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Abstract
Reasoning with rules that allow for exceptions has been a longstanding challenge in knowledge representation.
The KLM paradigm has been successful for defeasible reasoning in propositional logics, but its application to
Description Logics (DLs) has been challenging. Many approaches to terminological reasoning with defeasible
inclusions have been proposed, but reasoning about ABoxes is still largely unexplored. In this paper, we consider
defeasible inclusions in the expressive DL 𝒜ℒ𝒞ℐ with closed predicates, but restrict the inclusions in a way
that circumvents some of the challenges faced by related approaches. We also consider the data complexity of
defeasible reasoning, which, to our knowledge, had not yet been analysed. Unfortunately, our approach is hard
for the second level of the polynomial hierarchy, but we identify a restricted fragment that enables tractable
reasoning.
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1. Introduction

Defeasible reasoning, that is, reasoning with rules that allow for exceptions, has been a longstanding
challenge in knowledge representation. The KLM paradigm for defeasible reasoning [1] has been suc-
cessful in propositional logics [2, 3, 4, 5], providing a principled approach that is not as computationally
expensive as other NMR formalisms. Extending this approach to DLs is clearly appealing, and it has
received significant attention in the literature [6, 7, 8, 9, 10, 11, 12]. But the focus of these works has
been almost exclusively on inferring defeasible inclusions from TBoxes. Data-centric reasoning services,
such as defeasible instance checking in the presence of ABoxes, have been largely overlooked and, to
our knowledge, the data complexity of defeasible inferences about ABox objects remained unexplored.

In our recent paper [13], we consider the expressive DL 𝒜ℒ𝒞ℐ with closed predicates, which already
allows some simple non-monotonic reasoning and which generalizes nominals [14, 15]; this is one
of the most expressive DLs that can be decided in ExpTime. We add defeasible inclusions to 𝒜ℒ𝒞ℐ
knowledge bases and give them an exceptionality based semantics in the style of Rational Closure [16]
and the equivalent system Z [3]. The classical part of the knowledge base (KB) remains unrestricted,
providing the full power of the DL to draw conclusions about both named and unnamed objects, but
the defeasible inclusions are syntactically restricted in a way that they can draw inferences only about
the ABox individuals. The result is a simple formalism that allows to draw defeasible inferences about
specific objects, and where the combined complexity of these inferences is not higher than for classical
reasoning in the underlying DL. Unfortunately, this is not the case for data complexity: we show that
credulous and sceptical entailment are both intractable. Simply restricting the DL is not enough to
regain tractability, since changing the assignment of defeasible concepts to an individual can affect the
defeasible assignment of its neighbours, which rules out the existence of a unique preferred model.
Nevertheless, we identify a restricted fragment that allows for defeasible instance checking in a time
that is polynomial in the size of the ABox.
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Existing defeasible semantics for DLs based on rational closure neglect all defeasible information
for the unnamed objects implied by the existential axioms, sometimes leading to counterintuitive
inferences. To our knowledge, the only adequate solution so far is limited to the very inexpressive ℰℒ.
Our approach fully circumvents the issue of typicality of anonymous objects: since defeasible inferences
do not allow inferring new facts about unnamed objects, there is no need to decide how to apply the
defeasible inclusions to them. While we do not solve the problem, we do avoid its nontransparent and
sometimes counterintuitive aspects. We believe this is a reasonable compromise. Unnamed objects in
an interpretation intuitively describe structures that should be as general as possible, and we have not
seen many realistic examples that really call for defeasible inferences over anonymous objects.

2. The Formalism

In this section, we formally define our DL knowledge bases with defeasible inclusions which are concept
inclusions that hold for typical, but not necessarily all elements of the domain. Unlike a ‘strict’ concept
inclusion 𝐶 ⊑ 𝐷, a defeasible inclusion 𝐶 ⊏∼ 𝐷 may have exceptions, i.e., in a model ℐ of 𝐶 ⊏∼ 𝐷 some
elements of 𝐶ℐ may not be in 𝐷ℐ ; these are considered exceptional.

Our key design choice is to make sure that defeasible inclusions apply only to objects that are
explicitly named in the knowledge base, and therefore anonymous objects whose existence may be
implied by concept inclusions can be treated as non-exceptional. This will be ensured by means of rooted

concepts, which are concept expressions that are ‘guarded’ by closed predicates. For closed predicates 𝐶
and 𝑟 in N c

C ⊆ NC and N c
R ⊆ NR , respectively, the term ℐ |=𝑐 𝒜 means that 𝐶ℐ , 𝑟ℐ only contain an

individual if explicitly mentioned. In our formalisms, defeasible inclusions are restricted to have rooted
concepts in the antecedents.

Definition 1. A concept 𝐶 is rooted if one the following is satisfied: 1. 𝐶 ∈ N c
C , 2. 𝐶 of the form 𝐶1 ⊓𝐶2

and at least one of 𝐶1, 𝐶2 is rooted, 3. 𝐶 of the form 𝐶1 ⊔ 𝐶2 and both 𝐶1, 𝐶2 are rooted, or 4. 𝐶 of the

form ∃𝑟.𝐷 with 𝑟 ∈ N c
R or 𝑟− ∈ N c

R .

A defeasible concept inclusion (DCI) is an expression 𝐶 ⊏∼ 𝐷, where 𝐶,𝐷 are concepts and 𝐶 is rooted.

A knowledge base (KB) is a tuple 𝒦 = (𝒯 ,𝒟,𝒜), where 𝒯 is a TBox, 𝒟 is a set of defeasible inclusions,

and 𝒜 is an ABox.

Example 1 (adapted from [6]). Consider the knowledge that red blood cells (RBC) usually have a nu-

cleus, but mammalian red blood cells (MRBC) typically do not have a nucleus; and of course mammalian

red blood cells are a subclass of red blood cells. 𝑐1, 𝑐2, 𝑐3 are red blood cells and 𝑐3 is additionally a

mammalian red blood cell. Furthermore, we assume the knowledge about RBC and MRBC to be com-

plete for 𝑐1, 𝑐2, 𝑐3. This situation can be described by the knowledge base 𝒦 = (𝒯 ,𝒟,𝒜) with 𝒜 =
{RBC (𝑐1),RBC (𝑐2),RBC (𝑐3),MRBC (𝑐3)}, 𝒯 = {MRBC ⊑ RBC , ∃hasNucleus.⊤ ⊑ EN }, and

𝒟 = {RBC ⊏∼ ∃hasNucleus.⊤,MRBC ⊏∼ ¬∃hasNucleus.⊤} where MRBC and RBC are closed

predicates.

We will now define the semantics of a KB 𝒦 = (𝒯 ,𝒟,𝒜) as the interpretations ℐ where ℐ |= 𝒯 ,
ℐ |=𝑐 𝒜, and ℐ complies with the defeasible inclusions in 𝒟 as much as possible. To properly define
the latter, following the definition of system Z, the first step is to define the notion of tolerance, which
generalizes a similar concept for propositional rules [3].

Definition 2. We write ℐ, 𝑒 |= 𝐶 ⊏∼ 𝐷, if 𝑒 ∈ (¬𝐶 ⊔𝐷)ℐ . For a set 𝒟 of defeasible inclusions, we write

ℐ, 𝑒 |= 𝒟, if ℐ, 𝑒 |= 𝐶 ⊏∼ 𝐷 for all 𝐶 ⊏∼ 𝐷 ∈ 𝒟. A defeasible inclusion 𝐶 ⊏∼ 𝐷 is tolerated by a set 𝒟 of

defeasible inclusions and a TBox 𝒯 , if there is an interpretation ℐ and an object 𝑒 ∈ ∆ℐ
such that ℐ |= 𝒯 ,

𝑒 ∈ (𝐶 ⊓𝐷)ℐ and ℐ, 𝑒 |= 𝒟.

For a set 𝒟 of defeasible inclusions and a TBox 𝒯 construct the following sequence:

(i) Let 𝒟0
contain all 𝐶 ⊏∼ 𝐷 ∈ 𝒟 such that 𝐶 ⊏∼ 𝐷 is tolerated by 𝒟 and 𝒯 .

(ii) For all ℓ > 0, let 𝒟ℓ
contain all 𝐶 ⊏∼ 𝐷 ∈ 𝒟′

ℓ such that 𝐶 ⊏∼ 𝐷 is tolerated by 𝒟′
ℓ and 𝒯 , where

𝒟′
ℓ = 𝒟 ∖ (𝒟0 ∪ · · · ∪ 𝒟ℓ−1).



Let 𝑘 be the smallest integer such that 𝒟𝑘+1 = ∅. Then (𝒟0, . . . ,𝒟𝑘,𝒟∞) with 𝒟∞ = 𝒟′
𝑘+1 is called

the tolerance partition of 𝒟 (w.r.t. 𝒯 ).

Let ℐ be an interpretation such that ℐ |= 𝒟∞ ∪𝒯 and assume 𝑒 ∈ ∆ℐ
. We let rank𝒟,𝒯 (ℐ, 𝑒) be defined

as follows. If ℐ, 𝑒 |= 𝒟, then rank𝒟,𝒯 (ℐ, 𝑒) = 0. Otherwise, rank𝒟,𝒯 (ℐ, 𝑒) is the biggest 𝑖 ∈ {1, . . . , 𝑘+1}
such that ℐ, 𝑒 ̸|= 𝒟𝑖−1

.

Intuitively, rank𝒟,𝒯 (ℐ, 𝑒) tells us to what extent the defeasible inclusions are satisfied at 𝑒 in ℐ .
If rank𝒟,𝒯 (ℐ, 𝑒) = 0, then 𝑒 is non-exceptional and satisfies all inclusions in 𝒟. If rank𝒟,𝒯 (ℐ, 𝑒) =
𝑘 + 1, then 𝑒 is highly exceptional: it violates some inclusion in 𝒟𝑘, which stores the most specific
defeasible inclusions of 𝒟. Note that the rootedness condition guarantees that unnamed objects have
rank𝒟,𝒯 (ℐ, 𝑒) = 0.

Let ∆𝒜 be the set of individuals occurring explicitly in an ABox 𝒜. We can now compare the extent
to which interpretations satisfy defeasible inclusions:

Definition 3. Assume a KB 𝒦 = (𝒯 ,𝒟,𝒜). Let (𝒟0, . . . ,𝒟𝑘,𝒟∞) be the tolerance partition of 𝒟
w.r.t. 𝒯 . An interpretation ℐ is called 𝒦-admissible, if ℐ |= 𝒯 , ℐ |=𝑐 𝒜, and ℐ |= 𝒟∞

. Assume a pair

ℐ,𝒥 of 𝒦-admissible interpretations. We write ℐ ≺𝒦 𝒥 , if the following holds:

• rank𝒟,𝒯 (ℐ, 𝑎) ≤ rank𝒟,𝒯 (𝒥 , 𝑎) for all individuals 𝑎 ∈ ∆𝒜, and

• rank𝒟,𝒯 (ℐ, 𝑎) < rank𝒟,𝒯 (𝒥 , 𝑎) for some individual 𝑎 ∈ ∆𝒜.

A 𝒦-admissible interpretation 𝒥 is called a minimal model of 𝒦, if there exists no 𝒦-admissible

interpretation ℐ such that ℐ ≺𝒦 𝒥 .

Example 2. Consider 𝒦 from Example 1. The tolerance partition of 𝒟 is (𝒟0,𝒟1) with 𝒟0 = {RBC ⊏∼
∃hasNucleus.⊤} and 𝒟1 = {MRBC ⊏∼ ¬∃hasNucleus.⊤}.

Let ℐ be an interpretation with ℐ |= 𝒜 ∪ 𝒯 and ℐ |= (∃hasNucleus.⊤)(𝑐1), ℐ |=
(¬∃hasNucleus.⊤)(𝑐2), ℐ |= (∃hasNucleus.⊤)(𝑐3). We have rank𝒟,𝒯 (ℐ, 𝑐1) = 0, since ℐ, 𝑐1 |= 𝒟. We

have rank𝒟,𝒯 (ℐ, 𝑐2) = 1, because ℐ violates an inclusion in 𝒟0
for 𝑐2.

Observe that even KBs that have a canonical model may have more than one minimal model. Therefore,
we consider sceptical and credulous entailment of assertions in the minimal models. Sceptical entailment

over the minimal models accepts only conclusions that hold in all minimal models, while credulous

entailment accepts conclusions that hold in at least one minimal model.
For this formalism, we show the following complexity results.

Theorem 1. Credulous and sceptical entailment of assertions is ExpTime-complete in combined complexity.

In data complexity, credulous and sceptical entailment of assertions is Σ𝑃
2 -complete and Π𝑃

2 -complete,

respectively.

This complexity is too high for applications involving large ABoxes, hence we identify a restricted
fragment of our formalism that has tractable data complexity.

Definition 4 (Local KBs). A complex concept 𝐶 is closed if all concept and role names occurring in it are

closed. An ordinary inclusion 𝐶 ⊑ 𝐷 or a defeasible inclusion 𝐶 ⊏∼ 𝐷 is called local, if every quantified

concept of the form ∃𝑟.𝐸 or ∀𝑟.𝐹 occurring in 𝐶 or 𝐷 is closed. A knowledge base 𝒦 = (𝒯 ,𝒟,𝒜) is local
if every defeasible inclusion in 𝒟 and every inclusion in 𝒯 is local.

The intuition of local inclusions is that they can only describe an object and its immediate sur-
roundings. While they can use quantifiers on closed roles and predicates, which can be evaluated by
looking up the assertions in the ABox, they cannot be affected by the assignment of open concepts in
neighbouring nodes. This will allow us to answer queries about an object without the need to consider
the assignments of open concepts for all objects in 𝒜.

Theorem 2. Let 𝒦 be a local KB and 𝛼 be an assertion. Checking whether 𝒦 sceptically (or credulously,

resp.) entails 𝐶(𝑎) is polynomial in data complexity and in 𝑃NP
in combined complexity.



3. Related Work and Conclusions

We have presented a defeasible reasoning framework over ABoxes based on rational closure, identifying
a tractable fragment where queries can be efficiently answered.

Despite the many works that extend DLs with defeasible reasoning based on rational closure, reason-
ing about ABoxes is still lacking. While rational closure extends well to DLs with the disjoint model
union property [10, 17], it struggles with DLs that include individuals and closed predicates. Stable
rational closure has been proposed for more expressive logics like 𝒮ℛ𝒪ℐ𝒬 [6], and although our
approach appears compatible in specific cases, a thorough comparison remains pending. Unlike most
related methods, our framework avoids the quantification neglect problem by design, since it applies
only to named individuals in the ABox. Prior solutions to this problem exist only for lightweight logics
such as ℰℒ⊥ [7].

While our method sidesteps the issue of quantification neglect, it does suffer from other limitations
of rational closure, like inheritance blocking. Future work includes exploring more general solutions
to quantification neglect and how alternative semantics could be adapted for tractable reasoning,
potentially inspired by approaches like 𝒟ℒ𝑁 [18, 19].
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