
Containment of Conjunctive LTL Queries
Jean Christoph Jung1, Vladislav Ryzhikov2, Frank Wolter3 and Michael Zakharyaschev2

1

TU Dortmund University, Otto-Hahn-Straße 12, 44227 Dortmund, Germany

2

Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

3

University of Liverpool, Ashton Street, Liverpool L69 3BX, UK

Abstract
We investigate the computational complexity of the containment problem for conjunctive queries given in linear
temporal logic LTL with the operators ‘eventually’ and ‘next-time’. We show that this problem is coNP-complete
and identify a few restricted query classes for which containment is tractable (in LogSpace).

Keywords
Linear temporal logic LTL, conjunctive query, query containment, computational complexity.

1. Introduction

Our concern in this paper is the containment problem for very basic temporal conjunctive queries that
are built from atoms—propositional variables representing atomic events and ⊤—using conjunction and
the temporal operators ○ (at the next moment) and ◇ (sometime later) from the linear temporal logic
LTL. Such queries are supposed to be evaluated over data instances that consist of facts of the form 𝐴(ℓ)
stating that atomic proposition 𝐴 is true at time ℓ, for ℓ ∈ N. This setting is relevant to applications in
numerous areas ranging from temporal databases and streams to temporal ontology-based data access,
pattern matching and learning; see the Motivation and Related Work section below for some details and
references.

Using the fact that our queries correspond to tree-shaped conjunctive queries, it is readily seen
that the query evaluation problem—given a query 𝑞, a data instance 𝒟, and a timestamp ℓ from the
temporal domain of 𝒟, decide whether 𝑞 is true at ℓ in the model determined by 𝒟—is decidable in
polynomial time (in the size of 𝒟 and 𝑞). The containment problem for these queries turns out to be
more interesting.

Recall that the query containment problem is to decide, given any queries 𝑞 and 𝑞′, whether, for every
data instance 𝒟, the answers to 𝑞 over 𝒟 are contained in the answers to 𝑞′ over 𝒟. Our main result in
this paper proves that query containment for our most expressive query language is non-tractable and
coNP-complete. It is the hardness part of the result that is of interest while the upper bound is more or
less straightforward. We also show that, for queries without ○, containment is in the complexity class
L (LogSpace); it is also in L for path queries with both ○ and ◇.

As we are only considering queries that are existential LTL-formulas (without the operator ‘always in
the future’), the containment problem is equivalent to the validity of formulas of the form 𝑞 → 𝑞′ in finite
or infinite temporal models. So, our results also contribute directly to the research problem of classifying
fragments of LTL according to their computational complexity; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Motivation and Related Work. Temporal data is ubiquitous in the digital world, and there are
numerous applications having our non-relational propositional LTL-queries as a core. For example,
temporal variants of SQL tailored to effectively retrieve information from temporal databases rely on
LTL-operators [11, 12]. In ontology-based data access (OBDA), temporal conjunctive formulas are often

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland

$ jean.jung@tu-dortmund.de (J. C. Jung); vlad@dcs.bbk.ac.uk (V. Ryzhikov); wolter@liverpool.ac.uk (F. Wolter);
michael@dcs.bbk.ac.uk (M. Zakharyaschev)
� 0000-0002-4159-2255 (J. C. Jung); 0000-0002-6847-6465 (V. Ryzhikov); 0000-0002-4470-606X (F. Wolter);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:jean.jung@tu-dortmund.de
mailto:vlad@dcs.bbk.ac.uk
mailto:wolter@liverpool.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://orcid.org/0000-0002-4159-2255
https://orcid.org/0000-0002-6847-6465
https://orcid.org/0000-0002-4470-606X
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0/deed.en

utilised as a core user-friendly language to formulate both queries and ontology rules; see, e.g., [13] and
further references therein as well as more recent [14, 15, 16]. Another recent application of LTL-queries
is extraction of (or learning) patterns from temporal data examples [17]. In this setting, conjunctive
LTL-queries, their subclasses such as path queries and extensions, say with disjunction, have been
studied in [18, 19, 20, 21]. Note also that there is a close link between evaluating path queries and
algorithms for finding patterns in strings [22, 23], a problem having multiple applications such as DNA
analysis in bioinformatics.

Query containment was shown to be NP-complete for standard database conjunctive queries by
reduction to query evaluation in the seminal work [24]. Since then query containment has been studied
for numerous query languages. Most closely related is work on containment for fragments of XPath [25]
and query containment over trees [26]. In these languages, similar to our work, queries can refer
to nodes reachable along the transitive closure of a successor relation. Very different techniques are
used, however, since we assume a linear order instead of a tree. Our results are also closely related
to the work on subsumption in extensions of ℰℒ. Observe that our queries are notational variants of
ℰℒ-concepts with two roles (one corresponding to ○ and the other to ◇). Hence, subsumption between
ℰℒ concepts over interpretations, in which one role is interpreted as the transitive closure of another
role, corresponds exactly to query containment in our language, except that arbitrary interpretations
(equivalently, by unfolding, tree-shaped ones) are considered, and not linear orders. In [27], coNP-
hardness is shown for subsumption in ℰℒ with transitive closure using the technique introduced for
XPath in [25]. Again, this technique is not applicable for linear orders.

2. Temporal Data and Queries

Temporal data instances. By a temporal data instance we mean here any finite set 𝒟 ̸= ∅ of facts of
the form 𝐴(ℓ), where 𝐴 is a propositional variable, henceforth called an atom, and ℓ ∈ N. Intuitively,
𝐴(ℓ) says that event 𝐴 happened at time instant ℓ. The signature sig(𝒟) of 𝒟 is the set of atoms
occurring in it. The maximal time ℓ in 𝒟 is denoted by max𝒟. Where convenient, we also write 𝒟
as the word 𝛿0 . . . 𝛿max𝒟 over the alphabet 2sig(𝒟) with 𝛿𝑖 = {𝐴 | 𝐴(𝑖) ∈ 𝒟} for each 𝑖 ≤ max𝒟. By
definition, 𝛿max𝒟 ̸= ∅. For example, the data instance 𝒟 = {𝐴(2), 𝐵(2), 𝐴(3), 𝐴(4)}, illustrated in the
picture below, is also given by the word ∅∅{𝐴,𝐵}{𝐴}{𝐴} or ∅2{𝐴,𝐵}{𝐴}2 if we use standard formal
language abbreviations.

0 1

𝐴,𝐵

2

𝐴

3

𝐴

4

Temporal conjunctive queries. To query data instances, we employ LTL-formulas that are built
from atoms and the logical constant ⊤ using conjunction ∧ and the unary temporal operators ○ (next
time) and ◇ (sometime in the future). We consider the following classes of queries:

𝒬[○◇]: all ○◇-queries (that is, all queries in our language);

𝒬[◇]: all ◇-queries (that is, ○◇-queries not containing ○);

𝒬𝑝[○◇]: path ○◇-queries, that is, ○◇-queries of the form

𝑞 = 𝜌0 ∧ 𝑜1

(︀
𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑛−1(𝜌𝑛−1 ∧ 𝑜𝑛𝜌𝑛))

)︀
, (1)

where 𝑜𝑖 ∈ {○,◇} and the 𝜌𝑖 are conjunctions of atoms (we often treat these conjunctions as
sets and the empty conjunction as ⊤);

𝒬𝑝[◇]: path ◇-queries, that is, those queries in 𝒬𝑝[○◇] that do not contain ○;

𝒬in: interval-queries, that is, queries of the form (1) with 𝜌0 = ⊤, 𝜌1 ̸= ⊤, 𝑜1 = ◇, and 𝑜𝑖 = ○, for
𝑖 > 1.

We do not consider query classes with ○-operators only, for which the containment problem is trivial.
The truth-relation 𝒟, ℓ |= 𝑞, saying that a query 𝑞 is true in 𝒟 at any moment ℓ ∈ N, is defined as usual
in temporal logic under the strict semantics; see, e.g., [28, 29] and further references therein:

𝒟, ℓ |= ⊤, 𝒟, ℓ |= 𝐴 iff 𝐴(ℓ) ∈ 𝒟, 𝒟, ℓ |= 𝑞′ ∧ 𝑞′′ iff 𝒟, ℓ |= 𝑞′ and 𝒟, ℓ |= 𝑞′′,

𝒟, ℓ |= ○𝑞′ iff 𝒟, ℓ+ 1 |= 𝑞′, 𝒟, ℓ |= ◇𝑞′ iff 𝒟,𝑚 |= 𝑞′, for some 𝑚 > ℓ.

An answer to a query 𝑞 over a data instance 𝒟 is any ℓ such that 0 ≤ ℓ ≤ max𝒟 and 𝒟, ℓ |= 𝑞. The
temporal depth tdp(𝑞) of 𝑞 is the maximum number of nested temporal operators in 𝑞; the size |𝑞| of 𝑞
is the number of symbols in it.

Note that there is a close link between evaluating path queries and algorithms for finding patterns in
strings [23]. A sequence is a data instance 𝒟 = 𝛿0 . . . 𝛿𝑚 with 𝛿0 = ∅ and |𝛿𝑖| = 1, for 0 < 𝑖 ≤ 𝑚. A
sequence query is a path query of the form (1) with 𝜌0 = ∅ and |𝜌𝑖| = 1, for 0 < 𝑖 ≤ 𝑛. We say that
𝜌1 . . . 𝜌𝑛 is a subsequence of 𝒟 if there are 0 < 𝑖1 < . . . < 𝑖𝑛 ≤ 𝑚 with 𝛿𝑖𝑗 = 𝜌𝑗 , for 1 ≤ 𝑗 ≤ 𝑛, and
we say that 𝜌1 . . . 𝜌𝑛 is a subword of 𝒟 if there is 𝑘 ≤ 𝑚 with 𝛿𝑘+𝑗 = 𝜌𝑗 , for 1 ≤ 𝑗 ≤ 𝑛. Querying
sequences using sequence queries corresponds to the following matching problems:

– for any sequence query 𝑞 ∈ 𝒬𝑝[◇] of the form (1), we have 𝒟, 0 |= 𝑞 iff 𝜌1 . . . 𝜌𝑛 is a subsequence
of 𝒟;

– for any sequence query 𝑞 ∈ 𝒬in of the form (1), we have 𝒟, 0 |= 𝑞 iff 𝜌1 . . . 𝜌𝑛 is a subword of 𝒟.

We write 𝑞 |= 𝑞′ if 𝒟, 0 |= 𝑞 implies 𝒟, 0 |= 𝑞′ for all 𝒟, and 𝑞 ≡ 𝑞′ if 𝑞 |= 𝑞′ and 𝑞′ |= 𝑞, in which
case 𝑞 and 𝑞′ are called equivalent. For example, for any query 𝑞, we have ◇○𝑞 ≡ ○◇𝑞 ≡ ◇◇𝑞 ≡
◇(⊤ ∧◇𝑞). It follows that every 𝒬𝑝[○◇]-query is equivalent to a query 𝑞 of the form (1), in which
𝜌𝑛 ̸= ⊤ and whenever 𝜌𝑖 = ⊤, 0 < 𝑖 < 𝑛, then 𝑜𝑖 = 𝑜𝑖+1; in this case, we say that 𝑞 is in normal form.
Conversion to normal form can be done in L.

A query 𝑞 ∈ 𝒬[◇] is in normal form if 𝑞 = 𝜌 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛, where 𝜌 is a conjunction of atoms and
each 𝑞𝑖, for 𝑖 = 1, . . . , 𝑛, is a 𝒬𝑝[◇]-query (in normal form) that starts with ◇. Again, every 𝑞 ∈ 𝒬[◇]
can be converted to normal form in L using the equivalence

𝜌0 ∧◇(𝜌1 ∧
𝑛⋀︁

𝑖=1

◇𝑞𝑖) ≡ 𝜌0 ∧
𝑛⋀︁

𝑖=1

◇(𝜌1 ∧◇𝑞𝑖).

For example, ◇(𝐴 ∧◇𝐵 ∧◇𝐶) ≡ ◇(𝐴 ∧◇𝐵) ∧◇(𝐴 ∧◇𝐶).
A query 𝑞 ∈ 𝒬[○◇] is in normal form if 𝑞 = 𝑟∧𝑞1∧· · ·∧𝑞𝑛, where 𝑟 is a 𝒬𝑝[○]-query—that is, a ◇-

free 𝒬𝑝[○,◇]-query—and each 𝑞𝑖 takes the form ◇(𝑟1,𝑖∧◇(𝑟2,𝑖∧· · ·∧◇𝑟𝑛𝑖,𝑖)) with 𝒬𝑝[○]-queries 𝑟𝑗,𝑖,
for 𝑗 = 1, . . . , 𝑛𝑖. Each 𝑞 ∈ 𝒬[○◇] can be converted to normal form in polytime using the equivalence
above, ○◇𝑞 ≡ ◇○𝑞 and ○(𝑞 ∧ 𝑞′) ≡ (○𝑞 ∧ ○𝑞′). For example, ○(○𝐴 ∧◇○(𝐵 ∧◇○𝐶 ∧◇𝐷)) ≡
○2𝐴 ∧◇(○2𝐵 ∧◇○3𝐶 ∧◇○2𝐷)) ≡ ○2𝐴 ∧◇(○2𝐵 ∧◇○3𝐶) ∧◇(○2𝐵 ∧◇○2𝐷).

Our concern in this paper is the containment problem, which has become fundamental in database
theory since the seminal work of Chandra and Merlin [24].

3. Complexity of Query Containment

The query containment problem for a class 𝒬 of queries is formulated as follows: given any queries
𝑞, 𝑞′ ∈ 𝒬, decide whether 𝑞 |= 𝑞′.

Example 1. Consider the 𝒬𝑝[○◇]-queries 𝑞1, 𝑞2 and 𝑞′ below:

𝑞1 = ◇(𝐴 ∧𝐵 ∧ ○𝐴), 𝑞2 = ◇(𝐴 ∧𝐵 ∧ ○𝐵), 𝑞′ = ◇
(︀
𝐵 ∧◇(𝐴 ∧𝐵)

)︀
.

It is readily seen that 𝑞1 ̸|= 𝑞′ (as the data instance ∅{𝐴,𝐵}{𝐴} makes 𝑞1 true at 0 but not 𝑞′) and
𝑞2 ̸|= 𝑞′. However, for the 𝒬[○◇]-query 𝑞1 ∧ 𝑞2, we have 𝑞1 ∧ 𝑞2 |= 𝑞′. To show this, we observe that

any data instance 𝒟 = 𝛿0 . . . 𝛿𝑚 satisfying 𝑞1 ∧ 𝑞2 at 𝑛 has 𝛿𝑖 ⊇ {𝐴,𝐵}, 𝛿𝑖+1 ⊇ {𝐴}, 𝛿𝑗 ⊇ {𝐴,𝐵},
𝛿𝑗+1 ⊇ {𝐵}, for some 𝑛 < 𝑖, 𝑗 < 𝑚. In each of the three cases, 𝑖 < 𝑗, 𝑖 = 𝑗, and 𝑖 > 𝑗, we have
𝒟, 𝑛 |= 𝑞′.

In contrast to conjunctive queries in first-order logic, where query containment is NP-complete [24],
query containment is tractable for the majority of query classes defined above:

Theorem 1. The query containment problems for 𝒬𝑝[○◇], 𝒬[◇] and their subclasses are all in L.

Proof. Consider first 𝒬𝑝[○◇]. Suppose we are given two queries 𝑞, 𝑞′ ∈ 𝒬𝑝[○◇] in normal form, 𝑞
takes the form (1) and 𝑞′ = 𝜌′0 ∧ 𝑜′

1

(︀
𝜌′1 ∧ 𝑜′

2(𝜌
′
2 ∧ · · · ∧ 𝑜′

𝑚𝜌′𝑚)
)︀
, where 𝑜′

𝑖 ∈ {○,◇} and the 𝜌′𝑖 are
conjunctions of atoms (regarded as sets).

For any 𝑘 ∈ N, we denote by [𝑘] the closed interval [0, 𝑘] ⊆ N. A function ℎ : [𝑚] → [𝑛] is monotone

if ℎ(𝑖) < ℎ(𝑗) whenever 𝑖 < 𝑗. A monotone function ℎ : [𝑚] → [𝑛] is called a containment witness for
𝑞 and 𝑞′ if the following conditions hold:

– ℎ(0) = 0;

– 𝜌′𝑖 ⊆ 𝜌ℎ(𝑖), for all 𝑖 ∈ [𝑚];

– if 𝑖 < 𝑚 and 𝑜′
𝑖+1 = ○, then 𝑜ℎ(𝑖+1) = ○ and ℎ(𝑖+ 1) = ℎ(𝑖) + 1.

Note that checking the existence of a containment witness can be done in L in |𝑞| and |𝑞′|. Indeed,
consider first the case of 𝒬𝑝[◇]-queries. It is easily seen that a containment witness for 𝑞 and 𝑞′ exists
iff there is a sequence of pairs (0, 𝑗0), . . . , (𝑚, 𝑗𝑛), where 𝑗0 = 0 and 𝑗𝑖+1 is the minimal number
𝑗 > 𝑗𝑖 such that 𝜌′𝑖+1 ⊆ 𝜌𝑗 . For 𝒬𝑝[○◇]-queries, we need a more involved procedure that relies,
however, on the same idea. Let 𝑘′0 ≥ 0 be the minimal index such that 𝑜′

𝑘′0+1 = ◇ (it follows that
𝑜′
1 = · · · = 𝑜′

𝑘′0
= ○). If no such 𝑘′0 exists, we set 𝑘′0 = 𝑚. We check if 𝑜1 = · · · = 𝑜𝑘′0

= ○ and
𝜌′0 ⊆ 𝜌0, . . . , 𝜌′𝑘′0 ⊆ 𝜌𝑘′0 . If this is not the case, a containment witness does not exist. If this is the case
and 𝑘′0 = 𝑚, a containment witness exists. Otherwise, let 𝑘′1 ≥ 0 be the minimal number such that
𝑜′
𝑘′0+1+𝑘′1+1 = ◇. If no such 𝑘′1 exists, we chose 𝑘′1 such that 𝑘′0 + 1 + 𝑘′1 = 𝑚. We find the minimal

𝑘0 > 𝑘′0 such that 𝑜𝑘0+1 = · · · = 𝑜𝑘0+𝑘′1
= ○ and 𝜌′𝑘′0+1 ⊆ 𝜌𝑘0 , . . . , 𝜌′𝑘′0+1+𝑘′1

⊆ 𝜌𝑘0+𝑘′1
. If such 𝑘0 does

not exist, a containment witness does not exist. If such 𝑘0 exists and 𝑘′0 + 1 + 𝑘′1 = 𝑚, a containment
witness exists. Otherwise, we proceed to find 𝑘′2 ≥ 0 and 𝑘1 > 𝑘0 that satisfy the conditions analogous
to the above. We proceed until we either decide that a containment witness does not exist, or there
is an iteration 𝑖 when we choose 𝑘′𝑖 ≥ 0 such that 𝑘′0 + 1 + 𝑘′1 + 1 + · · · + 𝑘′𝑖−1 + 1 + 𝑘′𝑖 = 𝑚. Our
procedure stops at this iteration.

The tractability of containment for path queries is an immediate consequence of the following
analogue of the Chandra-Merlin criterion for conjunctive queries in first-order logic:

Lemma 1. For any 𝑞, 𝑞′ ∈ 𝒬𝑝[○◇] in normal form, we have 𝑞 |= 𝑞′ iff there is a containment witness

for 𝑞 and 𝑞′.

Proof. Given a data instance 𝒟, by a satisfying function for 𝑞 of the form (1) in 𝒟 we mean any monotone
function 𝑓 : [𝑛] → [max𝒟] such that, for all 𝑖 ∈ [𝑛], we have 𝑓(0) = 0, 𝜌𝑖 ⊆ {𝐴 | 𝐴(𝑓(𝑖)) ∈ 𝒟}, and
if 𝑜𝑖+1 = ○, then 𝑓(𝑖+ 1) = 𝑓(𝑖) + 1. It follows directly from the definition of the truth-relation that
𝒟, 0 |= 𝑞 iff there exists a satisfying function for 𝑞 in 𝒟.

Suppose ℎ is a containment witness for 𝑞 and 𝑞′. Take any data instance 𝒟 with 𝒟, 0 |= 𝑞. Let 𝑓 be
a satisfying function for 𝑞 in 𝒟. Then it is readily checked that the composition ℎ𝑓 : [𝑚] → [max𝒟] is
a satisfying function for 𝑞′ in 𝒟, and so 𝒟, 0 |= 𝑞′. It follows that 𝑞 |= 𝑞′.

Conversely, suppose 𝑞 |= 𝑞′. We define a containment witness for 𝑞 and 𝑞′ by induction on the
temporal depth tdp(𝑞′) of 𝑞′. If tdp(𝑞′) = 0, then 𝑞′ = 𝜌′0 and 𝜌′0 ⊆ 𝜌. It follows that ℎ(0) = 0 is
the required containment witness. As an induction hypothesis (IH), we assume next that there is a
containment witness for any queries 𝑞1 and 𝑞2 such that 𝑞1 |= 𝑞2 and tdp(𝑞2) < tdp(𝑞′). Two cases
are possible.

Case 1: 𝑜′
1 = ○. Let 𝑘 > 0 be the maximal index such that 𝑜′

1 = · · · = 𝑜′
𝑘 = ○. Then 𝜌′𝑘 ̸= ⊤

(because 𝑞′ is in normal form) and 𝑜′
𝑘+1 = ◇ if 𝑚 > 𝑘. Let 𝑟 be the minimal index such that

𝜌0 ∧ 𝑜1

(︀
𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑟𝜌𝑟)

)︀
|= 𝜌′0 ∧ 𝑜′

1

(︀
𝜌′1 ∧ 𝑜′

2

(︀
𝜌′2 ∧ · · · ∧ 𝑜′

𝑘𝜌
′
𝑘)
)︀
.

We claim that, for all 𝑖 ≤ 𝑘, we have 𝑜𝑖 = ○, 𝜌𝑖 ⊇ 𝜌′𝑖, and so 𝑟 = 𝑘. Indeed, if there is 𝑖 ≤ 𝑘 with
𝑜𝑖 = ◇, then we take the data instance 𝒟 = 𝜌0 . . . 𝜌𝑖−1∅𝑚𝜌𝑖 . . . 𝜌𝑛 and obtain 𝒟, 0 |= 𝑞 and 𝒟, 0 ̸|= 𝑞′,
contrary to 𝑞 |= 𝑞′. And if there is 𝑖 ≤ 𝑘 with 𝜌𝑖 ̸⊇ 𝜌′𝑖, then we take the data instance 𝒟 = 𝜌0 . . . 𝜌𝑛
and again obtain 𝒟, 0 |= 𝑞 and 𝒟, 0 ̸|= 𝑞′.

Next, we consider the ‘tails’

𝑞𝑘+1 = 𝑜𝑘+1(𝜌𝑘+1 ∧ · · · ∧ 𝑜𝑛𝜌𝑛), 𝑞′𝑘+1 = 𝑜′
𝑘+1(𝜌

′
𝑘+1 ∧ . . .𝑜′

𝑚𝜌′𝑚)

and observe that 𝑞 |= 𝑞′ implies 𝑞𝑘+1 |= 𝑞′𝑘+1. As tdp(𝑞′𝑘+1) < tdp(𝑞′), the IH gives a containment
witness ℎ′ for 𝑞𝑘+1 and 𝑞′𝑘+1. Using it, we define the required containment witness ℎ for 𝑞 and 𝑞′ by
taking ℎ(𝑖) = 𝑖, for all 𝑖 ≤ 𝑘, and ℎ(𝑘 + 𝑗) = ℎ′(𝑗) + 𝑘, for all 𝑗 with 1 ≤ 𝑗 ≤ 𝑚− 𝑘.

Case 2: 𝑜′
1 = ◇. Suppose first that there is a minimal initial subquery

𝑞̄′𝑘 = 𝜌′0 ∧ 𝑜′
1(𝜌

′
1 ∧ · · · ∧ 𝑜′

𝑘𝜌
′
𝑘)

of 𝑞′ such that 𝜌′𝑘 ̸= ⊤, 𝑜′
𝑘+1 = ◇ and 𝑘 > 0. Let 𝑞̄𝑟 = 𝜌0 ∧ 𝑜1(𝜌1 ∧ · · · ∧ 𝑜𝑟𝜌𝑟) be the minimal initial

subquery of 𝑞 with 𝑞̄𝑟 |= 𝑞̄′𝑘 . As tdp(𝑞̄′𝑘) < tdp(𝑞′), the IH gives a containment witness ℎ0 for 𝑞̄𝑟 and 𝑞̄′𝑘 .
As 𝜌′𝑘 ̸= ⊤ and 𝑟 is minimal, ℎ0(𝑘) = 𝑟. By IH, our claim also holds for 𝑞′𝑘+1 = 𝑜′

𝑘+1(𝜌
′
𝑘+1∧· · ·∧𝑜′

𝑚𝜌′𝑚)
and 𝑞𝑟+1 = 𝑜𝑟+1(𝜌𝑟+1 ∧ · · · ∧ 𝑜𝑛𝜌𝑛) and gives a containment witness ℎ1 for 𝑞𝑟+1 and 𝑞′𝑘+1. We then
obtain a containment witness for 𝑞 and 𝑞′ by concatenating ℎ0 and ℎ1.

Finally, suppose that there is no 𝜌′𝑘 ̸= ⊤ with 𝑜′
𝑘+1 = ◇ and 𝑘 > 0. Then 𝑞′ takes the form

𝜌′0 ∧◇𝑘
(︀
𝜌′𝑘 ∧ 𝑜′

𝑘+1𝜌
′
𝑘+1 · · · ∧ 𝑜′

𝑚𝜌′𝑚)
)︀
,

where 𝑘 > 0, 𝜌′𝑘 ̸= ⊤, and 𝑜′
𝑘+1 = · · · = 𝑜′

𝑚 = ○. We claim that there exists 𝑗 ≥ 𝑘 such that
𝑜𝑗+1 = · · · = 𝑜𝑗+𝑚−𝑘 = ○ and 𝜌𝑗+ℓ ⊇ 𝜌′𝑘+ℓ, for all ℓ with 0 ≤ ℓ ≤ 𝑚 − 𝑘, which clearly implies
the existence of a containment witness for 𝑞 and 𝑞′. To prove this claim, suppose there is no such
𝑗. Consider the data instance 𝒟 = 𝜌0𝑤1𝜌1 . . . 𝑤𝑛𝜌𝑛, where 𝑤𝑖 = 𝜀 (the empty word) if 𝑜𝑖 = ○, and
𝑤𝑖 = ∅𝑚 if 𝑜𝑖 = ◇. Then 𝒟, 0 |= 𝑞 but 𝒟, 0 ̸|= 𝑞′, contrary to 𝑞 |= 𝑞′. ⊣

Now we prove Theorem 1 for the class 𝒬[◇] of queries of the (normal) form 𝜌 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛,
where 𝜌 is a conjunction of atoms and each 𝑞𝑖 is a 𝒬𝑝[◇]-query in normal form that starts with ◇. The
tractability of containment for 𝒬[◇]-queries follows from Lemma 1 and the next criterion:

Lemma 2. If 𝑞 = 𝜌 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛 ∈ 𝒬[◇] is in normal form and 𝑞′ ∈ 𝒬𝑝[◇], then 𝑞 |= 𝑞′ iff

𝜌 ∧ 𝑞𝑖 |= 𝑞′, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛.

To illustrate, consider the queries 𝑞1 and 𝑞2 from Example 1, in which we replace ○ by ◇, and
𝑞′. It is easy to see that 𝑞1 ̸|= 𝑞′, 𝑞2 ̸|= 𝑞′, and so 𝑞1 ∧ 𝑞2 ̸|= 𝑞′. To check the latter, consider
𝒟 = ∅{𝐴,𝐵}{𝐴}{𝐵}, which satisfies 𝐴 ∧ 𝐵 from 𝑞1 and 𝑞2 at the same time instant, and then 𝐴
from 𝑞1 and 𝐵 from 𝑞2 at different time instants.

Proof. (⇒) Suppose that 𝑞′ = 𝜌0 ∧◇
(︀
𝜌1 ∧◇(𝜌2 ∧ · · · ∧◇𝜌𝑚)

)︀
, 𝑞𝑖 = ◇

(︀
𝜌1𝑖 ∧◇(𝜌2𝑖 ∧ · · · ∧◇𝜌𝑛𝑖

𝑖)
)︀
,

for 1 ≤ 𝑖 ≤ 𝑛, and 𝑞 |= 𝑞′. Note that 𝜌 ⊇ 𝜌0 as otherwise 𝑞 ̸|= 𝑞′. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, we define
inductively a function

𝑓𝑖 : {1, . . . ,𝑚} → {1, . . . , 𝑛𝑖} ∪ {∞}.

To begin with, we set 𝑓𝑖(1) = 𝑗 if 𝑗 is minimal such that 𝜌𝑗𝑖 ⊇ 𝜌1 and 𝑓𝑖(1) = ∞ if no 𝑗 with 𝜌𝑗𝑖 ⊇ 𝜌1

exists. Further, inductively, if 𝑓𝑖(ℓ) = ∞, then 𝑓𝑖(ℓ+ 1) = ∞; if 𝑓𝑖(ℓ) < ∞, then we set 𝑓𝑖(ℓ+ 1) = 𝑗
if 𝑗 is minimal such that 𝑗 > 𝑓𝑖(ℓ) and 𝜌𝑗𝑖 ⊇ 𝜌ℓ+1; if no 𝑗 > 𝑓𝑖(ℓ) with 𝜌𝑗𝑖 ⊇ 𝜌ℓ+1 exists, we set

𝑓𝑖(ℓ+ 1) = ∞. It follows immediately from the definition that if there is 𝑖 ≤ 𝑛 such that 𝑓𝑖(𝑚) < ∞,
then 𝜌 ∧ 𝑞𝑖 |= 𝑞′, as required. So suppose there is no such 𝑖 ≤ 𝑛 and derive a contradiction by proving
that in this case 𝑞 ̸|= 𝑞′.

Let 𝑚′ ≤ 𝑚 be minimal such that 𝑓𝑖(𝑚′) = ∞ for all 𝑖 ≤ 𝑛. Consider the data instance 𝒟1 =
𝜌𝜌11 . . . 𝜌

𝑘1
1 . . . 𝜌1𝑛 . . . 𝜌

𝑘𝑛
𝑛 , where 𝑘𝑖 = min{𝑛𝑖, 𝑓𝑖(1)− 1}, 1 ≤ 𝑖 ≤ 𝑛 (we set ∞− 1 = ∞). If 𝑚′ = 1,

then 𝒟1, 0 |= 𝑞 and 𝒟1, 0 ̸|= 𝑞′ since 𝒟1, 0 ̸|= ◇𝜌1, and we are done. Otherwise, for 2 ≤ ℓ ≤ 𝑚′, we
take

𝛿ℓ =
⋃︁

1≤𝑖≤𝑛,𝑓𝑖(ℓ)<∞

𝜌
𝑓𝑖(ℓ)
𝑖 and 𝒟ℓ = 𝜌

𝑓1(ℓ)+1
1 . . . 𝜌

𝑘ℓ,1
1 . . . 𝜌𝑓𝑛(ℓ)+1

𝑛 . . . 𝜌
𝑘ℓ,𝑛
𝑛 ,

where 𝑘ℓ,𝑖 = min{𝑛𝑖, 𝑓𝑖(ℓ+1)−1}, for 1 ≤ 𝑖 ≤ 𝑛 (note that 𝜌𝑓𝑖(ℓ)+1
𝑖 . . . 𝜌

𝑘ℓ,𝑖
𝑖 is empty if 𝑓𝑖(ℓ)+1 > 𝑛𝑖).

Then we set
𝒟 = 𝒟1𝛿1𝒟2𝛿2 . . . 𝛿𝑚′−1𝒟𝑚′ .

It follows from the construction that 𝒟, 0 |= 𝑞 and 𝒟, 0 ̸|= 𝑞′, contrary to 𝑞 |= 𝑞′.
The implication (⇐) is obvious. ⊣

This completes the proof of Theorem 1. ⊣

For queries 𝑞 ∈ 𝒬[○◇], Lemma 2 does not hold as illustrated by Example 1. Moreover, in contrast to
Theorem 1, we have the following:

Theorem 2. The query containment problem for 𝒬[○◇] is coNP-complete.

Proof. To show the upper bound, suppose we are given two queries 𝑞, 𝑞′ ∈ 𝒬[○◇] in normal form,
where

𝑞 = 𝑟 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛 with 𝑞𝑖 = ◇
(︀
𝑟𝑖,1 ∧◇(𝑟𝑖,2 ∧ · · · ∧◇𝑟𝑖,𝑛𝑖)

)︀
,

𝑟, 𝑟𝑖,𝑗 ∈ 𝒬𝑝[○], for 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛𝑖,

𝑞′ = 𝑟′ ∧ 𝑞′1 ∧ · · · ∧ 𝑞′𝑛′ with 𝑞′𝑖 = ◇
(︀
𝑟′𝑖,1 ∧◇(𝑟′𝑖,2 ∧ · · · ∧◇𝑟′𝑖,𝑛′

𝑖
)
)︀
,

𝑟′, 𝑟′𝑖,𝑗 ∈ 𝒬𝑝[○], for 𝑖 = 1, . . . , 𝑛′, 𝑗 = 1, . . . , 𝑛′
𝑖.

By definition, 𝑞 ̸|= 𝑞′ iff there exist a data instance 𝒟 and some 𝑚, 1 ≤ 𝑚 ≤ 𝑛′, such that 𝒟 |= 𝑞
and 𝒟 ̸|= 𝑟′ ∧ 𝑞′𝑚. Our aim is to show that it suffices to consider 𝒟 with max𝒟 ≤ 𝑂(|𝑞||𝑞′𝑚|). If
this is the case, then an obvious NP-algorithm deciding 𝑞 ̸|= 𝑞′ would be to guess such 𝑚 and 𝒟 with
sig(𝒟) = sig(𝑞) ∪ sig(𝑞′), and then check in polytime whether 𝒟 |= 𝑞 and 𝒟 ̸|= 𝑟′ ∧ 𝑞′𝑚.

So, suppose we have 𝒟 |= 𝑞 and 𝒟 ̸|= 𝑟′ ∧ 𝑞′𝑚, for some 𝒟 and 𝑚. As 𝒟 |= 𝑞, for each 𝑞𝑖, there
is a satisfying function 𝑓𝑖 in 𝒟, which is a monotone function 𝑓𝑖 : [1, 𝑛𝑖] → [max𝒟] such that, for
all 𝑗 ∈ [1, 𝑛𝑖], we have 𝒟𝑓𝑖(𝑗)𝒟𝑓𝑖(𝑗)+1 . . .𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗) |= 𝑟𝑖,𝑗 . Let 𝑅𝑖,𝑗 = [𝑓𝑖(𝑗), 𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗)],
for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑛𝑖]. We may clearly assume that 𝒟𝑙 = ∅, for all 𝑙 ∈ [max𝒟] with 𝑙 /∈⋃︀𝑛

𝑖=1

⋃︀𝑛𝑖
𝑗=1𝑅𝑖,𝑗 ∪ [tdp(𝑟)]. Now, we cut certain segments from 𝒟 maintaining the property that the

resulting data instance 𝒟′ makes 𝑞 true and 𝑟′ ∧ 𝑞′𝑚 false at time 0.
Suppose there exist 𝑟𝑖,𝑗 and 𝑟𝑖′,𝑗′ such that 𝑓𝑖′(𝑗′) −

(︀
𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗)

)︀
> tdp(𝑞′𝑚) and

(︀
𝑓𝑖(𝑗) +

tdp(𝑟𝑖,𝑗), 𝑓𝑖′(𝑗
′)
)︀
∩ 𝑅𝑘,𝑙 = ∅, for all 𝑘 ∈ [1, 𝑛] and 𝑙 ∈ [1, 𝑛𝑖]. Then we remove from the segment

𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗)+1 . . .𝒟𝑓𝑖′ (𝑗
′)−1 of 𝒟 all 𝒟𝑙 with 𝑙 > 𝑓𝑖(𝑗)+ tdp(𝑟𝑖,𝑗)+ tdp(𝑞′𝑚)+ 1. By definition, the

removed 𝒟𝑙 are all empty. The resulting shorter instance 𝒟′ is such that 𝒟′ |= 𝑞 and 𝒟′ ̸|= 𝑟′ ∧ 𝑞′𝑚.
Indeed, we have kept all the witnesses that make 𝒟′ |= 𝑞 intact. Now, suppose 𝒟′ |= 𝑟′ ∧ 𝑞′𝑚. We take
the satisfying function 𝑓 ′ for 𝑞′𝑚 in 𝒟′ and modify it to construct 𝑓 ′′ such that 𝑓 ′′(𝑗) = 𝑓 ′(𝑗), for all
𝑗 ∈ [1, 𝑛′

𝑚]with 𝑓 ′(𝑗) ≤ 𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗), and 𝑓 ′′(𝑗) = 𝑓 ′(𝑗)+ℓ, for all 𝑗 with 𝑓 ′(𝑗) ≤ 𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗),
where ℓ is the number of the 𝒟𝑙 that were removed from the segment 𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗)+1 . . .𝒟𝑓𝑖′ (𝑗

′)−1. It
is readily seen that 𝑓 ′′ is a satisfying function for 𝑞′𝑚 in 𝒟, which is a contradiction. Thus, 𝒟′ ̸|= 𝑟′∧𝑞′𝑚.

By performing this operation for all suitable 𝑟𝑖,𝑗 and 𝑟𝑖′,𝑗′ , we obtain a data instance with at most

tdp(𝑟) + 1 +
∑︁

1≤𝑖≤𝑛, 1≤𝑗≤𝑛𝑖

(tdp(𝑟𝑖,𝑗) + 1) +𝑁
∑︁

1≤𝑗≤𝑚′

(tdp(𝑟𝑚′,𝑗) + 1)

time instants, where 𝑁 is the number of 𝑟𝑖,𝑗 in 𝑞 plus 1.
The matching lower bound is shown by reduction of the 3SAT problem to the complement of the

containment problem for 𝒬[○◇]. Suppose we are given a 3CNF 𝜙 = 𝑐1 ∧ · · · ∧ 𝑐𝑛 with clauses 𝑐𝑖
and variables 𝑥1, . . . , 𝑥𝑚 such that no 𝑐𝑖 contains both 𝑥𝑗 and ¬𝑥𝑗 , for any 𝑗. Our aim is to construct
𝒬[○]-queries 𝑟𝑖, for all 𝑖 = 0, . . . , 𝑛, and a 𝒬[○◇]-query 𝑟′ such that

𝜙 is satisfiable iff
⋀︁

0≤𝑖≤𝑛

◇𝑟𝑖 ̸|= ◇𝑟′. (2)

For each 𝑗 = 1, . . . ,𝑚, we take two atoms 𝑋𝑗 and 𝑋̄𝑗 to represent 𝑥𝑗 and ¬𝑥𝑗 , respectively. Given a
literal ℓ𝑗 ∈ {𝑥𝑗 ,¬𝑥𝑗}, set 𝐿ℓ𝑗 = 𝑋𝑗 if ℓ𝑗 = 𝑥𝑗 and 𝐿ℓ𝑗 = 𝑋̄𝑗 if ℓ𝑗 = ¬𝑥𝑗 . We also use two additional
atoms 𝐵 and 𝐸. We require the following conjunctions of atoms, written as sets:

𝛼 = {𝑋1, 𝑋̄1, . . . , 𝑋𝑚, 𝑋̄𝑚},
𝛼𝐵 = 𝛼 ∪ {𝐵},
𝜆ℓ = 𝛼 ∖ {𝐿ℓ}, for a literal ℓ over 𝑥1, . . . , 𝑥𝑚,
𝛽𝑗 = 𝛼 ∖ {𝑋𝑗 , 𝑋̄𝑗}, for 𝑗 = 1, . . . ,𝑚.

Let 𝜎 = {𝑋1, 𝑋̄1, . . . 𝑋𝑚, 𝑋̄𝑚, 𝐵,𝐸}. We define the 𝒬[○]-queries 𝑟𝑖 as words of the form 𝜌0𝜌1𝜌2 . . . 𝜌𝑙
over the alphabet 2𝜎 that represent 𝜌0 ∧ ○

(︀
𝜌1 ∧ ○(𝜌2 ∧ · · · ∧ ○𝜌𝑙)

)︀
. Namely, we set

𝑟0 = {𝐵}∅2𝑚−1𝛼𝛽1 . . . 𝛽𝑚∅2𝑚{𝐸}, and 𝑟𝑖 = 𝛼𝐵𝑟𝑖,1𝑟𝑖,2𝑟𝑖,3{𝐸}, for 𝑖 = 1, . . . , 𝑛,

where the substrings 𝑟𝑖,𝑘, for 𝑘 = 1, 2, 3, of 𝑟𝑖 are defined as follows: if 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 , then

𝑟𝑖,𝑘 = 𝛽1 . . . 𝛽𝑗𝑘−1𝜆ℓ𝑗𝑘
𝛽𝑗𝑘+1 . . . 𝛽𝑚.

Thus, the length of each word 𝑟𝑖, for 𝑖 = 1, . . . ,𝑚, is 3𝑚 + 2, and so the temporal depth of the
corresponding queries 𝑟𝑖 is 3𝑚+ 1. The length of 𝑟0 is 5𝑚+ 2. Finally, we set

𝑟′ = 𝐵 ∧ ○2𝑚◇(𝛼 ∧ ○2𝑚◇𝐸).

Example 2. Consider the 3CNF 𝜙 = 𝑐1 ∧ 𝑐2 with 𝑐1 = 𝑥1 ∨ ¬𝑥2 ∨ 𝑥4, 𝑐2 = 𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4, 𝑛 = 2
and 𝑚 = 4. The words 𝑟0, 𝑟1, 𝑟2 for 𝜙 are illustrated in the picture below, where the numbers indicate
the positions of the respective characters, starting from 1, and ∅ is omitted (remember that, in (2), we
use the queries ◇𝑟𝑖).
𝐵

1 2 3 4 5 6 7 8

𝛼

9

𝛽1

10

𝛽2

11

𝛽3

12

𝛽4

13 14 15 16 17 18 19 20 21

𝐸

22
𝑟0

𝛼𝐵

1

𝜆𝑥1

2

𝛽2

3

𝛽3

4

𝛽4

5

𝛽1

6

𝜆¬𝑥2

7

𝛽3

8

𝛽4

9

𝛽1

10

𝛽2

11

𝛽3

12

𝜆𝑥4

13

𝐸

14
𝑟1

𝛼𝐵

1

𝜆𝑥1

2

𝛽2

3

𝛽3

4

𝛽4

5

𝛽1

6

𝛽2

7

𝜆¬𝑥3

8

𝛽4

9

𝛽1

10

𝛽2

11

𝛽3

12

𝜆¬𝑥4

13

𝐸

14
𝑟2

The query ◇𝑟′ can be depicted as follows, with the dots . . .mimicking the ◇-operators:

.
𝛼

. . .
𝐸𝐵

We now prove equivalence (2) starting with implication (⇒). Suppose a is an assignment satisfying
𝜙. For each clause 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 in 𝜙, fix some 𝑘𝑖 ∈ {1, 2, 3} such that the literal ℓ𝑗𝑘𝑖 is true under
a. Denote by 𝑟𝑖(𝑡) the 𝑡th character in the word 𝑟𝑖 (see Example 2). Define a data instance 𝒟 by taking,
for all 𝐴 ∈ 𝜎 and 𝑡 ≤ 5𝑚+ 2,

𝐴(𝑡) ∈ 𝒟 iff 𝐴 ∈ 𝑟0(𝑡) or 𝐴 ∈ 𝑟𝑖(𝑡− (3− 𝑘𝑖)𝑚), for some 𝑖 ∈ [1, 𝑛].

In other words, 𝒟 can be constructed by first adding to each 𝑟𝑖 with 𝑖 > 0, a prefix of (3− 𝑘𝑖)𝑚-many
∅-characters to make 𝛽1 in 𝑟0 aligned with the first character of the substring 𝑟𝑖,𝑘𝑖 in 𝑟𝑖 and then taking
the union of the characters in the aligned positions of the resulting words and 𝑟0.

Example 3. Consider again the 3CNF 𝜙 from Example 2 and the satisfying assignment a that make 𝑥3
false and all the other variables true. Let 𝑘1 = 3 and 𝑘2 = 2. In this case, the data instance 𝒟 looks as
follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
𝒟

𝑟0 𝐵 𝛼 𝛽1 𝛽2 𝛽3 𝛽4 𝐸
𝑟1 𝛼𝐵 𝜆𝑥1 𝛽2 𝛽3 𝛽4 𝛽1 𝜆¬𝑥2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝜆𝑥4 𝐸
𝑟2 𝛼𝐵 𝜆𝑥1 𝛽2 𝛽3 𝛽4 𝛽1 𝜆¬𝑥3 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝜆¬𝑥4 𝐸

Returning to the proof of (⇒), we see that 𝒟, 1 |= 𝑟0 and 𝒟, 1+(3−𝑘𝑖)𝑚 |= 𝑟𝑖 follow immediately
from the definitions, which gives 𝒟 |=

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖. It also follows from the definitions that 𝒟 |= ◇𝑟′

iff 𝒟, 𝑘 |= 𝛼, for some 𝑘 ∈ [2𝑚+ 2, 3𝑚+ 1]. Thus, 𝒟 |= ◇𝑟′ would imply that 𝒟, 2𝑚+ 1 + 𝑙 |= 𝛼,
for some 𝑙 ∈ [1,𝑚], and so there must exist distinct 𝑖, 𝑗 ∈ [1, 𝑛] such that 𝑟𝑖,𝑘𝑖 and 𝑟𝑗,𝑘𝑗 have 𝜆𝑥𝑙

and
𝜆¬𝑥𝑙

at position 𝑙, respectively. But this is impossible as, by the choice of 𝑘𝑖 and 𝑘𝑗 , the assignment a
should make both 𝑥𝑙 and ¬𝑥𝑙 true.
(⇐) Assuming

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖 ̸|= ◇𝑟′, we take a data instance 𝒟 with 𝒟 |=

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖 and 𝒟 ̸|= ◇𝑟′.

Let 𝑡𝑖 be the minimal number such that 𝒟, 𝑡𝑖 |= 𝑟𝑖. Observe that 𝑡𝑖 ≥ 𝑡0 for all 𝑖 ∈ [1, 𝑛], as
otherwise we would have 𝒟 |= ◇𝑟′. For the same reason and because 𝐵 ∈ 𝛼𝐵 , we must have
𝑡𝑖 ≤ 𝑡0 + 2𝑚 (see the picture in Example 2 for an illustration). Moreover, there are only three
possibilities for 𝑡𝑖, namely, 𝑡𝑖 ∈ {𝑡0, 𝑡0 +𝑚, 𝑡0 + 2𝑚}. Indeed, suppose otherwise. Then 𝑚 > 1 and
𝑡𝑖 ∈ [𝑡0, 𝑡0 + 2𝑚] ∖ {𝑡0, 𝑡0 +𝑚, 𝑡0 + 2𝑚}, and so 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝛼, which implies 𝒟 |= ◇𝑟′. It
follows that, for each 𝑖 ∈ [1, 𝑛], we have either 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖,1 or 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖,2 or
𝒟, 𝑡0 + 2𝑚+ 1 |= 𝑟𝑖,3. Let 𝑘𝑖 = 𝑗 be such that 𝒟, 𝑡0 + 2𝑚+ 1 |= 𝑟𝑖,𝑗 (if there are several such 𝑗, we
can take the minimal one).

Consider the assignment a that makes 𝑥𝑙 false if 𝜙 has a clause 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 with ℓ𝑗𝑘𝑖 = ¬𝑥𝑙,
and true otherwise. We show that, for each 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 in 𝜙, the literal ℓ𝑗𝑘𝑖 is true under a.
This is clearly the case if ℓ𝑗𝑘𝑖 = ¬𝑥𝑙. So, suppose ℓ𝑗𝑘𝑖 = 𝑥𝑙. By definition, a makes 𝑥𝑙 true iff there
is no 𝑐𝑖′ = ℓ𝑗′1 ∨ ℓ𝑗′2 ∨ ℓ𝑗′3 with ℓ𝑗′𝑘𝑖′

= ¬𝑥𝑙. Suppose, on the contrary, that such a 𝑐𝑖′ exists. By the
choice of 𝑘𝑖 and 𝑘𝑖′ , it follows that 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖,𝑘𝑖 and 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖′,𝑘𝑖′ . But then
𝒟, 𝑡0 + 2𝑚+ 𝑙 |= 𝛼, and so 𝒟 |= ◇𝑟′, which is a contradiction. ⊣

4. Open Problems

We have shown that the containment problem for the classes 𝒬𝑝[○◇] and 𝒬[◇] of LTL-queries lies in
the complexity class L. It would be of interest to understand if this complexity bound is tight or the
problem is easier, e.g., in NC1. As observed earlier, unlike first-order conjunctive queries but similarly
to XPath-queries and queries with transitive roles, 𝒬[○◇]-query containment is not polytime reducible
to query evaluation (unless P = NP). However, it follows from the proofs above that, for 𝒬𝑝[○◇] and
𝒬[◇], containment is polytime reducible to evaluation, although the reduction is less trivial than in the
first-order case. It is also worth noting that a polysize witness for non-containment exists for all of our
queries, similarly to some classes of XPath/transitive queries [25].

In this paper, we have not considered conjunctive queries with the until-operator U, for which
containment is only known to be in PSpace. Natural restricted fragments of conjunctive path-queries
with U that only allow conjunctions of atoms on the left-hand side of U have been identified in [20, 19];
however, the complexity of containment for those fragments have not been studied yet. For path-U-
queries satisfying the restriction above, the existence of a polysize witness for non-containment was
shown in [19, Theorem 9]. This fact implies a coNP upper bound for containment, but it is not known
whether this bound is tight.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] H. Ono, A. Nakamura, On the size of refutation Kripke models for some linear modal and tense
logics, Studia Logica (1980) 325–333.

[2] A. P. Sistla, E. M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (1985)
733–749. URL: https://doi.org/10.1145/3828.3837. doi:10.1145/3828.3837.

[3] C.-C. Chen, I.-P. Lin, The computational complexity of the satisfiability of modal Horn clauses for
modal propositional logics, Theor. Comp. Sci. 129 (1994) 95–121.

[4] S. Demri, P. Schnoebelen, The complexity of propositional linear temporal logics in simple cases,
Information and Computation 174 (2002) 84–103. URL: https://www.sciencedirect.com/science/
article/pii/S0890540101930949. doi:https://doi.org/10.1006/inco.2001.3094.

[5] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, H. Vollmer, The complexity of generalized
satisfiability for linear temporal logic, in: H. Seidl (Ed.), Foundations of Software Science and
Computational Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 48–62.

[6] C. Dixon, M. Fisher, B. Konev, Tractable temporal reasoning, in: Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, IJCAI’07, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007, p. 318–323.

[7] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, The complexity of clausal frag-
ments of LTL, in: K. L. McMillan, A. Middeldorp, A. Voronkov (Eds.), Logic for Program-
ming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stel-
lenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in

Computer Science, Springer, 2013, pp. 35–52. URL: https://doi.org/10.1007/978-3-642-45221-5_3.
doi:10.1007/978-3-642-45221-5_3.

[8] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, A cookbook for temporal conceptual
data modelling with description logics, ACM Trans. Comput. Log. 15 (2014) 25:1–25:50. URL:
https://doi.org/10.1145/2629565. doi:10.1145/2629565.

[9] V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical reasoner, J.
Artif. Intell. Res. 63 (2018) 557–623. URL: https://doi.org/10.1613/jair.1.11256. doi:10.1613/JAIR.
1.11256.

[10] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-order
rewritability of ontology-mediated queries in linear temporal logic, Artif. Intell. 299 (2021) 103536.
URL: https://doi.org/10.1016/j.artint.2021.103536. doi:10.1016/j.artint.2021.103536.

[11] J. Chomicki, D. Toman, M. H. Böhlen, Querying ATSQL databases with temporal logic, ACM
Trans. Database Syst. 26 (2001) 145–178. URL: https://doi.org/10.1145/383891.383892. doi:10.1145/
383891.383892.

[12] J. Chomicki, D. Toman, Temporal logic in database query languages, in: L. Liu, M. T. Özsu (Eds.),
Encyclopedia of Database Systems, Second Edition, Springer, 2018. URL: https://doi.org/10.1007/
978-1-4614-8265-9_402. doi:10.1007/978-1-4614-8265-9_402.

https://doi.org/10.1145/3828.3837
http://dx.doi.org/10.1145/3828.3837
https://www.sciencedirect.com/science/article/pii/S0890540101930949
https://www.sciencedirect.com/science/article/pii/S0890540101930949
http://dx.doi.org/https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1007/978-3-642-45221-5_3
http://dx.doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1145/2629565
http://dx.doi.org/10.1145/2629565
https://doi.org/10.1613/jair.1.11256
http://dx.doi.org/10.1613/JAIR.1.11256
http://dx.doi.org/10.1613/JAIR.1.11256
https://doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/10.1016/j.artint.2021.103536
https://doi.org/10.1145/383891.383892
http://dx.doi.org/10.1145/383891.383892
http://dx.doi.org/10.1145/383891.383892
https://doi.org/10.1007/978-1-4614-8265-9_402
https://doi.org/10.1007/978-1-4614-8265-9_402
http://dx.doi.org/10.1007/978-1-4614-8265-9_402

[13] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Ontology-
mediated query answering over temporal data: A survey (invited talk), in: S. Schewe, T. Schneider,
J. Wijsen (Eds.), 24th International Symposium on Temporal Representation and Reasoning, TIME
2017, October 16-18, 2017, Mons, Belgium, volume 90 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017, pp. 1:1–1:37. URL: https://doi.org/10.4230/LIPIcs.TIME.2017.1. doi:10.4230/
LIPIcs.TIME.2017.1.

[14] S. Brandt, E. G. Kalayci, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Querying log data with metric
temporal logic, J. Artif. Intell. Res. 62 (2018) 829–877. URL: https://doi.org/10.1613/jair.1.11229.
doi:10.1613/jair.1.11229.

[15] D. Wang, P. Hu, P. A. Walega, B. C. Grau, Meteor: Practical reasoning in datalog with metric
temporal operators, in: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February
22 - March 1, 2022, AAAI Press, 2022, pp. 5906–5913. URL: https://doi.org/10.1609/aaai.v36i5.20535.
doi:10.1609/AAAI.V36I5.20535.

[16] A. Kurucz, V. Ryzhikov, Y. Savateev, M. Zakharyaschev, Deciding fo-rewritability of regular
languages and ontology-mediated queries in linear temporal logic, J. Artif. Intell. Res. 76 (2023)
645–703. URL: https://doi.org/10.1613/jair.1.14061. doi:10.1613/JAIR.1.14061.

[17] D. Neider, R. Roy, What Is Formal Verification Without Specifications? A Survey on Mining LTL
Specifications, Springer Nature Switzerland, Cham, 2025, pp. 109–125. URL: https://doi.org/10.
1007/978-3-031-75778-5_6. doi:10.1007/978-3-031-75778-5_6.

[18] R. Raha, R. Roy, N. Fijalkow, D. Neider, Scalable anytime algorithms for learning fragments of
linear temporal logic, in: D. Fisman, G. Rosu (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, 2022, pp. 263–280.

[19] M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Unique charac-
terisability and learnability of temporal instance queries, in: G. Kern-Isberner, G. Lakemeyer,
T. Meyer (Eds.), Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2022, Haifa, Israel. July 31 - August 5, 2022, 2022. URL:
https://proceedings.kr.org/2022/17/.

[20] M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Reverse engineering of
temporal queries mediated by LTL ontologies, in: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
ijcai.org, 2023, pp. 3230–3238. URL: https://doi.org/10.24963/ijcai.2023/360. doi:10.24963/IJCAI.
2023/360.

[21] J. C. Jung, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Extremal separation problems for temporal
instance queries, in: Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, ijcai.org, 2024, pp. 3448–3456. URL:
https://www.ijcai.org/proceedings/2024/382.

[22] C. Fraser, Consistent subsequences and supersequences, Theor. Comput. Sci. 165 (1996) 233–246.
URL: https://doi.org/10.1016/0304-3975(95)00138-7. doi:10.1016/0304-3975(95)00138-7.

[23] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on strings, Cambridge University Press, 2007.
[24] A. Chandra, P. Merlin, Optimal implementation of conjunctive queries in relational data bases,

in: Conference Record of the Ninth Annual ACM Symposium on Theory of Computing, 2-4 May
1977, Boulder, Colorado, USA, ACM, 1977, pp. 77–90.

[25] G. Miklau, D. Suciu, Containment and equivalence for an xpath fragment, in: L. Popa, S. Abiteboul,
P. G. Kolaitis (Eds.), Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, ACM, 2002, pp. 65–76.
URL: https://doi.org/10.1145/543613.543623. doi:10.1145/543613.543623.

[26] H. Björklund, W. Martens, T. Schwentick, Conjunctive query containment over trees, J. Comput.
Syst. Sci. 77 (2011) 450–472. URL: https://doi.org/10.1016/j.jcss.2010.04.005. doi:10.1016/J.JCSS.
2010.04.005.

[27] C. Haase, C. Lutz, Complexity of subsumption in the el family of description logics: Acyclic and

https://doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1613/jair.1.11229
http://dx.doi.org/10.1613/jair.1.11229
https://doi.org/10.1609/aaai.v36i5.20535
http://dx.doi.org/10.1609/AAAI.V36I5.20535
https://doi.org/10.1613/jair.1.14061
http://dx.doi.org/10.1613/JAIR.1.14061
https://doi.org/10.1007/978-3-031-75778-5_6
https://doi.org/10.1007/978-3-031-75778-5_6
http://dx.doi.org/10.1007/978-3-031-75778-5_6
https://proceedings.kr.org/2022/17/
https://doi.org/10.24963/ijcai.2023/360
http://dx.doi.org/10.24963/IJCAI.2023/360
http://dx.doi.org/10.24963/IJCAI.2023/360
https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1016/0304-3975(95)00138-7
http://dx.doi.org/10.1016/0304-3975(95)00138-7
https://doi.org/10.1145/543613.543623
http://dx.doi.org/10.1145/543613.543623
https://doi.org/10.1016/j.jcss.2010.04.005
http://dx.doi.org/10.1016/J.JCSS.2010.04.005
http://dx.doi.org/10.1016/J.JCSS.2010.04.005

cyclic TBoxes, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M. Avouris (Eds.), ECAI 2008 -
18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings,
volume 178 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2008, pp. 25–29. URL:
https://doi.org/10.3233/978-1-58603-891-5-25. doi:10.3233/978-1-58603-891-5-25.

[28] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and
Applications, volume 148 of Studies in Logic, Elsevier, 2003.

[29] S. Demri, V. Goranko, M. Lange, Temporal Logics in Computer Science, Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2016.

https://doi.org/10.3233/978-1-58603-891-5-25
http://dx.doi.org/10.3233/978-1-58603-891-5-25

	1 Introduction
	2 Temporal Data and Queries
	3 Complexity of Query Containment
	4 Open Problems

