CEUR-WS.org/Vol-4091/paper46.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

Containment of Conjunctive LTL Queries

Jean Christoph Jung’, Vladislav Ryzhikov?, Frank Wolter’ and Michael Zakharyaschev?

'TU Dortmund University, Otto-Hahn-StrafSe 12, 44227 Dortmund, Germany
2Birkbeck, University of London, Malet Street, London WCIE 7HX, UK
3University of Liverpool, Ashton Street, Liverpool L69 3BX, UK

Abstract

We investigate the computational complexity of the containment problem for conjunctive queries given in linear
temporal logic LTL with the operators ‘eventually’ and ‘next-time’. We show that this problem is cONP-complete
and identify a few restricted query classes for which containment is tractable (in LOGSPACE).

Keywords

Linear temporal logic LTL, conjunctive query, query containment, computational complexity.

1. Introduction

Our concern in this paper is the containment problem for very basic temporal conjunctive queries that
are built from atoms—propositional variables representing atomic events and T —using conjunction and
the temporal operators O (at the next moment) and < (sometime later) from the linear temporal logic
LTL. Such queries are supposed to be evaluated over data instances that consist of facts of the form A(¢)
stating that atomic proposition A is true at time ¢, for £ € N. This setting is relevant to applications in
numerous areas ranging from temporal databases and streams to temporal ontology-based data access,
pattern matching and learning; see the Motivation and Related Work section below for some details and
references.

Using the fact that our queries correspond to tree-shaped conjunctive queries, it is readily seen
that the query evaluation problem—given a query g, a data instance D, and a timestamp ¢ from the
temporal domain of D, decide whether q is true at £ in the model determined by D—is decidable in
polynomial time (in the size of D and q). The containment problem for these queries turns out to be
more interesting.

Recall that the query containment problem is to decide, given any queries q and q’, whether, for every
data instance D, the answers to g over D are contained in the answers to ¢’ over D. Our main result in
this paper proves that query containment for our most expressive query language is non-tractable and
coNP-complete. It is the hardness part of the result that is of interest while the upper bound is more or
less straightforward. We also show that, for queries without O, containment is in the complexity class
L (LoGSpACE); it is also in L for path queries with both O and <.

As we are only considering queries that are existential LTL-formulas (without the operator ‘always in
the future’), the containment problem is equivalent to the validity of formulas of the form ¢ — ¢’ in finite
or infinite temporal models. So, our results also contribute directly to the research problem of classifying
fragments of LTL according to their computational complexity; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Motivation and Related Work. Temporal data is ubiquitous in the digital world, and there are
numerous applications having our non-relational propositional LTL-queries as a core. For example,
temporal variants of SQL tailored to effectively retrieve information from temporal databases rely on
LTL-operators [11, 12]. In ontology-based data access (OBDA), temporal conjunctive formulas are often

}?-DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland

& jean.jung@tu-dortmund.de (J. C. Jung); vlad@dcs.bbk.ac.uk (V. Ryzhikov); wolter@liverpool.ac.uk (F. Wolter);
michael@dcs.bbk.ac.uk (M. Zakharyaschev)

® 0000-0002-4159-2255 (J. C. Jung); 0000-0002-6847-6465 (V. Ryzhikov); 0000-0002-4470-606X (F. Wolter);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
v

mailto:jean.jung@tu-dortmund.de
mailto:vlad@dcs.bbk.ac.uk
mailto:wolter@liverpool.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://orcid.org/0000-0002-4159-2255
https://orcid.org/0000-0002-6847-6465
https://orcid.org/0000-0002-4470-606X
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0/deed.en

utilised as a core user-friendly language to formulate both queries and ontology rules; see, e.g., [13] and
further references therein as well as more recent [14, 15, 16]. Another recent application of LTL-queries
is extraction of (or learning) patterns from temporal data examples [17]. In this setting, conjunctive
LTL-queries, their subclasses such as path queries and extensions, say with disjunction, have been
studied in [18, 19, 20, 21]. Note also that there is a close link between evaluating path queries and
algorithms for finding patterns in strings [22, 23], a problem having multiple applications such as DNA
analysis in bioinformatics.

Query containment was shown to be NP-complete for standard database conjunctive queries by
reduction to query evaluation in the seminal work [24]. Since then query containment has been studied
for numerous query languages. Most closely related is work on containment for fragments of XPath [25]
and query containment over trees [26]. In these languages, similar to our work, queries can refer
to nodes reachable along the transitive closure of a successor relation. Very different techniques are
used, however, since we assume a linear order instead of a tree. Our results are also closely related
to the work on subsumption in extensions of ££. Observe that our queries are notational variants of
& L-concepts with two roles (one corresponding to O and the other to <). Hence, subsumption between
EL concepts over interpretations, in which one role is interpreted as the transitive closure of another
role, corresponds exactly to query containment in our language, except that arbitrary interpretations
(equivalently, by unfolding, tree-shaped ones) are considered, and not linear orders. In [27], coNP-
hardness is shown for subsumption in ££ with transitive closure using the technique introduced for
XPath in [25]. Again, this technique is not applicable for linear orders.

2. Temporal Data and Queries

Temporal data instances. By a temporal data instance we mean here any finite set D # () of facts of
the form A(¢), where A is a propositional variable, henceforth called an atom, and ¢ € N. Intuitively,
A({) says that event A happened at time instant ¢. The signature sig(D) of D is the set of atoms
occurring in it. The maximal time ¢ in D is denoted by max D. Where convenient, we also write D
as the word 0y . . . dax p Over the alphabet 2s18(D) with §; = {A | A(i) € D} for each i < maxD. By
definition, dmaxp # 0. For example, the data instance D = { A(2), B(2), A(3), A(4)}, illustrated in the
picture below, is also given by the word }){ A, B}{A}{ A} or (>{ A, B}{ A}? if we use standard formal

language abbreviations.

AB A A
o 1 2 3 4

Temporal conjunctive queries. To query data instances, we employ LTL-formulas that are built
from atoms and the logical constant T using conjunction A and the unary temporal operators O (next
time) and < (sometime in the future). We consider the following classes of queries:

Q[OC]: all O-queries (that is, all queries in our language);
Q[O]: all &-queries (that is, O-queries not containing O);

Q,|O0]: path OO -queries, that is, O-queries of the form

qg=po Ao (Pl Noz(p2 N+ N Op_1(pn_1 A OnPn)))» (1)

where o0; € {O, ¢} and the p; are conjunctions of atoms (we often treat these conjunctions as
sets and the empty conjunction as T);

Qp[O]: path O-queries, that is, those queries in Q,[O<] that do not contain O;

Qy: interval-queries, that is, queries of the form (1) with pg = T, p1 # T, 01 = <, and 0; = O, for
7> 1.

We do not consider query classes with O-operators only, for which the containment problem is trivial.
The truth-relation D, { |= q, saying that a query q is true in D at any moment ¢ € N, is defined as usual
in temporal logic under the strict semantics; see, e.g., [28, 29] and further references therein:

D/lET, DiE=Aif AW)eD, DilEqd NG iff D{=q and D,/ = q”,
D04 iff D,/+14q, Dl <q iff D,m = q, for some m > /.

An answer to a query q over a data instance D is any ¢ such that 0 < ¢ < maxD and D, ¢ |= q. The
temporal depth tdp(q) of q is the maximum number of nested temporal operators in g; the size |q| of g
is the number of symbols in it.

Note that there is a close link between evaluating path queries and algorithms for finding patterns in
strings [23]. A sequence is a data instance D = g . .. d,, with 69 = @ and |§;] = 1,for 0 < i < m. A
sequence query is a path query of the form (1) with py = () and |p;| = 1, for 0 < i < n. We say that
p1 ... pn is a subsequence of D if there are 0 < i1 < ... < i, < m with (51-]. = pj,for1 < j < n,and
we say that p; ... p, is a subword of D if there is £ < m with ;4 ; = pj, for 1 < j < n. Querying
sequences using sequence queries corresponds to the following matching problems:

— for any sequence query g € Q,[<] of the form (1), we have D,0 = g iff p; . .. py, is a subsequence
of D;

— for any sequence query q € Q;, of the form (1), we have D,0 |= qiff p; ... p, is a subword of D.

We write ¢ = ¢’ if D,0 = q implies D,0 |= ¢ for all D, and q = ¢’ if ¢ = ¢ and ¢’ & g, in which
case q and ¢’ are called equivalent. For example, for any query q, we have COgq = O0q = 0Oq =
O(T A ©q). Tt follows that every Q,[O<]-query is equivalent to a query q of the form (1), in which
pn 7 T and whenever p; = T, 0 < i < n, then 0; = 0;41; in this case, we say that q is in normal form.
Conversion to normal form can be done in L.

A query q € Q[C] is in normal formif g = p A q; A --- A q,,, where p is a conjunction of atoms and
each q;, fori =1,...,n,isa Q,[C]-query (in normal form) that starts with . Again, every g € Q[<]
can be converted to normal form in L using the equivalence

n n
po AO(pr A\ ©a;) = po A\ Olpr A Ogy).
i=1 i=1
For example, O(AAN OB AOC) = C(ANOB) ANO(ANOCO).

A query g € Q[O]isin normal formif g = r Aq; A---\q,,, where r is a Q,[O]-query—that is, a -
free Q,[O,0]-query—and each g, takes the form O (71 ;A (1o A- - - ATy, ;) with Qp[O]-queries 7 5,
forj =1,...,n;. Each g € Q[O<] can be converted to normal form in polytime using the equivalence
above, O0q = ©Oq and O(g A ¢') = (Og A Oq'). For example, O(OA A CO(B A COC A OD)) =
Q2ANO(O?BACO3C ACO?D)) = O2ANO(O?B ACO3C) A O(O?B A OO?D).

Our concern in this paper is the containment problem, which has become fundamental in database
theory since the seminal work of Chandra and Merlin [24].

3. Complexity of Query Containment

The query containment problem for a class Q of queries is formulated as follows: given any queries
q,q € Q, decide whether q = ¢'.

Example 1. Consider the Q,[O<]-queries g1, g5 and g’ below:
q, = O(ANBAOQA), q, = O(AANBAOB), qd =<O(BAO(AAB)).

It is readily seen that g; [~ q’ (as the data instance (){ A, B}{ A} makes g, true at 0 but not ¢’) and
g, ~ q'. However, for the Q[O<]-query g; A gy, we have g; A gy = ¢ To show this, we observe that

any data instance D = dy ... 0y, satisfying q; A gy at n has §; O {A, B}, §;41 2 {A}, 6; 2 {A, B},
dj+1 2 {B}, for some n < i,j < m. In each of the three cases, i < j,i = j, and i > j, we have
D,nkE={q.

In contrast to conjunctive queries in first-order logic, where query containment is NP-complete [24],
query containment is tractable for the majority of query classes defined above:

Theorem 1. The query containment problems for Q,[O<], Q[<] and their subclasses are all in L.

Proof. Consider first Q,[O<C]. Suppose we are given two queries ¢, ¢’ € Q,[O<] in normal form, g
takes the form (1) and ¢’ = pfy A 0 (p} A 0h(py A -++ Ao, pl,)), where 0} € {O, O} and the p] are
conjunctions of atoms (regarded as sets).

For any k € N, we denote by [k] the closed interval [0, k] C N. A function h: [m] — [n] is monotone
if h(i7) < h(j) whenever i < j. A monotone function h: [m| — [n] is called a containment witness for
q and ¢’ if the following conditions hold:

- h(0) =0;
= 0} € pp), for all i € [m];
- ifi <mand o}, = O, then op(;;1) = O and h(i + 1) = h(i) + 1.

Note that checking the existence of a containment witness can be done in L in |q| and |¢’|. Indeed,
consider first the case of Q,[{]-queries. It is easily seen that a containment witness for g and q’ exists
iff there is a sequence of pairs (0, jo), . .., (m, jn), where jo = 0 and j;;+1 is the minimal number
J > ji such that p} ,; C p;. For Q,[OC]-queries, we need a more involved procedure that relies,
however, on the same idea. Let k:6 > 0 be the minimal index such that O;fé = < (it follows that

oy = -+ = oy, = O). If no such kj, exists, we set k;, = m. We checkifo; = --- = oy = O and
0
26 € pos - p;ﬁ,) C pry- If this is not the case, a containment witness does not exist. If this is the case

and k‘6 = m, a containment witness exists. Otherwise, let k] > 0 be the minimal number such that
0;66+1+k’1+1 = <. If no such & exists, we chose k) such that kj + 1 + k} = m. We find the minimal
ko > k| such that o1 = - - = Oy, = Oand p§g’0+1 C Phigs -+ p;66+1+k,1 C Pro+i- If such kg does
not exist, a containment witness does not exist. If such kg exists and k:6 + 1+ k| = m, a containment
witness exists. Otherwise, we proceed to find k&, > 0 and k; > ko that satisfy the conditions analogous
to the above. We proceed until we either decide that a containment witness does not exist, or there
is an iteration i when we choose k; > O such that k) + 1 + k] +1+---+kl_; + 1+ k[= m. Our
procedure stops at this iteration.

The tractability of containment for path queries is an immediate consequence of the following
analogue of the Chandra-Merlin criterion for conjunctive queries in first-order logic:

Lemma 1. Foranyq,q’ € Q,(O<]| in normal form, we have q |= q' iff there is a containment witness
forq and q'.

Proof. Given a data instance D, by a satisfying function for q of the form (1) in D we mean any monotone
function f: [n] — [max D] such that, for all i € [n], we have f(0) =0, p; C{A| A(f(¢)) € D}, and
if 0j11 = O, then f(i + 1) = f(i) + 1. It follows directly from the definition of the truth-relation that
D, 0 [= q iff there exists a satisfying function for g in D.

Suppose h is a containment witness for g and ¢’. Take any data instance D with D, 0 = q. Let f be
a satisfying function for q in D. Then it is readily checked that the composition hf: [m] — [max D] is
a satisfying function for ¢’ in D, and so D, 0 = ¢'. It follows that ¢ = ¢’

Conversely, suppose q |= q'. We define a containment witness for g and ¢’ by induction on the
temporal depth ¢tdp(q’) of q'. If tdp(q') = 0, then ¢’ = pf; and pf; C p. It follows that ~(0) = 0 is
the required containment witness. As an induction hypothesis (IH), we assume next that there is a
containment witness for any queries g; and g, such that q; = g5 and tdp(gs) < tdp(q’). Two cases
are possible.

Case 1: 0 = O. Let k > 0 be the maximal index such that o) = --- = 0}, = O. Then pj, # T
(because ¢’ is in normal form) and 0} ; = < if m > k. Let r be the minimal index such that

po Aoi(p1 Noa(p2 A=+ Nowpr)) | po A Oy (p1 A O (py A+ A Ojpl))-

We claim that, for all ¢ < k, we have 0; = O, p; 2 p;, and so r = k. Indeed, if there is ¢ < k with
0; = <, then we take the data instance D = py ... p;—10™p; ... p, and obtain D,0 = g and D, 0 |~ ¢,
contrary to g = q'. And if there is i < k with p; 2 p/, then we take the data instance D = py ... py,
and again obtain D,0 = q and D, 0 [~ ¢’

Next, we consider the ‘tails’

dik+1 = Okt 1(Pry1 N+ Nonpp), q§€+1 = 02+1(P;c+1 ARR Olmp;n)

and observe that q |= q' implies g, = q;,_ . As tdp(q;,_ ;) < tdp(q’), the IH gives a containment
witness b’ for q;.,1 and q), ;. Using it, we define the required containment witness h for g and q’ by
taking h(i) = ¢, forall : < k, and h(k + j) = h/(j) + k, for all j with 1 < j < m — k.

Case 2: 0 = <. Suppose first that there is a minimal initial subquery

@), = po N 0L () A A oppl)

of ¢’ such that pj # T, 0}, = ¢ and k > 0. Let g, = po A 01(p1 A - - - A 0rp;) be the minimal initial
subquery of g with g, = q}.. As tdp(q),) < tdp(q’), the IH gives a containment witness hq for g, and g
As pj, # T and r is minimal, s (k) = 7. By IH, our claim also holds for g, = 0, (0} A+ Aoy, 07,)
and q, 1 = 0r41(pr41 A -+ A Oppy) and gives a containment witness hy for g, and qj_ ;. We then
obtain a containment witness for q and g’ by concatenating ho and h;.

Finally, suppose that there is no pj, # T with 0} ; = & and k > 0. Then ¢’ takes the form

o N OF (P A Ot Pt == A O

where k > 0, pj. # T, and o§€+1 = ... = o], = O. We claim that there exists j > k such that
0j41 =+ = Ojym— = Oand pj4y 2 pﬁgH, for all £ with 0 < ¢ < m — k, which clearly implies
the existence of a containment witness for ¢ and ¢’. To prove this claim, suppose there is no such
j. Consider the data instance D = pow1p1 . . . Wy Pn, Where w; = € (the empty word) if 0o; = O, and
w; = 0™ if 0o, = . Then D, 0 |= g but D, 0 }= ¢/, contrary to q = ¢'. -

Now we prove Theorem 1 for the class Q[C] of queries of the (normal) form p A g; A -+ A gq,,,
where p is a conjunction of atoms and each g; is a Q,,[<]-query in normal form that starts with <. The
tractability of containment for Q[<C]-queries follows from Lemma 1 and the next criterion:

Lemma 2. Ifq = pA g, A--- ANgq, € Q[O] is in normal form and q' € Q,[C], then q = ¢ iff
pNq; Eq, forsomei,1 <i<n.

To illustrate, consider the queries g; and g, from Example 1, in which we replace O by <, and
q'. Tt is easy to see that q; [~ ¢/, g5 ~ ¢/, and so q; A g5 £ q'. To check the latter, consider
D = 0{A, B}{A}{B}, which satisfies A A B from q; and g, at the same time instant, and then A

from g, and B from g, at different time instants.

Proof. (=) Suppose that ¢ = p° A O(p! AC(p2 A+ AOp™)), g; = O(pF AO(pZ A=+ AOpl)),
for 1 < i < n,and q |= ¢'. Note that p D p" as otherwise q [¢'. For each i, 1 < i < n, we define
inductively a function

fir{L,...om}—={1,...,n;} U{oo}.

To begin with, we set f;(1) = j if j is minimal such that pg D pl and f;(1) = oo if no j with p{ D pt
exists. Further, inductively, if f;(¢) = oo, then f;(¢ + 1) = oo; if f;(¢) < oo, then we set f;({ + 1) = j
if j is minimal such that j > f;(¢) and p] 2 p**l;ifno j > fi(¢) with p] D p! exists, we set

fi(f + 1) = oc. It follows immediately from the definition that if there is ¢ < n such that f;(m) < oo,
then p A q; = ¢/, as required. So suppose there is no such ¢ < n and derive a contradiction by proving
that in this case q [~ ¢’

Let m’ < m be minimal such that f;(m’) = oo for all i < n. Consider the data instance D; =
ppt M ph L phn where By = min{n;, fi(1) — 1}, 1 <4 < n (we set oo — 1 = o0). If m/ = 1,
then D1, 0 |= g and Dy, 0 [~ q' since D1,0 [~ Opl, and we are done. Otherwise, for 2 < £ < m’, we
take

TS U pfc"(@ and Dy = p{lw)ﬂ . p’f“ Lpf O+ .pff‘",

1<i<n, fi(£)<oo

0)+1

where k¢ ; = min{n;, f;({+1)—1},for 1 <i < n (note that p{i .. .pf“ is empty if f;(¢)+1 > ny).

Then we set
D =D161D203...0p7—1Dypyr.

It follows from the construction that D, 0 |= q and D, 0 (£ ¢/, contrary to g = ¢’
The implication (<) is obvious. =

This completes the proof of Theorem 1. o

For queries ¢ € Q[O<], Lemma 2 does not hold as illustrated by Example 1. Moreover, in contrast to
Theorem 1, we have the following:

Theorem 2. The query containment problem for Q[O<] is cONP-complete.

Proof. To show the upper bound, suppose we are given two queries q, ¢’ € Q[O<] in normal form,
where

g=rANq, N---Ngq, with g, :<>(r2-,1/\<>(ri,2/\-~/\<>ri,ni)),
r,1rij € QO], for i=1,...,n, j=1,...,n
q =r"Ngy N A gy with g = O(r) /\<>(r;72/\-~-/\<>'r;7n§)),

;€ QplO], fori=1,...,n', j=1,...,n.
By definition, q = ¢’ iff there exist a data instance D and some m, 1 < m < n’, such that D = ¢
and D [~ 7' A g,. Our aim is to show that it suffices to consider D with maxD < O(|q||q.,|). If
this is the case, then an obvious NP-algorithm deciding g }~ ¢’ would be to guess such m and D with
sig(D) = sig(q) Usig(q’), and then check in polytime whether D = q and D |~ ' A q,,.

So, suppose we have D |= g and D [~ r’ A q),, for some D and m. As D |= g, for each g, there
is a satisfying function f; in D, which is a monotone function f;: [1,n;] — [max D] such that, for
all j € [1,n;], we have ,Dfi(j),Dfi(j)—i-l .. 'Dfi(j)—i-tdp(’m,j) = r;;. Let R; ; = [fi(9), fi(5) + tdp('r’iﬂ')],
fori € [1,n] and j € [1,n;]. We may clearly assume that D; = {), for all | € [maxD] with [¢
Uiz U2, Rij U [tdp(r)]. Now, we cut certain segments from D maintaining the property that the
resulting data instance D’ makes q true and r’ A ¢/, false at time 0.

Suppose there exist 7; j and ;s ;» such that f;(j') — (fi(j) + tdp(rs;)) > tdp(q,,) and (fi(j) +
tdp(rij), fr(5')) N Riy = 0, for all k € [1,n] and I € [1,n;]. Then we remove from the segment
,Dfi(j)+tdp(r¢7j)+1 . Dfi’ ()1 of D all Dy with [> f;(j) + tdp(’l‘i,j) + tdp(qén) + 1. By definition, the
removed D; are all empty. The resulting shorter instance D’ is such that D’ |= g and D’ [~ v’ A q),,.
Indeed, we have kept all the witnesses that make D’ |= q intact. Now, suppose D’ = 1" A g/,,. We take
the satisfying function f’ for g/, in D’ and modify it to construct f” such that f”(j) = f/(j), for all
j € (L] with f'(7) < fi(G)+tdp(rs), and () = /(7)-+0, forall j with '(7) < fi(j) + tdp(rs),
where £ is the number of the D; that were removed from the segment Dy, (jy 1 tap(r;)41 - - - Py, (jry—1- It
is readily seen that f” is a satisfying function for g}, in D, which is a contradiction. Thus, D’ [~ ' Aq.,,.

By performing this operation for all suitable 7; ; and 7 ;/, we obtain a data instance with at most

tdp(r) +1+ > (tdp(rij) + 1)+ N > (tdp(rne ;) +1)

1<i<n, 1<j<n; 1<g<m/

time instants, where IV is the number of 7; ; in q plus 1.

The matching lower bound is shown by reduction of the 3SAT problem to the complement of the
containment problem for Q[O<]. Suppose we are given a 3CNF ¢ = ¢; A - -+ A ¢, with clauses ¢;
and variables x1, . .., z,, such that no ¢; contains both z; and =z, for any j. Our aim is to construct
Q[O]-queries 7, foralli = 0, ..., n, and a Q[O<{]-query 7’ such that

 is satisfiable iff /\ Or; B Or'. (2)
0<i<n
For each j = 1,...,m, we take two atoms X; and X to represent x; and —z, respectively. Given a

literal £; € {xj, ~x;}, set Ly, = X if {; = x5 and Ly, = Xj if £; = —~x;. We also use two additional
atoms B and E. We require the following conjunctions of atoms, written as sets:

a={X1,X1,..., Xm, Xm},

ap =aU{B},

Ao = a\ {Lg}, for aliteral £ over x1,...,Zp,
Bi =a\{X;,X,}, forj=1,...,m.

Leto = { X1, Xi,... Xm, Xm, B, E'}. We define the Q[O]-queries 7; as words of the form pop1p2 . . . o
over the alphabet 27 that represent pg A O(p1 A O(p2 A - -+ A Opy)). Namely, we set

ro = {B}Y*" lap ... 3,0*"{E}, and 7;= apriirigriz{E}, fori=1,...,n,
where the substrings r; 1, for £ = 1,2, 3, of r; are defined as follows: if ¢; = £, V £}, V {},, then
Tik = B1-. Bj—12e;, Bjyt1- - - Prm-

Thus, the length of each word r;, for ¢ = 1,...,m, is 3m + 2, and so the temporal depth of the
corresponding queries r; is 3m + 1. The length of ¢ is 5m + 2. Finally, we set

r’ = BAOYO(a A O*MOE).

Example 2. Consider the 3CNF ¢ = cj Acowithey =21V "wa Vg, co =21V 23V "2y, n =2
and m = 4. The words rg, 71, T2 for ¢ are illustrated in the picture below, where the numbers indicate
the positions of the respective characters, starting from 1, and () is omitted (remember that, in (2), we
use the queries Or;).

BB E

i é E’; :1 {—:, fli % é EI) 1I0 1I1 1I2 1I3 14 1I5 1I6 1I7 1I8 1I9 2IO 2I1 2I2
To

ap Aoy B2 B3 Ps P Az B3 Bs B1 P2 B3 Ay E

S S A

ap Aoy P2 B3 Pu P P2 Aazy Ba P11 P2 B3 Awy E

S S S S

The query Or’ can be depicted as follows, with the dots ... mimicking the $-operators:
B o E

We now prove equivalence (2) starting with implication (=). Suppose a is an assignment satisfying
. For each clause ¢; = ¢;, V {;, VV {;, in ¢, fix some k; € {1,2,3} such that the literal ¢;, is true under
a. Denote by 7;(¢) the tth character in the word r; (see Example 2). Define a data instance D by taking,
forall A € o andt < bm + 2,

Alt)e D ff Aery(t) or Aeri(t— (3—kj)m), forsomei € [1,n].

In other words, D can be constructed by first adding to each r; with ¢ > 0, a prefix of (3 — k;)m-many
()-characters to make 31 in r(aligned with the first character of the substring 7; x, in 7; and then taking
the union of the characters in the aligned positions of the resulting words and .

Example 3. Consider again the 3CNF ¢ from Example 2 and the satisfying assignment a that make x3
false and all the other variables true. Let k1 = 3 and k9 = 2. In this case, the data instance D looks as
follows:

o B a By P2 B3 Ba E
TL OB Ay B2 B3 Ba PrA-w B3 Ba B B2 B3 Any E

T2 aB Agy B2 B3 Ba PrAas B3 Bi P Po B3 Az, E

D S S S T S S S S S S—

0 1 2 3 4 5 6 7 8 9 :10 11 12 13 14 15 16 17 18 19 20 21 22

Returning to the proof of (=), we see that D, 1 = rgand D, 1+ (3 — k;)m = r; follow immediately
from the definitions, which gives D = A ,,~,, 7. It also follows from the definitions that D = <r/
iff D,k |= , for some k € [2m + 2,3m + 1]. Thus, D = <7 would imply that D,2m + 1+ 1 = a,
for some [€ [1,m], and so there must exist distinct 7, j € [1,n] such that r; , and 7, have \;;, and
Az, at position [, respectively. But this is impossible as, by the choice of k; and k;, the assignment a
should make both x; and —x; true.

(<) Assuming A\, ,, Or; = Or', we take a data instance D with D = A\ ,,, O and D = O
Let ¢; be the minimal number such that D,t; |= 7;. Observe that t; > tq for all i € [1,n], as
otherwise we would have D = Or!. For the same reason and because B € ap, we must have
t; < tg + 2m (see the picture in Example 2 for an illustration). Moreover, there are only three
possibilities for ¢;, namely, t; € {to,to + m,to + 2m}. Indeed, suppose otherwise. Then m > 1 and
t; € [to,to + 2m] \ {to,to + m,to + 2m}, and so D,ty + 2m + 1 | «, which implies D = Or'. It
follows that, for each i € [1,n|, we have either Dty +2m + 1 = r;1 or D, tg +2m + 1 |= r; 2 or
D,to+2m+ 1 |=r; 3. Let k; = j be such that D, ty + 2m + 1 |= r; ; (if there are several such j, we
can take the minimal one).

Consider the assignment a that makes z; false if ¢ has a clause ¢; = ¢, V {;, V {;, with {;, = -z,
and true otherwise. We show that, for each ¢; = ¢;, V £;, V {;; in ¢, the literal ¢, is true Zunder a.
This is clearly the case if ¢;, = —;. So, suppose ¢, = x;. By definition, a makes 2y true iff there
isno ¢y = gﬂ'{ \Y Ejé \Y éjg with Ej]/w = . Suppose: on the contrary, that such a ¢;» exists. By the

choice of k; and k;, it follows that D,to+2m + 1 = rip, and D, to + 2m + 1 |= 7y 1, But then
D,to+2m +1 | o, and so D |= O/, which is a contradiction. .

4. Open Problems

We have shown that the containment problem for the classes Q,[O<] and Q[O] of LTL-queries lies in
the complexity class L. It would be of interest to understand if this complexity bound is tight or the
problem is easier, e.g., in NC!. As observed earlier, unlike first-order conjunctive queries but similarly
to XPath-queries and queries with transitive roles, Q[O<]-query containment is not polytime reducible
to query evaluation (unless P = NP). However, it follows from the proofs above that, for Q,[O<] and
Q[<], containment is polytime reducible to evaluation, although the reduction is less trivial than in the
first-order case. It is also worth noting that a polysize witness for non-containment exists for all of our
queries, similarly to some classes of XPath/transitive queries [25].

In this paper, we have not considered conjunctive queries with the until-operator U, for which
containment is only known to be in PSPACE. Natural restricted fragments of conjunctive path-queries
with U that only allow conjunctions of atoms on the left-hand side of U have been identified in [20, 19];
however, the complexity of containment for those fragments have not been studied yet. For path-U-
queries satisfying the restriction above, the existence of a polysize witness for non-containment was
shown in [19, Theorem 9]. This fact implies a cONP upper bound for containment, but it is not known
whether this bound is tight.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

(1]
(2]

[10]

H. Ono, A. Nakamura, On the size of refutation Kripke models for some linear modal and tense
logics, Studia Logica (1980) 325-333.

A.P. Sistla, E. M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (1985)
733-749. URL: https://doi.org/10.1145/3828.3837. doi:10.1145/3828.3837.

C.-C. Chen, L-P. Lin, The computational complexity of the satisfiability of modal Horn clauses for
modal propositional logics, Theor. Comp. Sci. 129 (1994) 95-121.

S. Demri, P. Schnoebelen, The complexity of propositional linear temporal logics in simple cases,
Information and Computation 174 (2002) 84-103. URL: https://www.sciencedirect.com/science/
article/pii/S0890540101930949. doichttps://doi.org/10.1006/inco.2001.3094.

M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, H. Vollmer, The complexity of generalized
satisfiability for linear temporal logic, in: H. Seidl (Ed.), Foundations of Software Science and
Computational Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 48—-62.

C. Dixon, M. Fisher, B. Konev, Tractable temporal reasoning, in: Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, JCAT’07, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007, p. 318-323.

A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, The complexity of clausal frag-
ments of LTL, in: K. L. McMillan, A. Middeldorp, A. Voronkov (Eds.), Logic for Program-
ming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stel-
lenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in
Computer Science, Springer, 2013, pp. 35-52. URL: https://doi.org/10.1007/978-3-642-45221-5_3.
doi:10.1007/978-3-642-45221-5_3.

A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, A cookbook for temporal conceptual
data modelling with description logics, ACM Trans. Comput. Log. 15 (2014) 25:1-25:50. URL:
https://doi.org/10.1145/2629565. doi:10.1145/2629565.

V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical reasoner, J.
Artif. Intell. Res. 63 (2018) 557-623. URL: https://doi.org/10.1613/jair.1.11256. doi:10. 1613 /JAIR.
1.11256.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-order
rewritability of ontology-mediated queries in linear temporal logic, Artif. Intell. 299 (2021) 103536.
URL: https://doi.org/10.1016/j.artint.2021.103536. doi:10.1016/j .artint.2021.103536.

[11] J. Chomicki, D. Toman, M. H. Béhlen, Querying ATSQL databases with temporal logic, ACM

Trans. Database Syst. 26 (2001) 145-178. URL: https://doi.org/10.1145/383891.383892. doi:10. 1145/
383891.383892.

[12] J. Chomicki, D. Toman, Temporal logic in database query languages, in: L. Liu, M. T. Ozsu (Eds.),

Encyclopedia of Database Systems, Second Edition, Springer, 2018. URL: https://doi.org/10.1007/
978-1-4614-8265-9_402. d0i:10.1007/978-1-4614-8265-9_402.

https://doi.org/10.1145/3828.3837
http://dx.doi.org/10.1145/3828.3837
https://www.sciencedirect.com/science/article/pii/S0890540101930949
https://www.sciencedirect.com/science/article/pii/S0890540101930949
http://dx.doi.org/https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1007/978-3-642-45221-5_3
http://dx.doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1145/2629565
http://dx.doi.org/10.1145/2629565
https://doi.org/10.1613/jair.1.11256
http://dx.doi.org/10.1613/JAIR.1.11256
http://dx.doi.org/10.1613/JAIR.1.11256
https://doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/10.1016/j.artint.2021.103536
https://doi.org/10.1145/383891.383892
http://dx.doi.org/10.1145/383891.383892
http://dx.doi.org/10.1145/383891.383892
https://doi.org/10.1007/978-1-4614-8265-9_402
https://doi.org/10.1007/978-1-4614-8265-9_402
http://dx.doi.org/10.1007/978-1-4614-8265-9_402

[13]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Ontology-
mediated query answering over temporal data: A survey (invited talk), in: S. Schewe, T. Schneider,
J. Wijsen (Eds.), 24th International Symposium on Temporal Representation and Reasoning, TIME
2017, October 16-18, 2017, Mons, Belgium, volume 90 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2017, pp. 1:1-1:37. URL: https://doi.org/10.4230/LIPIcs. TIME.2017.1. doi:10. 4230/
LIPIcs.TIME.2017.1.

S. Brandt, E. G. Kalayci, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Querying log data with metric
temporal logic, J. Artif. Intell. Res. 62 (2018) 829-877. URL: https://doi.org/10.1613/jair.1.11229.
doi:10.1613/jair.1.11229.

D. Wang, P. Hu, P. A. Walega, B. C. Grau, Meteor: Practical reasoning in datalog with metric
temporal operators, in: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAT 2022 Virtual Event, February
22 - March 1, 2022, AAAI Press, 2022, pp. 5906—-5913. URL: https://doi.org/10.1609/aaai.v36i5.20535.
doi:10.1609/AAAT . V3615.20535.

A. Kurucz, V. Ryzhikov, Y. Savateev, M. Zakharyaschev, Deciding fo-rewritability of regular
languages and ontology-mediated queries in linear temporal logic, J. Artif. Intell. Res. 76 (2023)
645-703. URL: https://doi.org/10.1613/jair.1.14061. doi:10.1613/JAIR.1.14061.

D. Neider, R. Roy, What Is Formal Verification Without Specifications? A Survey on Mining LTL
Specifications, Springer Nature Switzerland, Cham, 2025, pp. 109-125. URL: https://doi.org/10.
1007/978-3-031-75778-5_6. doi:10.1007/978-3-031-75778-5_6.

R. Raha, R. Roy, N. Fijalkow, D. Neider, Scalable anytime algorithms for learning fragments of
linear temporal logic, in: D. Fisman, G. Rosu (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, 2022, pp. 263-280.

M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Unique charac-
terisability and learnability of temporal instance queries, in: G. Kern-Isberner, G. Lakemeyer,
T. Meyer (Eds.), Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2022, Haifa, Israel. July 31 - August 5, 2022, 2022. URL:
https://proceedings.kr.org/2022/17/.

M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Reverse engineering of
temporal queries mediated by LTL ontologies, in: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
ijcai.org, 2023, pp. 3230-3238. URL: https://doi.org/10.24963/ijcai.2023/360. doi:10 . 24963 /IJCAI.
2023/360.

J. C. Jung, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Extremal separation problems for temporal
instance queries, in: Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, ijcai.org, 2024, pp. 3448-3456. URL:
https://www.ijcai.org/proceedings/2024/382.

C. Fraser, Consistent subsequences and supersequences, Theor. Comput. Sci. 165 (1996) 233-246.
URL: https://doi.org/10.1016/0304-3975(95)00138-7. d0i:10.1016/0304-3975(95)00138-7.

M. Crochemore, C. Hancart, T. Lecroq, Algorithms on strings, Cambridge University Press, 2007.
A. Chandra, P. Merlin, Optimal implementation of conjunctive queries in relational data bases,
in: Conference Record of the Ninth Annual ACM Symposium on Theory of Computing, 2-4 May
1977, Boulder, Colorado, USA, ACM, 1977, pp. 77-90.

G. Miklau, D. Suciu, Containment and equivalence for an xpath fragment, in: L. Popa, S. Abiteboul,
P. G. Kolaitis (Eds.), Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, ACM, 2002, pp. 65-76.
URL: https://doi.org/10.1145/543613.543623. doi:10.1145/543613.543623.

H. Bjérklund, W. Martens, T. Schwentick, Conjunctive query containment over trees, J. Comput.
Syst. Sci. 77 (2011) 450-472. URL: https://doi.org/10.1016/j.jcss.2010.04.005. doi:10.1016/J . JCSS.
2010.04.005.

C. Haase, C. Lutz, Complexity of subsumption in the el family of description logics: Acyclic and

https://doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1613/jair.1.11229
http://dx.doi.org/10.1613/jair.1.11229
https://doi.org/10.1609/aaai.v36i5.20535
http://dx.doi.org/10.1609/AAAI.V36I5.20535
https://doi.org/10.1613/jair.1.14061
http://dx.doi.org/10.1613/JAIR.1.14061
https://doi.org/10.1007/978-3-031-75778-5_6
https://doi.org/10.1007/978-3-031-75778-5_6
http://dx.doi.org/10.1007/978-3-031-75778-5_6
https://proceedings.kr.org/2022/17/
https://doi.org/10.24963/ijcai.2023/360
http://dx.doi.org/10.24963/IJCAI.2023/360
http://dx.doi.org/10.24963/IJCAI.2023/360
https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1016/0304-3975(95)00138-7
http://dx.doi.org/10.1016/0304-3975(95)00138-7
https://doi.org/10.1145/543613.543623
http://dx.doi.org/10.1145/543613.543623
https://doi.org/10.1016/j.jcss.2010.04.005
http://dx.doi.org/10.1016/J.JCSS.2010.04.005
http://dx.doi.org/10.1016/J.JCSS.2010.04.005

cyclic TBoxes, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M. Avouris (Eds.), ECAI 2008 -
18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings,
volume 178 of Frontiers in Artificial Intelligence and Applications, 10S Press, 2008, pp. 25-29. URL:
https://doi.org/10.3233/978-1-58603-891-5-25. doi:10.3233/978-1-58603-891-5-25.

[28] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and
Applications, volume 148 of Studies in Logic, Elsevier, 2003.

[29] S. Demri, V. Goranko, M. Lange, Temporal Logics in Computer Science, Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2016.

https://doi.org/10.3233/978-1-58603-891-5-25
http://dx.doi.org/10.3233/978-1-58603-891-5-25

	1 Introduction
	2 Temporal Data and Queries
	3 Complexity of Query Containment
	4 Open Problems

