXP and RCT-MXP are much harder to distinguish
between.

Importantly, contrary to the previous evaluation [28], the new evaluation methodology focusing on
the progress of explanations being found in time (and possibly a number of optimizations that were
implemented) helped us to clearly demonstrate that the hybrid algorithms are always performing better,
even on less favourable use cases.

In the future, we plan [42] to conduct a more detailed evaluation on real-world ontologies. The
performance of the solver may also possibly be improved by integration with other reasoners than
JFact.

Acknowledgments

The authors would like to express their gratitude to Jan Kluka for his valuable insights and helpful
discussions. This research was funded by the EU NextGenerationEU through the Recovery and Resilience
Plan for Slovakia under the project No. 09105-03-V02-00064.

Declaration on Generative Al

During the preparation of this work, the authors used Grammarly and gpt-4o in order to: Grammar
and spelling check, Improve writing style. After using these tools, the authors reviewed and edited the
content as needed and take full responsibility for the publication’s content.

References

[1] C.S. Peirce, Illustrations of the logic of science VI: Deduction, induction, and hypothesis, Popular
Science Monthly 13 (1878) 470-482.

(2]

(3]

[11]

[13]

[14]

[15]

C. Elsenbroich, O. Kutz, U. Sattler, A case for abductive reasoning over ontologies, in: Proceedings
of the OWLED*06 Workshop on OWL: Experiences and Directions, Athens, GA, US, volume 216
of CEUR-WS, CEUR-WS.org, 2006. URL: https://ceur-ws.org/Vol-216/submission_25.pdf.

S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini, M. Mongiello, Concept abduction and contraction
in description logics, in: Proceedings of the 2003 International Workshop on Description Logics
(DL2003), Rome, Italy September 5-7, 2003, volume 81 of CEUR Workshop Proceedings, CEUR-
WS.org, 2003. URL: https://ceur-ws.org/Vol-81/donini.pdf.

M. Bienvenu, Complexity of abduction in the ££ family of lightweight description logics, in:
Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International
Conference, KR 2008, Sydney, Australia, September 16-19, 2008, AAAI Press, 2008, pp. 220—230.
URL: http://www.aaai.org/Library/KR/2008/kr08-022.php.

T. D. Noia, E. D. Sciascio, F. M. Donini, A tableaux-based calculus for abduction in expressive
description logics: Preliminary results, in: Proceedings of the 22nd International Workshop on
Description Logics (DL 2009), Oxford, UK, July 27-30, 2009, volume 477 of CEUR-WS, CEUR-WS.org,
2009. URL: https://ceur-ws.org/Vol-477/paper_52.pdf.

S. Klarman, U. Endriss, S. Schlobach, ABox abduction in the description logic ALC, Journal of
Automated Reasoning 46 (2011) 43-80. URL: https://doi.org/10.1007/s10817-010-9168-z. doi:10 .
1007/S10817-010-9168-7Z.

J. Du, G. Q1, Y. Shen, J. Z. Pan, Towards practical ABox abduction in large OWL DL ontologies,
in: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011,
San Francisco, California, US, August 7-11, 2011, AAAI Press, 2011, pp. 1160-1165. URL: https:
//doi.org/10.1609/aaai.v25i1.8070. doi:10. 1609 /AAAT . V2511.8070.

K. Halland, K. Britz, Abox abduction in ALC using a DL tableau, in: 2012 South African Insti-
tute of Computer Scientists and Information Technologists Conference, SAICSIT ’12, Pretoria,
South Africa, ACM, 2012, pp. 51-58. URL: https://doi.org/10.1145/2389836.2389843. doi:10. 1145/
2389836.2389843.

J. Du, G. Qi, Y. Shen,]J. Z. Pan, Towards practical ABox abduction in large description logic
ontologies, Int. J. Semantic Web Inf. Syst. 8 (2012) 1-33. URL: https://doi.org/10.4018/jswis.
2012040101. doi:10.4018/TSWIS.2012040101.

J. Du, K. Wang, Y. Shen, A tractable approach to ABox abduction over description logic ontologies,
in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27-31, 2014,
Québec City, Québec, Canada., AAAI Press, 2014, pp. 1034-1040. URL: https://doi.org/10.1609/aaai.
v28i1.8852. d0i:10.1609/AAAT.V2811.8852.

J. Pukancova, M. Homola, Tableau-based ABox abduction for the ALCHQO description logic,
in: A. Artale, B. Glimm, R. Kontchakov (Eds.), Proceedings of the 30th International Workshop
on Description Logics, Montpellier, France, July 18-21, 2017, volume 1879 of CEUR Workshop
Proceedings, CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-1879/paper11.pdf.

W. Del-Pinto, R. A. Schmidt, Forgetting-based abduction in ALC, in: Proceedings of the Workshop
on Second-Order Quantifier Elimination and Related Topics (SOQE 2017), Dresden, Germany,
volume 2013 of CEUR-WS, CEUR-WS.org, 2017, pp. 27-35. URL: https://ceur-ws.org/Vol-2013/
paper13.pdf.

P. Koopmann, W. Del-Pinto, S. Tourret, R. A. Schmidt, Signature-based abduction for expressive
description logics, in: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece, 2020, pp. 592-602. URL: https://doi.org/
10.24963/kr.2020/59. doi:10.24963/KR. 2020/59.

P. Koopmann, Signature-based abduction with fresh individuals and complex concepts for de-
scription logics, in: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, JCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, ijcai.org, 2021, pp.
1929-1935. URL: https://doi.org/10.24963/ijcai.2021/266. d0i:10.24963/IJCAI.2021/266.

P. Lambrix, Completing and debugging ontologies: State-of-the-art and challenges in repairing
ontologies, ACM J. Data Inf. Qual. 15 (2023) 41:1-41:38. URL: https://doi.org/10.1145/3597304.
doi:10.1145/3597304.

https://ceur-ws.org/Vol-216/submission_25.pdf
https://ceur-ws.org/Vol-81/donini.pdf
http://www.aaai.org/Library/KR/2008/kr08-022.php
https://ceur-ws.org/Vol-477/paper_52.pdf
https://doi.org/10.1007/s10817-010-9168-z
http://dx.doi.org/10.1007/S10817-010-9168-Z
http://dx.doi.org/10.1007/S10817-010-9168-Z
https://doi.org/10.1609/aaai.v25i1.8070
https://doi.org/10.1609/aaai.v25i1.8070
http://dx.doi.org/10.1609/AAAI.V25I1.8070
https://doi.org/10.1145/2389836.2389843
http://dx.doi.org/10.1145/2389836.2389843
http://dx.doi.org/10.1145/2389836.2389843
https://doi.org/10.4018/jswis.2012040101
https://doi.org/10.4018/jswis.2012040101
http://dx.doi.org/10.4018/JSWIS.2012040101
https://doi.org/10.1609/aaai.v28i1.8852
https://doi.org/10.1609/aaai.v28i1.8852
http://dx.doi.org/10.1609/AAAI.V28I1.8852
http://ceur-ws.org/Vol-1879/paper11.pdf
https://ceur-ws.org/Vol-2013/paper13.pdf
https://ceur-ws.org/Vol-2013/paper13.pdf
https://doi.org/10.24963/kr.2020/59
https://doi.org/10.24963/kr.2020/59
http://dx.doi.org/10.24963/KR.2020/59
https://doi.org/10.24963/ijcai.2021/266
http://dx.doi.org/10.24963/IJCAI.2021/266
https://doi.org/10.1145/3597304
http://dx.doi.org/10.1145/3597304

[16]

[17]

[18]

[21]

[22]

[25]

K. Schekotihin, P. Rodler, W. Schmid, OntoDebug: Interactive ontology debugging plug-in for
Protégé, in: Foundations of Information and Knowledge Systems - 10th International Sympo-
sium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, volume 10833 of LNCS,
Springer, 2018, pp. 340-359. URL: https://doi.org/10.1007/978-3-319-90050-6_19. doi:10. 1007 /
978-3-319-90050-6_109.
F. Wei-Kleiner, Z. Dragisic, P. Lambrix, Abduction framework for repairing incomplete ££
ontologies: Complexity results and algorithms, in: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., AAAI Press,
2014, pp. 1120-1127. URL: https://doi.org/10.1609/aaai.v28i1.8858. doi:10.1609/AAAT.V2811.
8858.
S. M. Rashid, J. P. McCusker, D. M. Gruen, O. Seneviratne, D. L. McGuinness, A concise ontology
to support research on complex, multimodal clinical reasoning, in: The Semantic Web - 20th
International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28 - June 1, 2023, Pro-
ceedings, volume 13870 of Lecture Notes in Computer Science, Springer, 2023, pp. 390-407. URL:
https://doi.org/10.1007/978-3-031-33455-9_23. doi:10.1007/978-3-031-33455-9_23.
C. Martini, Abductive reasoning in clinical diagnostics, in: L. Magnani (Ed.), Handbook of
Abductive Cognition, Springer, 2023, pp. 467-479. doi:10.1007/978-3-031-10135-9_13.
M. Obeid, Z. Obeid, A. Moubaiddin, N. Obeid, Using description logic and ABox abduction to
capture medical diagnosis, in: Advances and Trends in Artificial Intelligence. From Theory to
Practice - 32nd International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, IEA/AIE 2019, Graz, Austria, July 9-11, 2019, Proceedings, volume
11606 of LNCS, Springer, 2019, pp. 376—388. URL: https://doi.org/10.1007/978-3-030-22999-3_33.
doi:10.1007/978-3-030-22999-3_33.
J. Pukancova, M. Homola, Abductive reasoning with description logics: Use case in medical
diagnosis, in: Proceedings of the 28th International Workshop on Description Logics (DL 2015),
Athens, Greece, volume 1350 of CEUR-WS, CEUR-WS.org, 2015. URL: https://ceur-ws.org/Vol-1350/
paper-60.pdf.
D. Al-Darras, B. Al-Shboul, N. Obeid, Towards using ontology-based systems for explain-
able medical diagnosis in nutrition domain, in: 12th International Conference on Informa-
tion Technology, ICIT 2025, Amman, Jordan, May 27-30, 2025, IEEE, 2025, pp. 528-533. URL:
https://doi.org/10.1109/ICIT64950.2025.11049209. d0i:10.1109/ICIT64950.2025.11049209.
T. Hubauer, C. Legat, C. Seitz, Empowering adaptive manufacturing with interactive diagnostics: A
multi-agent approach, in: Advances on Practical Applications of Agents and Multiagent Systems —
9th International Conference on Practical Applications of Agents and Multiagent Systems, PAAMS
2011, Salamanca, Spain, volume 88 of Advances in Intelligent and Soft Computing, Springer, 2011, pp.
47-56. URL: https://doi.org/10.1007/978-3-642-19875-5_6. d0i:10.1007/978-3-642-19875-5\
6.
O. Gries, R. Moller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel, A probabilistic abduction
engine for media interpretation based on ontologies, in: Web Reasoning and Rule Systems
- Fourth International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010.
Proceedings, volume 6333 of Lecture Notes in Computer Science, Springer, 2010, pp. 182-194. URL:
https://doi.org/10.1007/978-3-642-15918-3_15. doi:10.1007/978-3-642-15918-3_15.
S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini, M. Mongiello, Concept abduction and contraction
for semantic-based discovery of matches and negotiation spaces in an e-marketplace, Electronic
Commerce Research and Applications 4 (2005) 345-361. URL: https://doi.org/10.1016/j.elerap.2005.
06.004. doi:10.1016/J .ELERAP.2005.06.004.
P. Rodler, How should I compute my candidates? A taxonomy and classification of diagnosis
computation algorithms, in: ECAI 2023 - 26th European Conference on Artificial Intelligence,
September 30 - October 4, 2023, Krakow, Poland - Including 12th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Artificial Intelligence
and Applications, I0S Press, 2023, pp. 1986-1993. URL: https://doi.org/10.3233/FAIA230490. doi:10 .
3233/FATA230490.

https://doi.org/10.1007/978-3-319-90050-6_19
http://dx.doi.org/10.1007/978-3-319-90050-6_19
http://dx.doi.org/10.1007/978-3-319-90050-6_19
https://doi.org/10.1609/aaai.v28i1.8858
http://dx.doi.org/10.1609/AAAI.V28I1.8858
http://dx.doi.org/10.1609/AAAI.V28I1.8858
https://doi.org/10.1007/978-3-031-33455-9_23
http://dx.doi.org/10.1007/978-3-031-33455-9_23
http://dx.doi.org/10.1007/978-3-031-10135-9_13
https://doi.org/10.1007/978-3-030-22999-3_33
http://dx.doi.org/10.1007/978-3-030-22999-3_33
https://ceur-ws.org/Vol-1350/paper-60.pdf
https://ceur-ws.org/Vol-1350/paper-60.pdf
https://doi.org/10.1109/ICIT64950.2025.11049209
http://dx.doi.org/10.1109/ICIT64950.2025.11049209
https://doi.org/10.1007/978-3-642-19875-5_6
http://dx.doi.org/10.1007/978-3-642-19875-5_6
http://dx.doi.org/10.1007/978-3-642-19875-5_6
https://doi.org/10.1007/978-3-642-15918-3_15
http://dx.doi.org/10.1007/978-3-642-15918-3_15
https://doi.org/10.1016/j.elerap.2005.06.004
https://doi.org/10.1016/j.elerap.2005.06.004
http://dx.doi.org/10.1016/J.ELERAP.2005.06.004
https://doi.org/10.3233/FAIA230490
http://dx.doi.org/10.3233/FAIA230490
http://dx.doi.org/10.3233/FAIA230490

[27]

[28]

R. Reiter, A theory of diagnosis from first principles, Artificial intelligence 32 (1987) 57-95. URL:
https://doi.org/10.1016/0004-3702(87)90062-2. doi:10.1016/0004-3702 (87)90062- 2.

M. Homola, J. Pukancov4, J. Boborové, I. Balintova, Merge, explain, iterate: A combination of
MHS and MXP in an ABox abduction solver, in: Logics in Artificial Intelligence - 18th European
Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Proceedings, volume 14281
of Lecture Notes in Computer Science, Springer, 2023, pp. 338-352. URL: https://doi.org/10.1007/
978-3-031-43619-2_24. do0i:10.1007/978-3-031-43619-2_24.

K. M. Shchekotykhin, D. Jannach, T. Schmitz, MergeXplain: Fast computation of multiple conflicts
for diagnosis, in: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, JCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, 2015, pp. 3221-3228.
URL: http://ijcai.org/Abstract/15/454.

[30] J. Pukancova, M. Homola, The AAA ABox abduction solver, Kunstliche Intell. 34 (2020) 517-522.

URL: https://doi.org/10.1007/s13218-020-00685-4. d0i:10.1007/S13218-020-00685-4.

[31] J. Boborova, Optimization of the MHS-MXP algorithm, Master’s thesis, Comenius University in

[32]

[35]

[36]

Bratislava, 2023.

R. Greiner, B. A. Smith, R. W. Wilkerson, A correction to the algorithm in Reiter’s theory
of diagnosis, Artif. Intell. 41 (1989) 79-88. URL: https://doi.org/10.1016/0004-3702(89)90079-9.
doi:10.1016/0004-3702(89)90079-9.

F. Wotawa, A variant of Reiter’s hitting-set algorithm, Inf. Process. Lett. 79 (2001) 45-51. URL:
https://doi.org/10.1016/S0020-0190(00)00166-6. d0i:10.1016/S0020-0190(00)00166-6.

L Pill, T. Quaritsch, RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal hitting
set algorithm, in: 2015 IEEE International Symposium on Software Reliability Engineering Work-
shops, ISSRE Workshops, Gaithersburg, MD, USA, November 2-5, 2015, IEEE Computer Society,
2015, pp. 78-84. URL: https://doi.org/10.1109/ISSREW.2015.7392050. doi:10. 1109/ ISSREW. 2015 .
7392050.

U. Junker, QuickXplain: Preferred explanations and relaxations for over-constrained problems, in:
Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA,
AAAI Press / The MIT Press, 2004, pp. 167-172. URL: http://www.aaai.org/Library/AAAI/2004/
aaai04-027.php.

Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL knowledge base systems, Journal of Web
Semantics 3 (2005) 158-182. URL: https://doi.org/10.1016/j.websem.2005.06.005. doi:10.1016/7 .
WEBSEM. 2005.06.005.

M. Schmidt-Schauf}, G. Smolka, Attributive concept descriptions with complements, Artificial
intelligence 48 (1991) 1-26. URL: https://doi.org/10.1016/0004-3702(91)90078-X. doi:10.1016/
0004-3702(91)90078-X.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description
Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003.
S. Rudolph, Foundations of description logics, in: Reasoning Web. Semantic Technologies for
the Web of Data - 7th International Summer School 2011, Galway, Ireland, August 23-27, 2011,
Tutorial Lectures, volume 6848 of Lecture Notes in Computer Science, Springer, 2011, pp. 76—136.
URL: https://doi.org/10.1007/978-3-642-23032-5_2. d0i:10.1007/978-3-642-23032-5_2.

[40] J. Kloc, M. Homola, J. Pukancova, DL abduction API v2 and GUI interface (extended abstract), in:

[41]

Proceedings of the 36th International Workshop on Description Logics (DL 2023) co-located with
the 20th International Conference on Principles of Knowledge Representation and Reasoning and
the 21st International Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023)., Rhodes,
Greece, September 2-4, 2023, volume 3515 of CEUR Workshop Proceedings, CEUR-WS.org, 2023.
URL: https://ceur-ws.org/Vol-3515/abstract-15.pdf.

E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional, 1994.

[42]]. Boborova, J. Kloc, M. Homola, J. Pukancova, On the way to diverse datasets for evaluating ABox

abduction algorithms (extended abstract), in: Proceedings of the 38th International Workshop on

https://doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-031-43619-2_24
https://doi.org/10.1007/978-3-031-43619-2_24
http://dx.doi.org/10.1007/978-3-031-43619-2_24
http://ijcai.org/Abstract/15/454
https://doi.org/10.1007/s13218-020-00685-4
http://dx.doi.org/10.1007/S13218-020-00685-4
https://doi.org/10.1016/0004-3702(89)90079-9
http://dx.doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/S0020-0190(00)00166-6
http://dx.doi.org/10.1016/S0020-0190(00)00166-6
https://doi.org/10.1109/ISSREW.2015.7392050
http://dx.doi.org/10.1109/ISSREW.2015.7392050
http://dx.doi.org/10.1109/ISSREW.2015.7392050
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
https://doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/J.WEBSEM.2005.06.005
http://dx.doi.org/10.1016/J.WEBSEM.2005.06.005
https://doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/0004-3702(91)90078-X
https://doi.org/10.1007/978-3-642-23032-5_2
http://dx.doi.org/10.1007/978-3-642-23032-5_2
https://ceur-ws.org/Vol-3515/abstract-15.pdf

Description Logics (DL 2025), Opole, Poland, September 3-6, 2025, 2025. To appear.

	1 Introduction
	2 Preliminaries
	2.1 Description Logics
	2.2 Abduction
	2.2.1 Reiter's Minimal Hitting Set Algorithm
	2.2.2 RC-Tree Algorithm
	2.2.3 HST Algorithm
	2.2.4 MHS-MXP Algorithm

	3 CATS solver
	3.1 Usage
	3.2 Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Results and Interpretation
	4.2.1 Number of Explanations over Time
	4.2.2 Early Termination
	4.2.3 Memory Usage

	5 Conclusions

