
Query Rewriting for Nested Navigational Queries over
Property Graphs
Bianca Löhnert

1
, Nikolaus Augsten

1
, Cem Okulmus

2
and Magdalena Ortiz

3

1University of Salzburg, Austria 2Paderborn University, Germany 3TU Wien, Austria

Abstract
The framework of ontology-mediated data access (OBDA) has enjoyed great success in the setting of relational

databases. But while querying graph data has always been seen as a key motivation of OBDA, current technologies

lack support for standard graph database systems. In recent years, graph databases using the labeled property

graph data model have seen increasing popularity, and two ISO standards for querying property graphs were made

public in 2023: GQL and SQL-PGQ. Leveraging this momentum, we take a big step toward ontology-mediated

querying of property graphs. We propose DL-LitePG , a DL-Lite variant tailored for property graphs that uses

property values to define concepts and roles in the ontology, and present a practical rewriting algorithm for

rewriting navigational queries with DL-LitePG ontologies. We consider nested two-way regular path queries

(N2RPQs) and a large class of conjunctive N2RPQs. Our queries can access property values within path expressions

and capture a substantial portion of the GQL and SQL-PGQ standards. This is the first algorithm to fully support

full 2RPQs in the presence of ontologies by leveraging nested regular paths. We present our algorithm and a proof-

of-concept implementation and conclude with a set of preliminary experiments that showcase the practicality of

our approach.

Keywords
ontology-based data access, graph query languages, ontology-meditated query answering, description logics

1. Introduction

A core aim of the ontology-based data access (OBDA) framework (additionally to the virtual integration of

data sources) is to extend existing data with domain-specific knowledge without the need to materialize

all ensuing facts, but still enable access to all the consequences when answering user queries. One

of the key techniques to realize OBDA is via query rewriting: one takes as input the domain-specific

knowledge in the form of an ontology, and a query specified over the extended signature (with terms

from the data and the ontology) and rewrites into a new query, which uses the reduced signature that is

present in the data alone, but captures all the semantic consequences that would follow in the presence

of the ontology. Hence, one can evaluate the query using an existing system while still making effective

use of the ontology. This is known as ontology-mediated query answering (OMQA) and it is one of the

key techniques underlying many OBDA systems.

The OBDA framework is already seeing a number of commercial applications, albeit only in the

setting of relational databases. While it is unlikely that relational databases are being replaced anytime

soon, we none-the-less see new forms of storing and querying data. Graph databases are one such

example, where we already have a large number of commercial systems. Instead of the relational

model that underpins relational database systems, these instead focus on the labeled property graph

(LPG) model. It allows for nodes and binary edges over nodes, each of which can be mapped to a

number of labels and associated with data values via so-called properties. The increasing popularity of

graph databases has recently culminated in the standardization body ISO issuing two new standard for

graph query languages: GQL and SQL-PGQ. The key distinguishing feature of these query languages

are their navigational capabilities, that allow to match arbitrarily long paths in the data. Both GQL

and SQL-PGQ share the same navigational core [1], which includes the standard navigational query

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ bianca.loehnert@plus.ac.at (B. Löhnert); nikolaus.augsten@plus.ac.at (N. Augsten); cem.okulmus@upb.de (C. Okulmus);

magdalena.ortiz@tuwien.ac.at (M. Ortiz)

� 0000-0002-3036-6201 (N. Augsten); 0000-0002-7742-0439 (C. Okulmus); 0000-0002-2344-9658 (M. Ortiz)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:bianca.loehnert@plus.ac.at
mailto:nikolaus.augsten@plus.ac.at
mailto:cem.okulmus@upb.de
mailto:magdalena.ortiz@tuwien.ac.at
https://orcid.org/0000-0002-3036-6201
https://orcid.org/0000-0002-7742-0439
https://orcid.org/0000-0002-2344-9658
https://creativecommons.org/licenses/by/4.0/deed.en

languages: (two-way) regular path queries ((2)RPQs), nested 2RPQs (N2RPQs), and their conjunctive

versions (C2RPQs and CN2RPQs).

The study of navigational queries in the context of OMQA is far from novel. For more than a decade

we have had tight complexity results for most description logics, ranging from lightweight to highly

expressive, as well as for all standard navigational languages (2RPQs, N2RPQs, C2RPQs, and CN2RPQs),

e.g., [2, 3, 4]. However, these studies focused on the boundaries of decidability and computational

complexity. The proposed algorithms are so unnameable to implementation that, more than a decade

later, not a single practical implementation has been proposed.

Unfortunately, there were two significant roadblocks that discouraged the development of practical

techniques for navigational OMQs over graph databases. First, practical languages imposed ad-hoc

restrictions on navigational languages that made them inadequate. Cypher, the most widely used

language for graph databases, did not support RPQs in full, and did not enable the basic homomorphism

semantics that is natural in the OMQA context. Second, it has been proven that even plain RPQs in

the presence of the simplest DL-Lite ontologies cannot be rewritten into C2RPQs [5]. Instead, they

require nested RPQs, which existing technologies did not support. The arrival of GQL and SQL-PGQ has

removed both obstacles at once. Since the standard now contains CN2RPQs and basic homomorphism

semantics, practical languages are being updated quickly to support it. This has finally made it feasible

to have practical OMQA for graph databases.

Seizing the opportunity, we propose the first practical query rewriting technique that covers full

2RPQs and N2RPQs in the presence of DL-Lite ontologies. We also consider conjunctive N2RPQs;

however, to ensure the algorithm remains practical and useful, we impose a restriction called ’join-on-

free’, whereby non-answer variables cannot be shared by multiple atoms. We also consider the property

data values, a central feature of the LPG model that is often disregarded in the OMQA literature. We

allow property tests in queries, also along the navigational paths. On the ontology side, we define a

variant of DL-Lite that can use property value tests on the left-hand-side of axioms, thus allowing to

create concepts and roles based on these values.

In summary, we make the following contributions:

1. We present the first practical algorithm to rewrite join-on-free CN2RPQs into CN2RPQs, capturing

the full power of navigational languages such as GQL.

2. This is the first work on OMQA on the LPG model that makes full use of properties, by including

data tests over property values in both the ontology and query language.

3. We show-case the practical utility of the algorithm by providing a proof-of-concept implementa-

tion that takes as input an ontology in OWL format and the real-world query language Cypher

and rewrites into Cypher.

This paper is structured as follows. In Section 2 we present the key terminology of our setting and

also introduce our novel description logic to express tests over propety values. In Section 4 we present

our rewriting algorithm on join-on-free CN2RPQs. In Section 5 we present our proof-of-concept

implementation and an experimental evaluation that aims to show its performance. In Section 6 we

summarise our results and highlight future work.

Related Work. We note that a few recent works have begun the effort of closing this gap towards

the practical OMQA algorithms in the graph database setting. Already Di Martino et al. [6] leveraged

the recursion in regular path queries to be able to rewrite a fragment of ℰℒ. They use navigational

queries as target language for query rewriting, but their source languages are only instance queries and

conjunctive queries. It is also a theoretical work not aimed at implementation, and thus more inline

with the mentioned theoretical works [2, 3] than with this paper. Aiming for practical implementation,

Dragovic et al. [7] considered a restricted fragment of C2RPQs that can be rewritten into UC2RPQs,

and DL-Lite ontologies. It has limited support for data tests. A next step came in the work from [5],

where the ontology language is also a fragment of ℰℒ very similar to the one of Di Martino et al. [6].

There are also restrictions on the regular path expressions to ensure rewritability into C2RPQs.

Table 1
Semantics of DL-LitePG

Name Syntax Semantics
top concept ⊤ 𝛥ℐ

concept name 𝐴 𝐴ℐ ⊆ 𝛥ℐ

negation ¬𝐴 𝛥ℐ ∖𝐴ℐ

role name 𝑟 𝑟ℐ ⊆ 𝛥ℐ ×𝛥ℐ

inverse role 𝑟− {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑟ℐ}
exist. restriction ∃𝑟.⊤ {𝑎 | (𝑎, 𝑏) ∈ 𝑟ℐ}
data test 𝑝⊙ 𝑣 ? {𝑎 | (𝑎, 𝑣′) ∈ 𝑝ℐ for some 𝑣′ with 𝑣′ ⊙ 𝑣} ∪

{(𝑎, 𝑎′) | ((𝑎, 𝑎′), 𝑣′) ∈ 𝑝ℐ for some 𝑣′ with 𝑣′ ⊙ 𝑣}
concept inclusion 𝐶 ⊑ 𝐷 𝐶ℐ ⊆ 𝐷ℐ

set of data tests {𝑇1, . . . , 𝑇𝑛} 𝑇 ℐ
1 ∩ · · · ∩ 𝑇 ℐ

𝑛

2. Querying Property Graphs with Navigational Queries and DL-Lite

Ontology language. We present now the ontology language that we will use in our approach, which

we call DL-LitePG . It is a careful extension of the well-known DL-Lite family [8] of ontology languages,

where we permit tests over properties via a concrete domain, affecting both concept and role inclusions.

We assume disjoint, countably infinite sets C, R, N and K of concept names, role names, individuals
and property keys, respectively. The set of roles is defined as R = R ∪ {𝑟− | 𝑟 ∈ R}.

We also assume a concrete domain (D,PD), with D a set of values and PD
a set of binary predicates

over D. For example, (D,PD) could contain the integers with the usual =, ≤, ≥ predicates. We define

the set of data tests as TD = {𝑝⊙ 𝑣 ? | 𝑝 ∈ K,⊙ ∈ PD, 𝑣 ∈ D}.

Definition 1 (DL-LitePG). To define the types of inclusions, we use the following syntax:

𝐵 := 𝐴 | ∃𝑟.⊤ | 𝑇 (basic concepts and data test) 𝐸 := 𝑟 | 𝑟− (basic role)
𝐶 := 𝐵 | ¬𝐵 (general concept) 𝐹 := 𝐸 | 𝑇 (roles and data test)

𝑅 := 𝐸 | ¬𝐸 (general role)

where 𝐴 ∈ C, 𝑟 ∈ R and 𝑇 ⊆ TD. A concept inclusion (CI) has the form 𝐵 ⊑ 𝐶 and a role inclusion

(RI) the form 𝐹 ⊑ 𝑅. A TBox is a finite set of CIs and RIs. We use ⊑*
𝒯 to denote the reflexive transitive

closure of {(𝑟, 𝑠) | 𝑟 ⊑ 𝑠 ∈ 𝒯 } and call 𝑟 a subrole of 𝑠 (in 𝒯) if 𝑟 ⊑*
𝒯 𝑠.

The semantics are given via interpretations of the form ℐ = (𝛥ℐ , ·ℐ), with 𝛥ℐ
a non-empty set called

the abstract domain. ·ℐ is the interpretation function, which assigns to every 𝐴 ∈ C a set 𝐴ℐ ⊆ 𝛥ℐ
, to

every 𝑟 ∈ R a relation 𝑟ℐ ⊆ 𝛥ℐ ×𝛥ℐ
and to every 𝑝 ∈ K a relation 𝑝ℐ ⊆ (𝛥ℐ ∪ (𝛥ℐ ×𝛥ℐ))×D.

It is extended to concepts and CIs in the usual way, as seen in Table 1. Modelhood is also standard.

Example 1. In the following, we provide a DL-LitePG TBox that provides knowledge that can be applied
to a social network graph, such as profile information from LinkedIn.

𝒯 =
{︀
{born ≥ 1997 ?, born ≤ 2012 ?} ⊑ GenZ, ∃employs−.⊤ ⊑ Employed,

{time ≥ (2025-01-01)?} ⊑ Recent, Employed ⊑ ¬Unemployed,

Opole ⊑ Poland, TechCompany ⊑ ∃employs.Engineer,

∃announce.⊤ ⊑ Hiring, friendsWith ⊑ friendsWith− }︀
Data model. In this paper the data (or ABox) is given as finite property graphs [9, 10, 11].

Definition 2. A property graph (PG) 𝒜 has the form (𝑁,𝐸, label, prop), where:
• 𝑁 is a non-empty set of nodes;
• 𝐸 is the set of edges, where each edge is a triple (𝑟, 𝑛, 𝑛′) with 𝑟 ∈ R and 𝑛, 𝑛′ ∈ 𝑁 ; we may write

such an edge in the form 𝑟(𝑛, 𝑛′) and call it an 𝑟-edge;

• label is a total function 𝑁 → 2C;
• prop is a partial function (𝑁 ∪ 𝐸)×K → D mapping pairs (𝑢, 𝑝) with 𝑢 ∈ (𝑁 ∪ 𝐸) and 𝑝 ∈ K

to a value in D.
If 𝑁 ⊆ N and it is finite, we call it an ABox. We say that 𝒜′ = (𝑁 ′, 𝐸′, label′, prop′) is a subgraph

of 𝒜 if 𝑁 ′ ⊆ 𝑁 , 𝐸′ ⊆ 𝐸, label′(𝑛) = label(𝑛) for all 𝑛 ∈ 𝑁 ′, and prop′(𝑢, 𝑝) = prop(𝑢, 𝑝) for all
𝑢 ∈ 𝑁 ′ ∪ 𝐸′, 𝑝 ∈ K.

Note that our definition of property graph allows only a single edge for each role between each pair

of nodes. Also, the same name of property keys is used for both nodes and edges, as usually done in

property graphs [10, 11].

Example 2. Below is an example property graph, over the social network setting from Example 1.

{ Job }

Software Engineer

starts = 21.09.2025

{ TechCompany }

SmartBees
revenue = 500k
founded = 2012

{ Opole }

City17

population = 2,
area = 3

{ Company }

nuCompany

revenue = 50k
founded = 2015

{ User }

Alice
born = 2000

{ User }

Bob
born = 1980

{ locatedIn }

e1
since = 2012

{ announce }

e2
on = 14.03.2025

{ employs }

e3
since = 2010

{ friendsWith }

e4
since = 2012

{ viewed }

e5
time = 24.04.2025

{ owns }

e6
since = 2025

Each interpretation can be seen as a property graph, and vice-versa.

Definition 3. For a property graph 𝒜 = (𝑁,𝐸, label, prop), define ℐ𝒜 = (𝑁, ·ℐ) as follows: 𝐶ℐ = {𝑛 ∈
𝑁 | 𝐶 ∈ label(𝑛)}, 𝑟ℐ = {(𝑛, 𝑛′) | 𝑟(𝑛, 𝑛′) ∈ 𝐸} and 𝑝ℐ = {(𝑢, 𝑑) | 𝑑 = prop(𝑢, 𝑝)}. Conversely,
ℐ = (𝛥ℐ , ·ℐ) induces a (possibly infinite) property graph PG(ℐ) = (𝛥ℐ , 𝐸, label, prop), where 𝐸 =
{𝑟(𝑛, 𝑛′) | (𝑛, 𝑛′) ∈ 𝑟ℐ}, label(𝑛) = {𝐶 ∈ C | 𝑛 ∈ 𝐶ℐ} and prop(𝑢, 𝑝) = {𝑑 ∈ D | (𝑢, 𝑑) ∈ 𝑝ℐ}. ℐ is
a model of an ABox 𝒜, if 𝒜 is a subgraph of 𝑃𝐺(ℐ). An ABox 𝒜 is consistent with a TBox 𝒯 iff there is a
model of 𝒜 and 𝒯 .

For the problem of checking that a given ABox is consistent with an DL-LitePG TBox, we refer to the

work of Artale et al. [12]; their algorithms can be easily tuned to account for key values on edges.

Query Language. We study conjunctive nested two-way regular path queries (CN2RPQs), the extension

of C2RPQs, the navigational query language for graphs that has received most attention in OMQA.

We enhance CN2RPQs by data tests similar as data tests for navigational conjunctive queries in [7] to

query for property values, assuming that the predicates in PD
can be realized in GQL and Cypher. To

represent CN2RPQs we rely on nested nondeterministic finite automaton (n-NFA), following generally

the notions from [3], with some simplifications.

We will first define nested two-way regular path expressions by way of NFAs, and then give the

definition of conjunctive nested two-way regular path queries based on them. We assume a given

alphabet Σ, and to define nested automata, we extend Σ by allowing n-NFAs as symbols.

Definition 4. Let A0 be the set of all NFAs over a given alphabet Σ. For 𝑘 > 0, the set A𝑘 of nested

NFA (n-NFA) over Σ of nesting depth 𝑘 contains all automata over Σ𝑘 = Σ ∪ {⟨𝛼⟩ | 𝛼 ∈ A𝑖, 1 ≤ 𝑖 < 𝑘}.

We omit the nesting depth of an n-NFA when irrelevant. We are interested in n-NFAs that use the

alphabet of symbols and tests that may occur in our property graphs. Note that a set of unary data tests

can be simulated by multiple transitions, thus the alphabet does not include a set of data tests for nodes.

Definition 5. A nested two-way regular path expression (N2RPE) is an n-NFA over the specific alphabet

Σ𝑃𝐺 = 2R∪TD ∪TD ∪ {C? | C ∈ C}.

This alphabet Σ𝑃𝐺 consists of three kinds of symbols: 1) sets of (possibly inverted) role labels and data
tests, which allow the expression to perform a series of data tests while traversing an edge that has all the
role labels in the test; 2) individual data tests, which are checked against the properties of a node and lastly,
3) concept tests, which check whether the current node is part of the required concept.

The semantics of N2RPEs that we give below is based on finding in an interpretation a path with

suitable outgoing paths. But sometimes it is convenient to talk about the word language of N2RPEs,

that is, the set 𝐿(𝛼) of words over Σ𝑃𝐺 ∪
⋃︀

𝑘∈NA𝑘
that it accepts in the standard sense, treating the

elements of

⋃︀
𝑘∈NA𝑘

as ordinary alphabet symbols. We introduce some useful definitions.

Definition 6. We define an inverse function over the alphabet Σ𝑃𝐺 ∪
⋃︀

𝑘∈NA𝑘 as follows:

𝜎− =

{︃
{𝑡 | 𝑡 ∈ 𝜎 ∩TD} ∪ {𝑟− | 𝑟 ∈ 𝜎 ∩R} ∪ {𝑟 | 𝑟− ∈ 𝜎, 𝑟 ∈ R}, 𝜎 ∈ 2R∪TD

𝜎 otherwise.

The inverse 𝑤− of a word 𝑤 = 𝜎1 · · ·𝜎𝑛 is 𝜎−
𝑛 · · ·𝜎−

1 , and for a language 𝐿, we let 𝐿− = {𝑤− | 𝑤 ∈ 𝐿}.
Let 𝛼 = ⟨𝑄,Σ𝑃𝐺, 𝑆, 𝛿, 𝐹 ⟩ be an N2RPE with 𝑆 ⊆ 𝑄 the initial states and 𝐹 ⊆ 𝑄 are the final states.

Then 𝛼 can be inverted to obtain 𝛼̄ = ⟨𝑄,Σ𝑃𝐺, 𝐹, 𝛿
−, 𝑆⟩, where 𝛿− = {(𝑠𝑗 , 𝜎−, 𝑠𝑖) | (𝑠𝑖, 𝜎, 𝑠𝑗) ∈ 𝛿}.

Lemma 1. For every N2RPE 𝛼, 𝐿(𝛼̄) = 𝐿(𝛼)−.

We are now ready to use N2RPEs as a query language for property graphs. To this aim, we define the

semantics of a 2NRPE 𝛼 as the pairs of nodes that are connected via 𝛼, and where at every nested ⟨𝛼′⟩
we can find an outgoing path that complies with 𝛼′

.

Definition 7. For a N2RPE 𝛼 of nesting depth 𝑘 and an interpretation ℐ , we define 𝛼ℐ as the set of pairs
(𝑜0, 𝑜𝑛) ∈ Δℐ ×Δℐ such that there is a sequence of the form 𝑜0𝜎1𝑜1𝜎2 . . . 𝜎𝑛𝑜𝑛, where each 𝑜𝑖 is a node
in Δℐ , 𝜎1, . . . , 𝜎𝑛 is a word in 𝐿(𝛼), and for each 𝑖 ∈ {1, . . . , 𝑛}:

∙ If 𝜎𝑖 ∈ 2R∪TD
, then (i) for every data test 𝑝 ⊙ 𝑣? ∈ 𝜎ℐ

𝑖 and the 𝑣′ with ((𝑜𝑖−1, 𝑜𝑖), 𝑣
′) ∈ 𝑝ℐ , we

have 𝑣′ ⊙ 𝑣, and (ii) for every 𝑟 ∈ 𝜎ℐ
𝑖 ∩R, we have (𝑜𝑖−1, 𝑜𝑖) ∈ 𝑟ℐ .

∙ If 𝜎𝑖 = C? for a concept C, then 𝑜𝑖−1 = 𝑜𝑖 and 𝑜𝑖 ∈ Cℐ .
∙ If 𝜎𝑖 = 𝑝⊙ 𝑣? for a property 𝑝 ∈ K, then 𝑜𝑖−1 = 𝑜𝑖 and 𝑣′ ⊙ 𝑣 where (𝑜𝑖−1, 𝑣

′) ∈ 𝑝ℐ .
∙ If 𝜎 = 𝛼′ ∈ A𝑘−1, then 𝑜𝑖−1 = 𝑜𝑖 and there exists some 𝑜 ∈ Δℐ such that (𝑜𝑖, 𝑜) ∈ 𝛼′ℐ .

N2RPEs are a very rich query language in their own right, but we get even more flexible querying

capabilities if we use variables to combine N2RPEs.

Definition 8. A conjunctive N2RPQ (CN2RPQ) 𝑞(𝑥⃗) is a conjunction of atoms 𝛼1(𝑥1, 𝑦1) ∧
· · ·𝛼𝑖(𝑥𝑖, 𝑦𝑖) · · · ∧𝛼𝑛(𝑥𝑛, 𝑦𝑛) with each 𝛼𝑖 an N2RPE and 𝑥⃗ ⊆

⋃︀𝑛
𝑖 {𝑥𝑖, 𝑦𝑖} is a tuple of answer variables.

We call a CN2RPQ Boolean if 𝑥⃗ is empty.
The set of join variables Join(𝑞(𝑥⃗)) of a CN2RPQ 𝑞(𝑥⃗) is the set of those variables that occur in

two different atoms of 𝑞(𝑥⃗). If Join(𝑞(𝑥⃗)) ⊆ 𝑥⃗ for a CN2RPQ that is not Boolean, then we call 𝑞(𝑥⃗) a
join-on-free CN2RPQ.

We sometimes abbreviate atoms of the form ⟨𝛼⟩(𝑥, 𝑥) as ⟨𝛼⟩(𝑥), and similary, 𝐴?(𝑥) as 𝐴(𝑥).
It will be convenient to assume that CN2RPQs are connected, that is, the graph whose vertices are

the variables and that has an edge between two variables if they occur in the same atom is a connected

graph. Disconnected queries can be answered as separate queries and then their answers intersected.

Note that, under this assumption, every atom in a join-on-free CN2RPQ has at least one answer variable.

Definition 9 (Semantics of CN2RPQs). Consider a CN2RPQs 𝑞(𝑥⃗) and a property graph 𝒜 =
(𝑁,𝐸, label, prop). A match 𝜇 for 𝑞(𝑥⃗) in 𝒜 is a mapping from the variables in 𝑞 to nodes in 𝑁 such that
(𝜇(𝑥), 𝜇(𝑦)) ∈ 𝛼ℐ𝒜 for every atom 𝛼(𝑥, 𝑦) occurring as a conjunct in 𝑞(𝑥⃗). The tuple 𝜇(𝑥⃗) is then called
an answer for 𝑞(𝑥⃗) in 𝒜.

Example 3. To illustrate our query language, we use the schema introduced in Example 1. The query
𝑞1(𝑥, 𝑦) retrieves all technical companies located in Poland that are currently hiring and that have an
employee who is a friend of friends of the user. In query 𝑞2(𝑥, 𝑦) a recruiter might be interested in friends
(and friends of friends) born after 2000 of an employee, who has been working for the company for over
three years. In query 𝑞3(𝑥, 𝑦), we look for companies that were founded before 2003, with a revenue of 105
or more, and want to find all Polish companies that they own since 2010, and also look for all companies
that these companies own, and so on. In query 𝑞4(𝑥, 𝑦), we look for all companies that employ workers
that are friends with some user of GenZ, and return the pairs of company and users, when the user also
viewed a job offer by the company that the friend is currently employed.

𝑞1(𝑥, 𝑦) := friendsWith* · employs−(𝑥, 𝑦), ⟨locatedIn · Poland?⟩ · Hiring? · TechCompany?(𝑦, 𝑧)

𝑞2(𝑥, 𝑦) := {employs−, since ≤ 2023?} · friendsWith* · born ≥ 2000?(𝑥, 𝑦),

⟨{viewed, time ≥ 01.01.2024?}⟩ · friendsWith(𝑧, 𝑦)

𝑞3(𝑥, 𝑦) := founded ≤ 2015? · revenue ≥ 105? · ({owns, since ≥ 2020?} · ⟨locatedIn · Poland?⟩)*(𝑥, 𝑦)
𝑞4(𝑥, 𝑦) := Company? · employs · friendsWith · GenZ?(𝑥, 𝑦), viewed · Job? · announce−(𝑦, 𝑥)

Following the OMQA literature, we use the homomorphism or walk semantics for path queries [13],

and in the presence of a TBox, adopt the certain answer semantics.

Definition 10. Consider an ABox 𝒜 and a TBox 𝒯 . A tuple 𝑎⃗ of individuals in 𝒜 is called a certain

answer to 𝑞(𝑥⃗) over (𝒯 ,𝒜) if it is an answer to 𝑞(𝑥⃗) in PG(ℐ) for every model ℐ of 𝒜 and 𝒯 .

3. Rewriting N2RPQs

We present a rewriting algorithm for N2RPQs with data tests. We assume in this section and the

next a fixed DL-LitePG TBox 𝒯 . As usual, we can rely on the fact for every property graph 𝒜 that is

consistent with 𝒯 there is a canonical model ℐ𝒯 ,𝒜 that gives exactly the certain answers to all N2RPQs.

The construction of this model is standard, and given in the extended version of this paper [14]. For

convenience, we may think of ℐ𝒯 ,𝒜 as a set of facts 𝐴(𝑜) 𝑟(𝑜, 𝑜′), 𝑇 (𝑜) and 𝑇 (𝑜, 𝑜′), where 𝑜, 𝑜′ are

nodes, 𝐴 ∈ C , 𝑟 ∈ R and 𝑇 ∈ TD
. We call a fact explicit if it is present in 𝒜, and implicit otherwise.

Note that all datatest facts are explicit, and that all implicit facts are introduced by the canonical model

construction on the basis of other (explicit or implicit) facts.

We define a skipping function that takes an N2RPE as input and outputs a modified N2RPE that

contains additional transitions which allow it to ‘skip over’ implicit facts, and instead traverse only the

explicitly given graph. It draws inspiration from loop computation [15] and clipping [16, 17].

Definition 11 (skipping over N2RPEs). Let 𝒯 be a DL-LitePG TBox. Given a N2RPE 𝛼 with alphabet
Σ𝑃𝐺, we denote by skip𝒯 (𝛼) the n-NFA obtained by exhaustively adding transitions as follows. In each
rule, 𝛿, 𝑠𝑖, 𝑠𝑗 and 𝑠𝑘 denote the transition function and states of one (arbitrary but fixed) automata that
occurs (possibly nested) in 𝛼, and as usual, 𝑟, 𝑠 ∈ R, 𝐶,𝐷 ∈ C and 𝑇 = {𝑡1, . . . , 𝑡𝑘} ⊆ TD.
(1) if 𝑟 ⊑ 𝑠 ∈ 𝒯 and (𝑠𝑖, 𝑆, 𝑠𝑗) ∈ 𝛿 with 𝑠 ∈ 𝑆 (or 𝑠− ∈ 𝑆), then add (𝑠𝑖, 𝑅, 𝑠𝑗) to 𝛿 with 𝑅 =

(𝑆 ∖ {𝑠}) ∪ {𝑟} (or 𝑅 = (𝑆 ∖ {𝑠−}) ∪ {𝑟−})
(2) if 𝐶 ⊑ 𝐷 ∈ 𝒯 and (𝑠𝑖, 𝐷?, 𝑠𝑗) ∈ 𝛿, then add (𝑠𝑖, 𝐶?, 𝑠𝑗) to 𝛿
(3) if 𝑇 ⊑ 𝐷 ∈ 𝒯 and (𝑠𝑖, 𝐷?, 𝑠𝑗) ∈ 𝛿, then add, for each 𝑡ℓ ∈ 𝑇 , a transition (𝑠′ℓ, 𝑡ℓ?, 𝑠

′
ℓ+1) to 𝛿, where

𝑠𝑖 = 𝑠′1, 𝑠′𝑘+1 = 𝑠𝑗 , and 𝑠′2, . . . , 𝑠
′
𝑘 are fresh states,

(4) if 𝑇 ⊑ 𝑟 ∈ 𝒯 and (𝑠𝑖, 𝑅, 𝑠𝑗) ∈ 𝛿 with 𝑟 ∈ 𝑅, then add (𝑠𝑖, 𝑇, 𝑠𝑗) to 𝛿
(5) if ∃𝑟.⊤ ⊑ 𝐵 and (𝑠𝑖, 𝐵?, 𝑠𝑗) ∈ 𝛿, then add (𝑠𝑖, ⟨𝛼𝑟⟩, 𝑠𝑗) to 𝛿 for a fresh two-state NFA 𝛼𝑟 with a

single transition 𝛿𝑟(𝑠𝑟, {𝑟}, 𝑠𝑓) between its only initial state 𝑠𝑟 and its only final state 𝑠𝑓 .
(6) for each ∃𝑟.⊤ ⊑ ∃𝑠.⊤ ∈ 𝒯 do:

a) if {(𝑠𝑖, {𝑠}, 𝑠𝑗), (𝑠𝑗 , {𝑠−}, 𝑠𝑘)} ⊆ 𝛿, then add (𝑠𝑖, ⟨𝛼𝑟⟩, 𝑠𝑘) to 𝛿
b) if (𝑠𝑖, {𝑠}, 𝑠𝑘) ∈ 𝛿 and 𝑠𝑘 ∈ 𝐹 , then add (𝑠𝑖, ⟨𝛼𝑟⟩, 𝑠𝑘) to 𝛿

for a fresh two-state NFA 𝛼𝑟 with a single transition 𝛿𝑟(𝑠𝑖, {𝑟}, 𝑠𝑘) between its only initial state 𝑠𝑖
and its only final state 𝑠𝑘.

(7) for each CI 𝐴 ⊑ ∃𝑟.⊤ ∈ 𝒯 do:
a) if {(𝑠𝑖, {𝑟}, 𝑠𝑗), (𝑠𝑗 , {𝑟−}, 𝑠𝑘)} ⊆ 𝛿, then add (𝑠𝑖, 𝐴, 𝑠𝑘) to 𝛿
b) if {(𝑠𝑖, {𝑟}, 𝑠𝑗)} ⊆ 𝛿 and 𝑠𝑗 ∈ 𝐹 , then add (𝑠𝑖, 𝐴, 𝑠𝑗) to 𝛿

(8) if (𝑠𝑖, 𝜎, 𝑠𝑗), (𝑠𝑗 , ⟨𝛼⟩, 𝑠𝑘) ∈ 𝛿 where 𝜎 ∈ Σ𝑃𝐺 and 𝜎− ∈ 𝐿(𝛼), then add (𝑠𝑖, 𝜎, 𝑠𝑘) to 𝛿.

Intuitively, each rule application adds a transition that allows 𝛼 to ‘skip’ an implicit fact 𝑓 in ℐ𝒯 ,𝒜
and use instead a fact that participated in its creation. We illustrate skip𝒯 (𝛼) on a simple example.

Example 4. Let us consider the TBox 𝒯 = {∃𝑟.⊤ ⊑ 𝐴,𝐴 ⊑ ∃𝑟.𝐵,𝐵 ⊑ ∃𝑟.𝐶,𝐴 ⊑ ∃𝑡.𝐴, {𝑝 ≥ 10?} ⊑
𝐵, 𝑡 ⊑ 𝑠} and the query 𝑞(𝑥⃗) = 𝛼1(𝑥, 𝑦) with 𝛼1 = (𝑆1, 𝑠1, 𝛿1, 𝐹1), and the nested 𝛼2 = (𝑆2, 𝑠2, 𝛿2, 𝐹2)
illustrated below; only the solid transitions are in the input N2RPE. The dotted transitions are those added
to skip𝒯 (𝛼1).

𝑠1start 𝑠5 𝑠6
⟨𝛼2⟩

𝑠

𝑡 𝐴?

𝑠−

𝑡−

𝑠2start 𝑠3 𝑠4

𝑟

𝐶? 𝑟−

𝐵?

𝑝 ≥ 10?

𝐴?

⟨𝑟⟩

We can now show that skip𝒯 (𝛼)(𝑥, 𝑦) is indeed a rewriting of 𝛼(𝑥, 𝑦).

Lemma 2. Let 𝒯 be a DL-LitePG TBox and 𝛼 be an N2RPE. Then, for every property graph 𝒜 and every
pair of nodes 𝑜𝑠, 𝑜𝑓 from 𝒜, it holds that (𝑜𝑠, 𝑜𝑓) ∈ 𝛼ℐ𝒯 ,𝒜 iff (𝑜𝑠, 𝑜𝑓) ∈ skip𝒯 (𝛼)𝒜.

Proof sketch. For the (if) direction, we show that if an N2RPE 𝛼𝑖+1 is obtained by applying a rule in

Definition 11 to 𝛼𝑖, then (𝑜𝑠, 𝑜𝑓) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖+1 implies (𝑜𝑠, 𝑜𝑓) ∈ 𝛼

ℐ𝒯 ,𝒜
𝑖 . This is a simple rule-by-rule

analysis.

For the (only if) direction, we rely on the fact that the canonical model construction naturally induces

an ordering on the facts in ℐ𝒯 ,𝒜, where an implicit fact always has a strictly higher degree that the facts

that participate in its creation. We then show that if (𝑜𝑠, 𝑜𝑓) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 and this can only be witnessed

using some implicit fact 𝑓 , then it is possible to apply some rule in such a way that, with the additional

transition, (𝑜𝑠, 𝑜𝑓) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖+1 can be witnessed using instead a fact 𝑓 ′

of strictly lower degree than 𝑓 . By

applying the rules exhaustively, we eventually have that (𝑜𝑠, 𝑜𝑓) ∈ skip𝒯 (𝛼)ℐ𝒯 ,𝒜
is witnessed using

only facts of degree 0, that is, facts in 𝒜, and hence (𝑜𝑠, 𝑜𝑓) ∈ skip𝒯 (𝛼)𝒜.

4. Rewriting join-on-free CN2RPQs

It is now very easy to obtain an algorithm for join-on-free CN2RPQs. First we get rid af all non-answer

variables using nesting.

Definition 12. For a join-on-free CN2RPQ 𝑞(𝑥⃗), we denote by 𝑞⟨∃⟩(𝑥⃗) the result of replacing each atom
𝛼(𝑥, 𝑦) with 𝑦 ̸∈ 𝑥⃗ by ⟨𝛼⟩(𝑥), and each 𝛼(𝑥, 𝑦) with 𝑥 ̸∈ 𝑥⃗ by ⟨𝛼−⟩(𝑦).

A simple inspection of the CN2RPQ semantics shows that the transformation preserves query answers.

Lemma 3. Let 𝑞(𝑥⃗) a join-on-free CN2RPQ. For every interpretation ℐ and tuple of nodes 𝑎⃗, we have that
𝑎⃗ is an answer to 𝑞(𝑥⃗) in ℐ iff 𝑎⃗ is an answer to 𝑞⟨∃⟩(𝑥⃗) in ℐ .

Moreover, the transformation to 𝑞⟨∃⟩ removes all the non-answer variables. The rewriting of queries

now straightforward, since we only need to apply skip𝒯 (𝛼) to each atom independently. We denote

by skip𝒯 (𝑞⟨∃⟩(𝑥⃗)) the result of executing Algorithm 1 on 𝑞(𝑥⃗) and 𝒯 , which applies skip𝒯 (𝛼) to each

atom in 𝑞⟨∃⟩(𝑥⃗) and leaves all variables untouched.

Algorithm 1: rewrite_jof_CNRPQ – Rewriting join-on-free CN2RPQs with data tests

Input :CN2RPQ 𝑞(𝑥⃗), 𝑇𝐵𝑜𝑥𝒯
Output :CN2RPQ 𝑞′

1 function rewrite_jof_CNRPQ(𝑞):
2 𝑞=remove∃Var(𝑞)
3 while 𝑞 ̸= 𝑞′ do
4 𝑞′ = 𝑞
5 foreach 𝛼(𝑥, 𝑦) ∈ 𝑞 do
6 𝑞′ = 𝑞′[𝛼∖skipping(𝛼)]
7 return 𝑞

8 function remove∃Var(𝑞):
9 foreach 𝛼(𝑥, 𝑦) ∈ 𝑞 do

10 if 𝑦 ̸∈ 𝑥⃗ then
11 𝑞 = 𝑞[𝛼(𝑥, 𝑦) ∖ ⟨𝛼⟩(𝑥)]
12 else if 𝑥 ̸∈ 𝑥⃗ then
13 𝑞 = 𝑞[𝛼(𝑥, 𝑦) ∖ ⟨𝛼−⟩(𝑦)]
14 return 𝑞

Theorem 1. Let 𝒯 be a DL-LitePG TBox and 𝑞(𝑥⃗) be a join-on-free CN2RPQ. Then, for every ABox 𝒜
and every tuple 𝑎⃗ of individuals from 𝒜, it holds that 𝑎⃗ is a certain answer to 𝑞(𝑥⃗) over (𝒯 ,𝒜) iff 𝑎⃗ is an
answer to skip𝒯 (𝑞⟨∃⟩(𝑥⃗)) over 𝒜.

Proof. Given a DL-LitePG TBox 𝒯 and an ABox 𝒜 and a join-on-free CN2RPQ 𝑞(𝑥⃗). From For (⇒)

assume that 𝑎⃗ of individuals from 𝒜 is a certain answer to 𝑞(𝑥⃗) over (𝒯 ,𝒜). From Lemma 3 it holds that

𝑎⃗ is a certain answer to 𝑞⟨∃⟩(𝑥⃗) over (𝒯 ,𝒜), i.e., 𝑎⃗ = 𝜇(𝑥⃗) and (𝜇(𝑥), 𝜇(𝑦)) ∈ 𝛼ℐ𝒯 ,𝒜
(or (𝜇(𝑥) ∈ 𝛼ℐ𝒯 ,𝒜

)

for each atom 𝛼(𝑥, 𝑦) (or 𝛼(𝑥)) in 𝑞⟨∃⟩(𝑥⃗). By Lemma 2 we can imply that (𝜇(𝑥), 𝜇(𝑦)) ∈ skip𝒯 (𝛼)𝒜

and (𝜇(𝑥) ∈ skip𝒯 (𝛼)𝒜 respectively. Thus, the claim holds that 𝑎⃗ is an answer to skip𝒯 (𝑞⟨∃⟩(𝑥⃗)) over 𝒜.

Since the claims in Lemma 2 and Lemma 3 hold in both directions, the proof for (⇐) is analogous.

Example 5. To demonstrate the full algorithm, let us consider the TBox 𝒯 from Example 1 and the queries
from Example 3. The first step of the algorithm is to remove the join-free non-answer variables of the input
query, for example:

𝑞2(𝑥, 𝑦) := {employs−, since ≤ 2023?} · friendsWith* · born ≥ 2000?(𝑥, 𝑦),

⟨friendsWith− · ⟨{viewed−, time ≤ 01.01.2023?}⟩⟩(𝑦)

Then, we apply the skipping function and obtain the following rewritten queries:

𝑞1(𝑥, 𝑦) := (friendsWith*|(friendsWith−))* · employs−(𝑥, 𝑦), ⟨⟨locatedIn · (Opole|Poland?⟩)·
(Hiring?|⟨announce⟩) · TechCompany?⟩(𝑦)

𝑞2(𝑥, 𝑦) := {employs−, since ≤ 2023?} · (friendsWith*|(friendsWith−)* · born ≥ 2000?(𝑥, 𝑦),

⟨(friendsWith|friendsWith−) · ⟨{viewed−, time ≥ 01.01.2024?}⟩⟩(𝑦)
𝑞3(𝑥, 𝑦) := founded ≤ 2003? · revenue ≥ 105? · ({owns, since ≥ 2010?}·

⟨locatedIn · (Opole?|Poland?⟩))*(𝑥, 𝑦)
𝑞4(𝑥, 𝑦) := Company? · employs · (friendsWith|friendsWith−)·

(GenZ?|{born ≥ 1997?, born ≤ 2012?})(𝑥, 𝑦), viewed · Job? · announce−(𝑦, 𝑥)

Now, the evaluation of these queries over the property graph from Example 2 gives us the following
matches. For 𝑞1(𝑦) we get two matches 𝜇1(𝑥) = Bob 𝜇1(𝑦) = SmartBees and 𝜇′

1(𝑥) = Alice 𝜇′
1(𝑦) =

SmartBees. For query 𝑞2 there is one match 𝜇2(𝑥) = Bob and 𝜇2(𝑥) = Alice. The third query returns two
companies by the match 𝜇3(𝑥) = SmartBees and 𝜇3(𝑦) = nuCompany. Finally, 𝜇4(𝑥) = SmartBees and
𝜇4(𝑦) = Alice is a valid match for query 𝑞4.

Query Number of Concepts Rewriting Time [ms] Evaluation Time [ms]
𝑞1 68 7237 18 084

𝑞2 67 3277 �
𝑞3 82 3805 6311
𝑞4 77 4557 5948
𝑞5 124 5769 11 307

Table 2
Results of experiments with data from the cognitive neuroscience domain.� indicates a timeout of 600 seconds.

5. Implementation & Experiments

As a proof-of-concept we implemented the algorithm from Section 4 in a publicly available prototype

[18] and provide preliminary results in this section. The implementation makes use of the OWL API

[19] to parse the input OWL ontology, ANTLR [20] for parsing the input CN2RPQ, and the Java library

JgraphT [21] for the internal representation of n-NFAs. To the best of our knowledge the current version

of the OWL2 standard [22] does not support to express data tests in role inclusions, i.e., axioms of the

form {𝑝⊙ 𝑣 ?} ⊑ 𝑟. Therefore, the experiments do not consider these kind of axioms in the evaluation.

Ontology. As TBox we use the Cognitive Task Ontology (CogiTO) [23] and extended it by the

axioms below (see [18] for this version of the ontology). There are multiple options to indicate that

a participant is female; we have added axioms to cover all such cases, although we present only one

representative example here. This ontology includes about 4686 concepts and 10 002 axioms, whereas

720 axioms are of the form ReadingTask ⊑ ∃has.Read ⊓ ∃has.Language− item. Note that CogiTO

contains conjunction and qualified existentials on the left-hand side, which the prototype ignores.

𝒯 =
{︀
{License = “CC0” ?} ⊑ Reusable, {BIDSVersion = 1.2.0 ?} ⊑ LatestBIDSVersion,

{gender = “f” ?} ⊑ Female, {Manufacturer = “Siemens”} ⊑ HighQuality
}︀

Data. The prototype produces a Cypher query, assuming that concepts in the ontology correspond

to node labels in the database, and roles correspond to relationships (i.e., edge labels). The dataset for

the experiments (see [18]) are from the domain of cognitive neuroscience [24] and is stored in a Neo4j

database, consisting of 396 741 nodes and 2 870 405 relationships.

Queries. We handcrafted the following queries to provide preliminary results on the time required

for rewriting and evaluating the queries.

𝑞1(𝑥) :=Dataset? · LatestBIDSVersion? · Reusable? · has* · Language−item(𝑥, 𝑦)

𝑞2(𝑥) :=Dataset⟨has* · Female?⟩ · ⟨has* · Language−item?⟩(𝑥, 𝑦)
𝑞3(𝑥, 𝑦) :=Dataset · ⟨has* · HighQuality?⟩⟨has* · Language−item?⟩⟨has* · Read?⟩(𝑥, 𝑦)
𝑞4(𝑥, 𝑦) :=Dataset · ⟨has* · Female?⟩ · ⟨has* · HighQuality?⟩ · ⟨has* ·Memorize?⟩ · ⟨has*·

Quantitative−value?⟩(𝑥, 𝑦)
𝑞5(𝑥, 𝑦) :=Dataset · ⟨has* · HighQuality⟩ · ⟨has* ·Memorize?⟩ · ⟨has* · Language−item?⟩·

⟨has* · Read?⟩(𝑥, 𝑦)

Setup. The experiments were executed on a virtual cluster node running Rocky Linux 8.10 with an

AMD EPYC 7513 32-Core CPU @ 2.60 GHz and 400 GB RAM; Neo4j 5.18.1 runs on the same machine.

Results. In Table 2, we provide the results of our experimental evaluation. Since most of the transitions

introduced by the rewriting are concept tests added due to a large concept hierarchy and existentials on

the right-hand side, we give the number of concept tests as a proxy for the query size after the rewriting

(Number of Concepts). Additionally, we measure the time it takes to rewrite the queries (Rewriting Time
[ms]) and to evaluate them with the Neo4j database (Evaluation Time [ms]), both averaged over 10 runs.

The number of concepts, roughly indicating size and complexity of the rewriting, increases significantly

from 3–5 concepts in the input to 67–124 in the rewritten queries. The rewriting times for all queries

are within a reasonable range of a few seconds (3.3s-7.2s) suggesting that the rewriting is practically

feasible. The evaluation times for the rewritten queries, with the exception of 𝑞2 which timed out at

the 600s threshold, remain under 20s. Given the size of the ontology, these numbers demonstrate an

acceptable performance for the majority of our queries, although it also reveals that certain queries can

result in significantly longer evaluation times. A possible reason for the outlier 𝑞2 is a high number of

Female instances in the dataset. We emphasize that the prototype is a very simple proof of concept and

does not yet implement any optimizations. It has often been documented that queries obtained from

rewriting algorithms tend to perform poorly: they introduce redundancy, nested disjunctions, and other

complex subqueries that the engines are not optimized for. Thus, they require dedicated optimizations,

which are often feasible given their somewhat predictable structure. We are confident that there is

ample opportunity to optimize and improve the runtimes, and we plan to do so in the future.

6. Conclusion

In this paper, we present the first practical algorithm for rewriting N2RPQs and a significant subset

of CN2RPQs, thereby capturing a substantial portion of Cypher and GQL. Our queries can access key

values within path expressions. In our DL-LitePG ontology language, property value tests can be used

to define concepts and roles in the ontology. The result is a highly flexible approach to ontology-

mediated querying of property graphs that still allows for query rewriting into native graph database

technologies. We have demonstrated the formal correctness of our approach and provided a proof-

of-concept implementation that can rewrite Cypher queries to incorporate ontological knowledge

and evaluate the rewritten queries using Cypher. This work brings us significantly closer to flexible,

ontology-mediated querying of graph databases, and we look forward to exploring its advantages in

real-world use cases.

To achieve a simple and practicable solution we focused on join-on-free CN2RPQs. This does not

seem too limiting: even plain N2RPEs can already express many realistic examples that involve complex

bidirectional navigation on the anonymous implicit facts; arbitrary conjunctions over the free variables

make the query language even more powerful. We expect that real-world queries that require different

regular paths to travel separately and join somewhere in the unnamed part of the canonical model will

very rarely emerge in practice, if at all. Nevertheless, we plan to cover full CN2RPQs. We note that

algorithms for full extended CN2RPQs in expressive DLs have been available for over a decade [3]. It is

not difficult to adapt these algorithms to create one that is both correct and worst-case optimal for all

CN2RPQs and DL-LitePG ontologies. However, its value seems limited since these techniques are highly

impractical. In the extended version of this paper [14], we provide a sketch of one such technique,

but it relies on automata-theoretic operations that can cause an exponential increase in size (e.g. the

intersection of the word projection of N2RPEs). In contrast coming up with a practical, goal-oriented

algorithm that can be used in practice seems to be a much bigger challenge, which we will address.

We plan to explore the potential of our technique for real-life OBDA systems with navigational

capabilities, and to conduct experiments on systems supporting GQL as soon as they become available.

Acknowledgments

This work was partially supported by the Austrian Science Fund (FWF) project PIN8884924 and by

the State of Salzburg under grant number 20102-F2101143-FPR (DNI). The authors acknowledge the

computational resources and services provided by Salzburg Collaborative Computing (SCC), funded by

the Federal Ministry of Education, Science and Research (BMBWF) and the State of Salzburg.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault, W. Martens,

J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt, D. Vrgoc, M. Wu, F. Zemke,

Graph pattern matching in GQL and SQL/PGQ, in: Z. G. Ives, A. Bonifati, A. E. Abbadi (Eds.),

SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 -

17, 2022, ACM, 2022, pp. 2246–2258. doi:10.1145/3514221.3526057.

[2] M. Bienvenu, M. Ortiz, M. Simkus, Regular path queries in lightweight description logics: Com-

plexity and algorithms, J. Artif. Intell. Res. 53 (2015) 315–374. doi:10.1613/jair.4577.

[3] M. Bienvenu, D. Calvanese, M. Ortiz, M. Simkus, Nested regular path queries in description logics,

in: C. Baral, G. D. Giacomo, T. Eiter (Eds.), Principles of Knowledge Representation and Reasoning:

Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24,

2014, AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8000.

[4] D. Calvanese, T. Eiter, M. Ortiz, Regular path queries in expressive description logics with

nominals, in: C. Boutilier (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference

on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, 2009, pp. 714–720. URL:

http://ijcai.org/Proceedings/09/Papers/124.pdf.

[5] B. Löhnert, N. Augsten, C. Okulmus, M. Ortiz, Towards practicable algorithms for rewriting graph

queries beyond DL-Lite, in: The Semantic Web - 22nt International Conference, ESWC 2025,

Portorož, Slovenia, June 1-5, 2025 (accepted for publication), Lecture Notes in Computer Science,

Springer, 2025.

[6] M. M. Dimartino, A. Calì, A. Poulovassilis, P. T. Wood, Query rewriting under linear EL knowledge

bases, in: M. Ortiz, S. Schlobach (Eds.), Web Reasoning and Rule Systems - 10th International Con-

ference, RR 2016, Aberdeen, UK, September 9-11, 2016, Proceedings, volume 9898 of Lecture Notes
in Computer Science, Springer, 2016, pp. 61–76. URL: https://doi.org/10.1007/978-3-319-45276-0_6.

[7] N. Dragovic, C. Okulmus, M. Ortiz, Rewriting ontology-mediated navigational queries into cypher,

in: O. Kutz, C. Lutz, A. Ozaki (Eds.), Proceedings of the 36th International Workshop on Description

Logics (DL 2023) co-located with the 20th International Conference on Principles of Knowledge

Representation and Reasoning and the 21st International Workshop on Non-Monotonic Reasoning

(KR 2023 and NMR 2023)., Rhodes, Greece, September 2-4, 2023, volume 3515 of CEUR Workshop
Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3515/paper-9.pdf.

[8] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient

query answering in description logics: The DL-lite family, Journal of Automated Reasoning 39

(2007) 385–429. doi:10.1007/s10817-007-9078-x.

[9] R. Angles, The property graph database model, in: D. Olteanu, B. Poblete (Eds.), Proceedings of

the 12th Alberto Mendelzon International Workshop on Foundations of Data Management, Cali,

Colombia, May 21-25, 2018, volume 2100 of CEUR Workshop Proceedings, CEUR-WS.org, 2018. URL:

https://ceur-ws.org/Vol-2100/paper26.pdf.

[10] A. Bonifati, G. H. L. Fletcher, H. Voigt, N. Yakovets, Querying Graphs, Synthesis Lectures

on Data Management, Morgan & Claypool Publishers, 2018. URL: https://doi.org/10.2200/

S00873ED1V01Y201808DTM051. doi:10.2200/S00873ED1V01Y201808DTM051.

[11] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,

P. Selmer, A. Taylor, Cypher: An evolving query language for property graphs, in: G. Das, C. M.

Jermaine, P. A. Bernstein (Eds.), Proceedings of the 2018 International Conference on Management

of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, ACM, 2018, pp. 1433–1445.

URL: https://doi.org/10.1145/3183713.3190657. doi:10.1145/3183713.3190657.

[12] A. Artale, V. Ryzhikov, R. Kontchakov, Dl-lite with attributes and datatypes, in: L. D. Raedt,

http://dx.doi.org/10.1145/3514221.3526057
http://dx.doi.org/10.1613/jair.4577
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8000
http://ijcai.org/Proceedings/09/Papers/124.pdf
https://doi.org/10.1007/978-3-319-45276-0_6
https://ceur-ws.org/Vol-3515/paper-9.pdf
http://dx.doi.org/10.1007/s10817-007-9078-x
https://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
http://dx.doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657

C. Bessiere, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, P. J. F. Lucas (Eds.), ECAI 2012 - 20th

European Conference on Artificial Intelligence. Including Prestigious Applications of Artificial

Intelligence (PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-31 , 2012,

volume 242 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2012, pp. 61–66. URL:

https://doi.org/10.3233/978-1-61499-098-7-61. doi:10.3233/978-1-61499-098-7-61.

[13] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, D. Vrgoc, Foundations of modern query

languages for graph databases, ACM Comput. Surv. 50 (2017) 68:1–68:40. doi:10.1145/3104031.

[14] B. Löhnert, N. Augsten, C. Okulmus, M. Ortiz, Query rewriting for nested navigational queries over

property graphs (with appendix), 2025. URL: https://gitlab.com/austrian-neurocloud/software/

owl2cypher/-/releases/DL2025, accessed: 2025-07-23.

[15] M. Bienvenu, M. Ortiz, M. Simkus, Conjunctive regular path queries in lightweight description

logics, in: F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint Conference on

Artificial Intelligence, Beijing, China, August 3-9, 2013, IJCAI/AAAI, 2013, pp. 761–767. URL:

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6886.

[16] T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules, in:

J. Hoffmann, B. Selman (Eds.), Proceedings of the Twenty-Sixth AAAI Conference on Artificial

Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, AAAI Press, 2012, pp. 726–733. URL:

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931.

[17] B. Löhnert, N. Augsten, C. Okulmus, M. Ortiz, Towards practicable algorithms for rewriting graph

queries beyond dl-lite, in: European Semantic Web Conference, Springer, 2025, pp. 342–361.

[18] B. Löhnert, N. Dragovic, Ontology-mediated querying for property graphs, 2025. URL: https:

//gitlab.com/austrian-neurocloud/software/owl2cypher/-/releases/DL2025, accessed: 2025-06-08.

[19] The OWL API, July 25, 2023. URL: https://owlcs.github.io/owlapi/.

[20] The OWL API, July 25, 2023. URL: https://www.antlr.org/.

[21] JGraphT, July 25, 2023. URL: https://jgrapht.org/.

[22] OWL2 Standard, July 25, 2023. URL: https://www.w3.org/TR/owl2-overview/.

[23] B. Löhnert, B. Engler, F. Hutzler, N. Augsten, Cognitive task ontology (COGITO), 2025. URL:

https://gitlab.com/austrian-neurocloud/ontologies/cogito/-/releases/ESWC2025, accessed: 2025-

03-27.

[24] A. Ravenschlag, M. Denissen, B. Löhnert, M. Pawlik, N. A. Himmelstoß, F. Hutzler, Effective queries

for mega-analysis in cognitive neuroscience, in: G. Fletcher, V. Kantere (Eds.), Proceedings of the

Workshops of the EDBT/ICDT 2023 Joint Conference, Ioannina, Greece, March, 28, 2023, volume

3379 of CEUR Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3379/

CoMoNoS_2023_id252_Mateusz_Pawlik.pdf.

https://doi.org/10.3233/978-1-61499-098-7-61
http://dx.doi.org/10.3233/978-1-61499-098-7-61
http://dx.doi.org/10.1145/3104031
https://gitlab.com/austrian-neurocloud/software/owl2cypher/-/releases/DL2025
https://gitlab.com/austrian-neurocloud/software/owl2cypher/-/releases/DL2025
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6886
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
https://gitlab.com/austrian-neurocloud/software/owl2cypher/-/releases/DL2025
https://gitlab.com/austrian-neurocloud/software/owl2cypher/-/releases/DL2025
https://owlcs.github.io/owlapi/
https://www.antlr.org/
https://jgrapht.org/
https://www.w3.org/TR/owl2-overview/
https://gitlab.com/austrian-neurocloud/ontologies/cogito/-/releases/ESWC2025
https://ceur-ws.org/Vol-3379/CoMoNoS_2023_id252_Mateusz_Pawlik.pdf
https://ceur-ws.org/Vol-3379/CoMoNoS_2023_id252_Mateusz_Pawlik.pdf

A. Proofs for Section 3 (Rewriting N2RPQs)

Definition 13 (Canonical Model). Consider a DL-LitePG TBox 𝒯 and an ABox 𝒜. Let ℐ0 be the initial
interpretation with 𝒜 the corresponding property graph. Then, we construct the canonical model ℐ𝒯 ,𝒜 by
exhaustively applying the following rules to ℐ0.
(Ch1) If 𝐴 ⊑ 𝐵 ∈ 𝒯 , 𝑣 ∈ 𝐴ℐ𝑖 and 𝑣 /∈ 𝐵ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with 𝐵ℐ𝑖+1 = 𝐵ℐ𝑖 ∪ {𝑣}.
(Ch2) If ∃𝑟.⊤ ⊑ 𝐵 ∈ 𝒯 , 𝑣 ∈ (∃𝑟.⊤)ℐ𝑖 and 𝑣 /∈ 𝐵ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with 𝐵ℐ𝑖+1 = 𝐵ℐ𝑖 ∪ {𝑣}.
(Ch3) If ∃𝑟.⊤ ⊑ ∃𝑠.⊤ ∈ 𝒯 , 𝑣 ∈ (∃𝑟.⊤)ℐ𝑖 and 𝑣 /∈ (∃𝑠.⊤)ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with a fresh 𝑤 in 𝛥ℐ𝑖+1 . In

case 𝑠 ∈ R then 𝑠ℐ𝑖+1 = 𝑠ℐ𝑖 ∪ {(𝑣, 𝑤)}, otherwise 𝑠ℐ𝑖+1 = 𝑟ℐ𝑖 ∪ {(𝑤, 𝑣)}.
(Ch4) If 𝐴 ⊑ ∃𝑟.⊤ ∈ 𝒯 , 𝑣 ∈ 𝐴ℐ𝑖 and 𝑣 /∈ (∃𝑟.⊤)ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with a fresh 𝑤 in 𝛥ℐ𝑖+1 . In case

𝑟 ∈ R then 𝑟ℐ𝑖+1 = 𝑟ℐ𝑖 ∪ {(𝑣, 𝑤)}, otherwise 𝑟ℐ𝑖+1 = 𝑟ℐ𝑖 ∪ {(𝑤, 𝑣)}.
(Ch5) If 𝑟 ⊑ 𝑠 ∈ 𝒯 , (𝑣, 𝑤) ∈ 𝑟ℐ𝑖 and (𝑣, 𝑤) /∈ 𝑠ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with 𝑠ℐ𝑖+1 = 𝑠ℐ𝑖 ∪ {(𝑣, 𝑤)} in case

𝑟 ∈ R, otherwise 𝑠ℐ𝑖+1 = 𝑠ℐ𝑖 ∪ {(𝑤, 𝑣)}.
(Ch6) If 𝑇 ⊑ 𝐵 ∈ 𝒯 , 𝑣 ∈ 𝑇 ℐ𝑖 and 𝑣 /∈ 𝐵ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with 𝐵ℐ𝑖+1 = 𝐵ℐ𝑖 ∪ {𝑣}.
(Ch7) If 𝑇 ⊑ 𝑠 ∈ 𝒯 , (𝑣, 𝑤) ∈ 𝑇 ℐ𝑖 and (𝑣, 𝑤) /∈ 𝑠ℐ𝑖 , then ℐ𝑖+1 is ℐ𝑖 with 𝑠ℐ𝑖+1 = 𝑠ℐ𝑖 ∪ {(𝑣, 𝑤)}.

Lemma 2. Let 𝒯 be a DL-LitePG TBox and 𝛼 be an N2RPE. Then, for every property graph 𝒜 and every
pair of nodes 𝑜𝑠, 𝑜𝑓 from 𝒜, it holds that (𝑜𝑠, 𝑜𝑓) ∈ 𝛼ℐ𝒯 ,𝒜 iff (𝑜𝑠, 𝑜𝑓) ∈ skip𝒯 (𝛼)𝒜.

Proof. For the (if) direction, assume that an n-NFA 𝛼𝑖+1 was obtained by applying one of the rules in

Definition 11 to 𝛼𝑖. In the following we show for each of the rules that it holds if (𝑜0, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖+1 (𝑥, 𝑦),

then also (𝑜0, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 (𝑥, 𝑦).

• Assume that 𝛼
ℐ𝒯 ,𝒜
𝑖+1 (𝑥, 𝑦) was obtained by applying rule (1) with 𝑟 ⊑ 𝑠 ∈ 𝒯 and (𝑠𝑖, 𝑆, 𝑠𝑖+1) ∈ 𝛿𝑖

with 𝑠 ∈ 𝑆. Then, 𝛼
ℐ𝒯 ,𝒜
𝑖+1 (𝑥, 𝑦) contains the transition (𝑠𝑖, 𝑅, 𝑠𝑖+1) with 𝑅 = (𝑆 ∖ {𝑠}) ∪ {𝑟}.

By assumption it holds that (𝑜𝑖, 𝑜𝑖+1) ∈ 𝑟ℐ𝒯 ,𝒜
and from Definition 13 it follows that (𝑜𝑖, 𝑜𝑖+1) ∈

𝑠ℐ𝒯 ,𝒜
.

• The proof for the rules (2)-(4) works equivalent to (1).

• Assume that 𝛼
ℐ𝒯 ,𝒜
𝑖+1 (𝑥, 𝑦) was obtained by rule (5) for ∃𝑟.⊤ ⊑ 𝐵 and (𝑠𝑖, 𝐵?, 𝑠𝑖+1) ∈ 𝛿𝑖. Then,

we add a transition with a nested NFA 𝛼 that contains a single transition with 𝑟. By Definition 7

it holds that 𝑜𝑖 = 𝑜𝑖+1 and there is a pair (𝑜𝑖, 𝑜
′′), such that (𝑜𝑖, 𝑜

′′) ∈ 𝑟ℐ𝒯 ,𝒜
. From Definition 13

it follows that 𝑜𝑖 ∈ 𝐵ℐ𝒯 ,𝒜
.

• The argumentation for (6) is equivalent to the argumentation of (5) and (7) combined.

• Assume that 𝛼
ℐ𝒯 ,𝒜
𝑖+1 (𝑥, 𝑦) was obtained by applying rule (7) with 𝐴 ⊑ ∃𝑟.⊤ ∈ 𝒯 . By Definition 7

it holds that there is a pair (𝑜𝑖, 𝑜
′) where (𝑜𝑖, 𝑜

′), such that 𝑜𝑖 ∈ 𝐴ℐ𝒯 ,𝒜
. From the canonical model

construction in Item 4 it holds that 𝑜𝑖 ∈ (∃𝑟.𝐵)ℐ𝒯 ,𝒜
. For each of the cases below it holds that

(𝑜𝑖, 𝑜𝑖) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 (𝑥, 𝑦).

a) {(𝑠𝑖, 𝑟, 𝑠𝑖+1), (𝑠𝑖+1, 𝑟
−, 𝑠𝑖+2)} ⊆ 𝛿

b) {(𝑠𝑖, 𝑟, 𝑠𝑖+1)} ⊆ 𝛿 and 𝑠𝑖+1 ∈ 𝐹
• In case that 𝛼𝑖+1 was obtained by rule (8), then for each (𝑠𝑖, 𝜎, 𝑠𝑗), (𝑠𝑗 , ⟨𝛼⟩, 𝑠𝑘) ∈ 𝛿 where

𝜎 ∈ Σ𝑃𝐺 and 𝜎− ∈ 𝐿(𝛼) we add the transition (𝑠𝑖, 𝜎, 𝑠𝑘) to 𝛿. Since 𝜎− ∈ 𝐿(𝛼) and there has

to be a precedent 𝜎 before 𝛼, there is a trivial matching for the NRPE 𝛼, i.e., if (𝑜1, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖+1 ,

then also (𝑜0, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 .

(⇒) In order to show completeness we first introduce the notion of degree, that comes from the

canonical model construction: We denote individuals or pair of individuals in the extension of concepts

and roles as facts, i.e., 𝑣 ∈ 𝐵ℐ𝑗
or (𝑣, 𝑤) ∈ 𝑟ℐ𝑗 . A fact that occurs for the first time in ℐ𝑗 has degree 𝑗,

and a set of facts gets the sum of the degrees of its elements. The degree of sequence 𝑜0𝜎1𝑜1 . . . 𝜎𝑛𝑜𝑛
witnessing (𝑜0, 𝑜𝑛) ∈ 𝛼ℐ𝒯 ,𝒜(𝑥, 𝑦) is the minimal degree of a set of facts that is sufficient to witness all

conditions in Definition 7, including the nested automata. Note that there may be more than one way

to witness not only the automata, but even for a fixed (top level) sequence, we may have choices, but

we don’t care. We set the degree to be the smallest, and then every added transition will allow us to

witness the same sequence but with a strictly smaller degree.

Having the notion of degree for a pair in place we show by induction that in each rewriting step we

are "moving up" the part of the canonical model that is induced by the axioms in 𝒯 . In the following we

show that for each of the rules in Definition 13 there is a corresponding rule in Definition 11 producing

a n-NFA𝛼𝑖+1 from 𝛼𝑖 such that the degree of the accepted sequence is strictly smaller.

(Ch1) Consider 𝐴 ⊑ 𝐵 ∈ 𝒯 and 𝑜𝑘 ∈ 𝐴ℐ𝑗
, 𝑜𝑘 /∈ 𝐵ℐ𝑗

and 𝑜𝑖 ∈ 𝐵ℐ𝑗+1
by construction of the canonical

model. Consider the sequence (𝑜1 . . . 𝑜𝑘𝐵𝑜𝑘 . . . 𝑜𝑛) that (𝑜1, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 . In the rewriting we

apply rule applies rule (2) to obtain 𝛼𝑖+1 from 𝛼𝑖, where we add for each transition (𝑠𝑙, 𝐵?, 𝑠𝑙+1)

a new transition (𝑠𝑙, 𝐴?, 𝑠𝑙+1), thus (𝑜1 . . . 𝑜𝑘𝐴𝑜𝑘 . . . 𝑜𝑛) will be accepted by 𝛼
ℐ𝒯 ,𝒜
𝑖+1 , for which

the degree is strictly smaller then for (𝑜1 . . . 𝑜𝑘𝐵𝑜𝑘 . . . 𝑜𝑛).
(Ch2) Given ∃𝑟.⊤ ⊑ 𝐵 ∈ 𝒯 and by construction of the canonical model 𝑜𝑘 ∈ (∃𝑟.⊤)ℐ𝑗 , 𝑜𝑘 /∈ 𝐵ℐ𝑗

𝑜𝑘 ∈ 𝐵ℐ𝑗+1
. Consider a sequence of the form (𝑜1 . . . 𝑜𝑘𝐵𝑜𝑘 . . . 𝑜𝑛) such that (𝑜1, 𝑜𝑛) ∈ 𝛼

ℐ𝒯 ,𝒜
𝑖 .

In skipping we apply rule (5) to obtain 𝛼𝑖+1 and add for each (𝑠𝑖, 𝐵?, 𝑠𝑗) ∈ 𝛿 the transition

(𝑠𝑖, ⟨𝛼𝑟⟩, 𝑠𝑗) to 𝛿, where 𝛼𝑟 is a fresh two-state NFA with a single transition (𝑠𝑟, {𝑟}, 𝑠𝑓). Since

𝑜𝑘 ∈ (∃𝑟.⊤)ℐ𝑗 there has to be some sequence (𝑜𝑘𝑟𝑜
′
𝑘), such that (𝑜𝑘, 𝑜

′
𝑘) ∈ 𝛼

ℐ𝒯 ,𝒜
𝑟 and (𝑜1, 𝑜𝑛) ∈

𝛼
ℐ𝒯 ,𝒜
𝑖+1 .

(Ch3) For this case consider ∃𝑟.⊤ ⊑ ∃𝑡.⊤ ∈ 𝒯 , then by construction of the canonical model we have

𝑜𝑘 ∈ (∃𝑟.⊤)ℐ𝑗 , 𝑜𝑘 /∈ (∃𝑠.⊤)ℐ𝑗 and (𝑜𝑘, 𝑜
′
𝑘) ∈ 𝑠ℐ𝑗+1

for a fresh 𝑜𝑘 . Further, there are two possible

ways for a sequence to pass the 𝑠 edge, either the sequence is of the form (𝑜1 . . . 𝑜𝑘𝑠𝑜
′
𝑘𝑠

−𝑜𝑘 . . . 𝑜𝑓)

or it ends with the 𝑠 edge, i.e., (𝑜𝑠 . . . 𝑜𝑛−1𝑠𝑜𝑛). For both cases suppose that (𝑜1, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖 .

First, we get rid of trivially satisfied nested expressions by rule (8). Then, we obtain 𝛼𝑖+1 by

applying rule (6) and add for each consecutive transitions (𝑠𝑙, 𝑠, 𝑠𝑙+1), (𝑠𝑙+1, 𝑠
−, 𝑠𝑙+2) in 𝛼𝑖 a

transition (𝑠𝑙, ⟨𝛼𝑟⟩, 𝑠𝑙+2) to 𝛼𝑖+1 and for each {(𝑠𝑙, {𝑠}, 𝑠𝑙+1)} such that 𝑠𝑙+1 is a final state, we

add (𝑠𝑙, {𝑠}, 𝑠𝑙+1) to 𝛼𝑖+1, where 𝛼𝑟 is a fresh two-state NFA with a single transition (𝑠𝑟, {𝑟}, 𝑠𝑓).
Since 𝑜𝑘 ∈ (∃𝑟.⊤)ℐ𝒯 ,𝒜

it holds that there is some 𝑜′′𝑘 such that the sequence (𝑜𝑘𝑟𝑜
′′
𝑘) ∈ 𝛼

ℐ𝒯 ,𝒜
𝑟 .

Thus, it holds that (𝑜1, 𝑜𝑛) ∈ 𝛼
ℐ𝒯 ,𝒜
𝑖+1 and the degree of the sequence is lower. The same holds for

the inverse case 𝑠 /∈ R.

(Ch4) The argumentation for the case with 𝐴 ⊑ ∃𝑟.⊤ ∈ 𝒯 and rule (7) is similar to the case (Ch3), but

instead of adding a nested NFA we simply add a transition with 𝐴.

(Ch5) For 𝑟 ⊑ 𝑠 ∈ 𝒯 rule 1 applies and the reasoning is similar to the case with (Ch1).

(Ch6) For 𝑇 ⊑ 𝐵 ∈ 𝒯 we apply rule (3) and the argumentation is again equivalent to (Ch3).

(Ch7) For 𝑇 ⊑ 𝑠 ∈ 𝒯 the argumentation is similar as for role inclusions by applying rule 4.

A.1. Algorithm Sketch for full CN2RPQs

In this section we provide a sketch for an algorithm that reduces full CN2RPQs to a union of CN2RPQs.

For this we first introduce the notion of a s-join of n-NFAs.

Definition 14. Let A1 . . .A𝑛 be n-NFAs with the same alphabet and let 𝑆 = {𝑠1 . . . 𝑠𝑛} be states with
𝑠𝑖 ∈ Ai and 1 ≤ 𝑖 ≤ 𝑛, i.e., one state from each automaton. We define the s-join of A1 . . .An as a tuple
of 𝑛+ 1 automata A′

1 . . .A
′
𝑛A𝑟𝑒𝑠𝑡 as follows:

• Each A′
𝑖 is obtained from A𝑖 by making 𝑠𝑖 the only final state

• A𝑟𝑒𝑠𝑡 is the intersection of all A𝑖 by making 𝑠𝑖 the only initial state

There are different ways of taking the intersection of automata, but in either case, this step is

exponential. In the following we provide the instructions to get rid of existential variables that might

be mapped in the anonymous part of the canonical model.

Given a full CN2RPQ 𝑞(𝑥⃗), then we exhaustively apply the following rules:

(1) pick an existential join variable 𝑦 /∈ 𝑥⃗ and take all atoms 𝛼(𝑥, 𝑦) or 𝛼(𝑦, 𝑥) in 𝑞
(2) for atoms 𝛼(𝑦, 𝑥), where 𝑦 occurs in the first place, take the inverse 𝛼−(𝑥, 𝑦). The goal of this step

is to have all atoms with 𝑦 in the form of 𝛼𝑖(𝑥𝑖, 𝑦)

(3) Choose one state 𝑠𝑖 of each automaton 𝛼𝑖. Let 𝑆 be the selected states, and replace all the atoms

by the s-join using one intermediate variable 𝑦𝑠, that is, replace all atoms where 𝑦 occurs by

A′
1(𝑥1, 𝑦𝑠) ∧ · · · ∧A′

𝑛(𝑥𝑛, 𝑦𝑠) ∧A′
𝑟𝑒𝑠𝑡(𝑦𝑠, 𝑦).

If we apply this rule to all non-answer variables in all possible ways, we can get rid of the original

existential variables. The fresh 𝑦𝑠 are existential, but we can assume w.l.o.g. that they are mapped to

named objects, so the algorithm is complete for them.

The complete query rewriting algorithm for full CN2RPQs under a DL-LitePG TBox can then be

derived by rewriting each of the queries in the output union with the Algorithm 1 for join-on-free

CN2RPQs.

	1 Introduction
	2 Querying Property Graphs with Navigational Queries and DL-Lite
	3 Rewriting N2RPQs
	4 Rewriting join-on-free CN2RPQs
	5 Implementation & Experiments
	6 Conclusion
	A Proofs for Section 3 (Rewriting N2RPQs)
	A.1 Algorithm Sketch for full CN2RPQs

