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Abstract
An abductive difference between two quantified ABoxes consists of the knowledge that needs to be added to
the first to make the second entailed. We describe a generic construction of such differences and show that all
minimal abductive differences can be computed in exponential time. Moreover, we present first results when
ontologies are taken into account.

1. Introduction

Abduction in logic aims at explaining observations by computing the missing parts that need to be
added to the knowledge base in order to make the observation entailed [1]. This problem has received
considerable attention, specifically for concept abduction [2, 3], ABox abduction [4–10], TBox abduction
[11, 12], general purpose methods [13–17], and other aspects [18, 19].

We consider the problem of abduction with quantified ABoxes (qABoxes), which are ABoxes with
existentially quantified variables. These variables stand for “anonymous individuals” that do not have
specific names and are only described by their properties and relations to other individuals. More
specifically, we assume a knowledge base consisting of a qABox and an ontology, and further an
observation in form of another qABox — the goal is to compute an explanation, which is a qABox that
needs to be added to the knowledge base to make the observation entailed. Of particular interest are
those explanations that contain only a minimal amount of additional knowledge, which we call minimal.

For example, the qABox ∃∅.{tom : Cat, jerry :Mouse} has no variables and expresses that Tom is a
cat and Jerry is a mouse. Further consider as observation the qABox ∃{𝑥}.{tom : Cat, (tom, 𝑥) : chases,
𝑥 :Mouse}, which has one variable 𝑥 and expresses that Tom is a cat that chases a mouse. Without an
ontology, there are two minimal explanations. Since it is already known in the first qABox that Tom is a
cat, this part of the observation must not be included in any minimal explanation. Moreover, it could be
that Tom is specifically chasing Jerry, which is already known to be a mouse — the according minimal
explanation is ∃∅.{(tom, jerry) : chases}. The other minimal explanation is ∃{𝑥}.{(tom, 𝑥) : chases,
𝑥 :Mouse}. When we additionally take the ℰℒ ontology {Cat⊑ ∃chases.Mouse} into account, which
expresses that every cat chases some mouse, then the only minimal explanation is the empty qABox.

Without ontology, there might be exponentially many minimal explanations and, by means of a
generic construction, we show that all minimal explanations can be computed in exponential time.
With an ontology, there might exist infinitely many minimal explanations, even in ℰℒ.

2. Preliminaries

The Description Logic ℰℒ. We recall the DL ℰℒ, on which all other DLs in the ℰℒ family are based.
In order to structurally describe the domain of interest, we fix a signature consisting of individuals,
atomic concepts, and roles. Concepts are built by 𝐶 ::= ⊤ | 𝐴 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 where 𝐴 ranges over all
atomic concepts and 𝑟 over all roles. We call ⊤ the top concept, 𝐶 ⊓ 𝐷 the conjunction of 𝐶 and 𝐷,
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and ∃𝑟.𝐶 the existential requirement on 𝑟 with intent 𝐶 . An ontology 𝒪 is a finite set of concept
inclusions (CIs) 𝐶 ⊑𝐷 involving concepts 𝐶,𝐷. An assertion box (ABox) 𝒜 is a finite set of concept
assertions (CAs) 𝑎 : 𝐶 and role assertions (RAs) (𝑎, 𝑏) : 𝑟 involving individuals 𝑎, 𝑏, concepts 𝐶 , and
roles 𝑟. A knowledge base (KB) consists of an ABox and an ontology.
ℰℒ has a model-based semantics. An interpretation ℐ consists of a non-empty set Dom(ℐ), called

domain, and an interpretation function ·ℐ that sends every individual 𝑎 to an element 𝑎ℐ of the domain,
every atomic concept 𝐴 to a subset 𝐴ℐ of the domain, and every role 𝑟 to a binary relation 𝑟ℐ on
the domain. The interpretation function is extended to all concepts as follows: ⊤ℐ := Dom(ℐ),
(𝐶 ⊓ 𝐷)ℐ := 𝐶ℐ ∩ 𝐷ℐ , and (∃𝑟.𝐶)ℐ := { 𝑥 | there is 𝑦 such that (𝑥, 𝑦) ∈ 𝑟ℐ and 𝑦 ∈ 𝐶ℐ }. An
interpretation ℐ satisfies (or is a model of) a CI 𝐶 ⊑𝐷 if 𝐶ℐ ⊆ 𝐷ℐ , a CA 𝑎 : 𝐶 if 𝑎ℐ ∈ 𝐶ℐ , and a RA
(𝑎, 𝑏) : 𝑟 if (𝑎ℐ , 𝑏ℐ) ∈ 𝑟ℐ . Furthermore, ℐ is a model of an ontology 𝒪 if ℐ satisfies all CIs in 𝒪, a model
of an ABox 𝒜 if ℐ satisfies all CAs and RAs in 𝒜, and a model of a KB 𝒜∪𝒪 if ℐ is a model of 𝒜 and 𝒪.

If 𝛼 and 𝛽 are any of the syntatic objects defined above, then we say that 𝛼 entails 𝛽, written 𝛼 |= 𝛽,
if every model of 𝛼 is a model of 𝛽. We often write 𝒜 |=𝒪 𝛽 instead of 𝒜 ∪𝒪 |= 𝛽, and then we say
that 𝒜 entails 𝛽 w.r.t. 𝒪. Furthermore, we say that a concept 𝐶 is subsumed by a concept 𝐷 w.r.t. an
ontology 𝒪, written 𝐶 ⊑𝒪 𝐷, if 𝒪 |= 𝐶 ⊑ 𝐷. We further say that 𝛼 and 𝛽 are equivalent, written
𝛼 ≡ 𝛽, if they entail each other. Entailment, equivalence, and subsumption in ℰℒ can be decided in
polynomial time [20].

Quantified ABoxes. A quantified ABox (qABox) ∃𝑋.𝒜 consists of a finite set 𝑋 of variables and
an ABox 𝒜, called matrix, in which variables may be used in place of individuals. Since the variables
are existentially quantified, they are “anonymous individuals” whose names are not exposed. Each
variable in 𝑋 and each individual (in the signature, but not necessarily occurring in the matrix) is
an object of ∃𝑋.𝒜, and Obj(∃𝑋.𝒜) is the set of all objects of ∃𝑋.𝒜. A KB can now also consist
of a qABox and an ontology. A qABox is in normal form if only atomic concepts are used in the
assertions. Each qABox can be transformed into normal form by representing complex concepts by
the use of variables — e.g. ∃∅.{𝑎 : (𝐴 ⊓ ∃𝑟.𝐵), 𝑏 : ⊤} has the normal form ∃{𝑥}.{𝑎 : 𝐴, (𝑎, 𝑥) : 𝑟,
𝑥 :𝐵}. Throughout this paper we assume all qABoxes are in normal form. The union of two qABoxes
is ∃𝑋.𝒜 ∪ ∃𝑌.ℬ := ∃(𝑋 ∪ 𝑌 ).(𝒜 ∪ ℬ) where w.l.o.g. 𝑋 ∩ 𝑌 = ∅ (otherwise variables need to
be renamed). Over signatures consisting of constants, unary predicates, and binary predicates only,
relational structures with constants, databases with nulls, primitive-positive (pp) formulas in first-order
logic, conjunctive queries (CQs), and qABoxes are syntatic variants of each other, i.e. semantically the
same, but used for different purposes or in different fields of research.

Consider an interpretation ℐ and a qABox ∃𝑋.𝒜. A variable assignment 𝒵 sends each variable 𝑥
in 𝑋 to an element 𝑥𝒵 of the domain of ℐ . The extended interpretation ℐ[𝒵] coincides with ℐ but its
interpretation function ·ℐ[𝒵] additionally maps every variable according to 𝒵 . We say that ℐ is a model
of ∃𝑋.𝒜 if there is a variable assignment 𝒵 such that ℐ[𝒵] is a model of 𝒜.

Entailment between two qABoxes is an NP-complete problem, but whether a qABox entails an ABox
can be decided in polynomial time. Without an ontology, ∃𝑌.ℬ |= ∃𝑋.𝒜 iff. there is a homomorphism
from ∃𝑋.𝒜 to ∃𝑌.ℬ, which is a function ℎ that sends each individual 𝑎 to itself and each variable
in 𝑋 to an object of ∃𝑌.ℬ such that applying ℎ within any assertion in 𝒜 yields an assertion in ℬ.
More formally, a homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ is a mapping ℎ : Obj(∃𝑋.𝒜) → Obj(∃𝑌.ℬ)
that fulfills the following conditions:

(H1) ℎ(𝑎) = 𝑎 for each individual 𝑎,
(H2) if 𝑢 :𝐴 ∈ 𝒜, then ℎ(𝑢) :𝐴 ∈ ℬ,
(H3) if (𝑢, 𝑣) : 𝑟 ∈ 𝒜, then (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ∈ ℬ.

With an ontology 𝒪, entailment can be decided by first saturating ∃𝑌.ℬ by means of 𝒪 (i.e. compute
the chase or the universal model) and then checking for a homomorphism from ∃𝑋.𝒜 to the saturation
[21, 22].



3. Explaining Observations by Abductive Differences

We start with a general definition of abductive differences for qABoxes.

Definition 1. Consider an observation in form of a qABox ∃𝑋.𝒜 and further consider a KB consisting
of a qABox ∃𝑌.ℬ and an ontology 𝒪. An abductive difference (or explanation) of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ
and 𝒪 is a qABox ∃𝑍.𝒞 such that ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 ∃𝑋.𝒜. Moreover, ∃𝑍.𝒞 is minimal if there is no
other abductive difference ∃𝑍 ′.𝒞′ with ∃𝑍.𝒞 |=𝒪 ∃𝑍 ′.𝒞′ but ∃𝑍 ′.𝒞′ ̸|=𝒪 ∃𝑍.𝒞.

In the above definition the ontology 𝒪 can be any finite set of first-order formulas without free
variables (i.e. first-order sentences). If the given KB consisting of ∃𝑌.ℬ and 𝒪 is inconsistent (i.e. has no
model and thus entails everything), then the empty qABox is the only minimal explanation. Non-trivial
minimal explanations can only be obtained when the observation does not already follow from the
KB, in which case the KB must be consistent. Obviously, ∃𝑋.𝒜 is always an abductive difference
but in general not a minimal one since parts of ∃𝑋.𝒜 might already occur in ∃𝑌.ℬ, as the following
example shows.

Example 2. W.r.t. the KB ∃∅.{tom : Cat, jerry : Mouse}, the observation ∃{𝑥}.{tom : Cat,
(tom, 𝑥) : chases, 𝑥 : Mouse} has two minimal explanations: ∃{𝑥}.{(tom, 𝑥) : chases, 𝑥 : Mouse}
and ∃∅.{(tom, jerry) : chases}.

The next example illustrates that, without an ontology, there can be at least exponentially many
minimal explanations. A matching upper bound will be proven in Section 4, viz. that, up to equivalence,
the set of all minimal explanations can be computed in exponential time.

Example 3. For each number 𝑛 ≥ 1, consider the observation ∃{𝑥1, . . . , 𝑥𝑛}.{𝑥1 : 𝐶1, . . . , 𝑥𝑛 : 𝐶𝑛,
(𝑥1, 𝑥2) : 𝑟, (𝑥2, 𝑥3) : 𝑟, . . . , (𝑥𝑛−1, 𝑥𝑛) : 𝑟} and the KB ∃∅.{(𝑎, 𝑎) : 𝑟, (𝑏, 𝑏) : 𝑟, (𝑎, 𝑏) : 𝑟, (𝑏, 𝑎) : 𝑟}.
Then, in order to obtain a minimal explanation, we can choose between 𝑎 : 𝐶𝑖 and 𝑏 : 𝐶𝑖 for each
𝑖 ∈ {1, . . . , 𝑛}, i.e. every qABox ∃∅.{𝑧1 : 𝐶1, . . . , 𝑧𝑛 : 𝐶𝑛} with 𝑧𝑖 ∈ {𝑎, 𝑏} is a minimal explanation.
Thus there are at least 2𝑛 minimal explanations. (There might be further minimal explanations not
considered here.)

The third example below shows that an ontology can enforce infinitely many non-equivalent minimal
explanations.

Example 4. The observation {alice : Human} has infinitely many minimal explanations w.r.t. the
KB consisting of the ℰℒ ABox {bob : Human} and the ℰℒ ontology {∃hasParent.Human ⊑ Human}.
For each number 𝑛 > 0, the qABox ∃{𝑥1, . . . , 𝑥𝑛}.{(alice, 𝑥1) : hasParent, (𝑥1, 𝑥2) : hasParent, · · · ,
(𝑥𝑛−1, 𝑥𝑛) : hasParent, (𝑥𝑛, bob) : hasParent} is a minimal abductive difference. Also the observation
itself is a minimal explanation. At the same time this example shows that, in general, the size of minimal
abductive differences is not bounded.

4. The Case without Ontology

We first consider the case without ontology and show how the set of all minimal explanations can be
computed in exponential time, up to equivalence. This case is relevant when no ontology is used in
the application, but also serves as a foundation for the general case (see Lemma 12 for details). Recall
from Example 2 that the computation of minimal explanations must take into account the parts of the
observation that are already entailed by the KB. These parts can be pinpointed by means of so-called
partial homomorphisms.

In order to understand partial homomorphisms, consider an observation ∃𝑋.𝒜, a KB ∃𝑌.ℬ, and an
explanation ∃𝑍.𝒞. By Definition 1 the observation is entailed by the union of the KB and the explanation,
and so there is a homomorphism ℎ from ∃𝑋.𝒜 to ∃𝑌.ℬ∪∃𝑍.𝒞. When we now restrict ℎ to all objects
that are mapped to objects of the KB, i.e. we consider the partial function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑌.ℬ)



where 𝑝(𝑢) := ℎ(𝑢) if ℎ(𝑢) ∈ Obj(∃𝑌.ℬ) and 𝑝(𝑢) is undefined otherwise, then this restriction 𝑝
pinpoints the part of the observation that is already known in the KB. Since to construct the union of
the KB and the explanation their variable sets 𝑌 and 𝑍 are made disjoint, assertions in 𝒜 involving
objects mapped to variables in 𝑌 must be present in ℬ (since these variables occur only in ℬ), but those
assertions in 𝒜 involving objects mapped to individuals can be in ℬ or 𝒞 (since individuals can occur
in ℬ as well as 𝒞). Thus, the partial homomorphism 𝑝 is only required to preserve assertions in 𝒜
involving an object that 𝑝 sends into 𝑌 , see the precise definition below.

Definition 5. A partial homomorphism from a qABox ∃𝑋.𝒜 to another qABox ∃𝑌.ℬ is a partial
function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑌.ℬ) that satisfies the following:

(PH1) 𝑝(𝑎) = 𝑎 for each individual 𝑎,
(PH2) if 𝑢 :𝐴 ∈ 𝒜 such that 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 ,1 then 𝑝(𝑢) :𝐴 ∈ ℬ,2
(PH3) if (𝑢, 𝑣) : 𝑟 ∈ 𝒜 s.t. 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑣 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ,
(PH4) if (𝑢, 𝑣) : 𝑟 ∈ 𝒜 s.t. 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 , then 𝑢 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.

We say that 𝑝 is trivial if Dom(𝑝) ∩𝑋 = ∅.

On the other hand, the remaining part of the observation, which is mapped by the homomorphism ℎ
to the explanation, is the unknown part. This means that we can take the partial homomorphism and
extend it to a homomorphism to the union of the KB and the explanation. Motivated by this, we will next
develop a canonical construction of explanations. To this end, we exploit the partial homomorphism 𝑝
to define a so-called 𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ (see Definition 6), which is specifically defined so that
𝑝 can be extended to a homomorphism from the observation to the union of the KB and this 𝑝-difference.
It then follows that this 𝑝-difference is an explanation as well (see Lemma 7). This construction is
canonical in the sense that the 𝑝-difference is entailed by the initially considered explanation (see
Lemma 8).

Definition 6. Let 𝑝 be a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ, where w.l.o.g. 𝑋 ∩ 𝑌 = ∅. The
𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ is the qABox with variable set 𝑋 ∖ Dom(𝑝) and matrix

{ 𝑝(𝑢) :𝐴 | 𝑢 :𝐴 ∈ 𝒜, 𝑢 ∈ Dom(𝑝), and 𝑝(𝑢) :𝐴 ̸∈ ℬ }3

∪ { (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 | (𝑢, 𝑣) : 𝑟 ∈ 𝒜, 𝑢, 𝑣 ∈ Dom(𝑝), and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ̸∈ ℬ },

where the partial function 𝑝 : Obj(∃𝑋.𝒜) ↦→ Obj(∃𝑋.𝒜) is defined by

• 𝑝(𝑥) := 𝑥 for each 𝑥 ∈ 𝑋 ∖ Dom(𝑝),
• 𝑝(𝑢) := 𝑝(𝑢) for each 𝑢 ∈ Dom(𝑝) such that 𝑝(𝑢) an individual,
• 𝑝(𝑢) is undefined for each 𝑢 ∈ Dom(𝑝) such that 𝑝(𝑢) is a variable (in 𝑌 ).

The 𝑝-union ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 is ∃𝑌.ℬ ∪ (∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ).

Simply put, the 𝑝-difference consists of those assertions in the observation that are not already
present in the KB. To account for objects 𝑢 mapped to individuals by the partial homomorphism 𝑝, each
occurrence of such an object 𝑢 must be replaced by the respective individual 𝑝(𝑢), but the remaining
variables occurring in these assertions need not be renamed — this is achieved by means of the mapping
𝑝. In particular, we have 𝑢 ∈ Dom(𝑝) iff. 𝑢 ̸∈ Dom(𝑝) or 𝑝(𝑢) ̸∈ 𝑌 , the union of Dom(𝑝) and Dom(𝑝)
equals Obj(∃𝑋.𝒜), and the intersection of Dom(𝑝) and Dom(𝑝) consists of all objects 𝑢 such that 𝑝(𝑢)
is an individual, but for these 𝑝 and 𝑝 coincide. We will furthermore see in Lemma 7 below that extending
𝑝 by 𝑝 yields a homomorphism from the observation to the union of the KB and the 𝑝-difference.

Obviously, the size of the 𝑝-difference is bounded by the size of the observation since every assertion
in the former is obtained from an assertion in the latter. It follows that each 𝑝-difference has polynomial
size. In the case where 𝑝 is trivial, we have ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ = ∃𝑋.(𝒜 ∖ ℬ) and thus ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 =
∃𝑌.ℬ ∪ ∃𝑋.𝒜, i.e. the set-theoretic union coincides with the 𝑝-union.
1Note that then 𝑢 ∈ 𝑋 .
2We denote the domain of 𝑝 by Dom(𝑝), which is the set of all elements for which 𝑝 is defined.
3If 𝑝(𝑢) is no individual, then 𝑝(𝑢) :𝐴 cannot be in ℬ anyway since 𝑋 and 𝑌 are disjoint.



Lemma 7. For each partial homomorphism 𝑝 from ∃𝑋.𝒜 to ∃𝑌.ℬ, the 𝑝-difference ∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ is
an abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ.

Proof. We need to verify that the 𝑝-union entails ∃𝑋.𝒜. To this end, we extend 𝑝 to a (non-partial)
homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ∪𝑝∃𝑋.𝒜. SinceDom(𝑝)∪Dom(𝑝) = Obj(∃𝑋.𝒜) and 𝑝(𝑢) = 𝑝(𝑢)
for each 𝑢 ∈ Dom(𝑝)∩Dom(𝑝), the union 𝑝∪𝑝 is a function from Obj(∃𝑋.𝒜) to Obj(∃𝑌.ℬ∪𝑝 ∃𝑋.𝒜).
It remains to show that 𝑝 ∪ 𝑝 is a homomorphism.

(H1) For each individual 𝑎, we have 𝑝(𝑎) = 𝑎 by (PH1). Moreover, Definition 6 yields 𝑝(𝑎) = 𝑝(𝑎) and
thus (𝑝 ∪ 𝑝)(𝑎) = 𝑎.

(H2) Let 𝑢 :𝐴 ∈ 𝒜.
• If𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑝(𝑢):𝐴 ∈ ℬ by (PH2) and thus the matrix of ∃𝑌.ℬ∪𝑝∃𝑋.𝒜

contains (𝑝 ∪ 𝑝)(𝑢) :𝐴.
• If 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ̸∈ 𝑌 , then 𝑝(𝑢) is an individual and thus equals 𝑝(𝑢). According to

the definition of the 𝑝-difference, 𝑝(𝑢) :𝐴 is either in ℬ or in the matrix of the 𝑝-difference, and
thus contained in the matrix of the 𝑝-union.

• If 𝑢 ̸∈ Dom(𝑝), then 𝑢 cannot be an individual and thus 𝑢 ∈ 𝑋 . It follows that 𝑢 ∈ Dom(𝑝)
and 𝑝(𝑢) = 𝑢. The definition of the 𝑝-difference ensures that the matrix of the 𝑝-union contains
𝑝(𝑢) :𝐴.

(H3) Similar for (𝑢, 𝑣) : 𝑟 ∈ 𝒜.
• If 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 , then 𝑣 ∈ Dom(𝑝) and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ by (PH3) and thus

the matrix of ∃𝑌.ℬ ∪𝑝 ∃𝑋.𝒜 contains ((𝑝 ∪ 𝑝)(𝑢), (𝑝 ∪ 𝑝)(𝑣)) : 𝑟.
• Analogously for 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 by (PH4).
• If 𝑢, 𝑣 ∈ Dom(𝑝) and 𝑝(𝑢), 𝑝(𝑣) ̸∈ 𝑌 , then 𝑝(𝑢) and 𝑝(𝑣) are individuals and thus equal to

𝑝(𝑢) and, respectively, 𝑝(𝑣). According to the definition of the 𝑝-difference, (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 is
either in ℬ or in the matrix of the 𝑝-difference, and thus contained in the matrix of the 𝑝-union.

• If 𝑢, 𝑣 ̸∈ Dom(𝑝), then 𝑢, 𝑣 cannot be individuals and thus 𝑢, 𝑣 ∈ 𝑋 . It follows that
𝑢, 𝑣 ∈ Dom(𝑝) where 𝑝(𝑢) = 𝑢 and 𝑝(𝑣) = 𝑣. The definition of the 𝑝-difference ensures that the
matrix of the 𝑝-union contains (𝑝(𝑢), 𝑝(𝑣)) : 𝑟.

• Assume 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ̸∈ 𝑌 , i.e. 𝑝(𝑢) is an individual. Further let 𝑣 ̸∈ Dom(𝑝), i.e. 𝑣
cannot be an individual and thus 𝑣 ∈ 𝑋 . It follows that 𝑢, 𝑣 ∈ Dom(𝑝) where 𝑝(𝑢) = 𝑝(𝑢) and
𝑝(𝑣) = 𝑣. Since 𝑣 ∈ 𝑋 and 𝑋 ∩ 𝑌 = ∅, the matrix ℬ cannot contain (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 and so this
assertion is contained in the matrix of the 𝑝-difference, and therefore also in the matrix of the
𝑝-union.

• The remaining case with 𝑢 ̸∈ Dom(𝑝), 𝑣 ∈ Dom(𝑝), and 𝑝(𝑣) ̸∈ 𝑌 is analogous.

Lemma 8. Every abductive difference entails a 𝑝-difference.

Proof. Consider an abductive difference ∃𝑍.𝒞, i.e. ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= ∃𝑋.𝒜 and so there is a homo-
morphism ℎ from ∃𝑋.𝒜 to ∃𝑌.ℬ ∪ ∃𝑍.𝒞. W.l.o.g. let the variable sets 𝑋,𝑌, 𝑍 be pairwise disjoint.
First, we obtain a partial homomorphism 𝑝 by restricting ℎ to all objects of ∃𝑋.𝒜 mapped to some
object of ∃𝑌.ℬ, i.e. we verify that the partial function 𝑝 with 𝑝(𝑢) := ℎ(𝑢) whenever ℎ(𝑢) ∈ Obj(∃𝑌.ℬ)
is a partial homomorphism.

(PH1) Since each individual 𝑎 is an object of ∃𝑌.ℬ, we have 𝑝(𝑎) = ℎ(𝑎) = 𝑎.

(PH2) Let 𝑢 : 𝐴 ∈ 𝒜 with 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . Since 𝑝(𝑢) = ℎ(𝑢), ℎ(𝑢) : 𝐴 ∈ ℬ ∪ 𝒞, and
𝑌 ∩ 𝑍 = ∅, we infer that 𝑝(𝑢) :𝐴 ∈ ℬ.

(PH3) Assume (𝑢, 𝑣):𝑟 ∈ 𝒜 with 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . For 𝑝(𝑢) = ℎ(𝑢), (ℎ(𝑢), ℎ(𝑣)):𝑟 ∈ ℬ∪𝒞,
and 𝑌 ∩𝑍 = ∅, it follows that ℎ(𝑣) is an object of ∃𝑌.ℬ and (𝑝(𝑢), ℎ(𝑣)):𝑟 ∈ ℬ. Thus 𝑣 ∈ Dom(𝑝)
where 𝑝(𝑣) = ℎ(𝑣), and (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.



(PH4) Consider (𝑢, 𝑣) : 𝑟 ∈ 𝒜 with 𝑣 ∈ Dom(𝑝) and 𝑝(𝑣) ∈ 𝑌 . Similarly as in the previous case we
infer that ℎ(𝑢) is an object of ∃𝑌.ℬ and (ℎ(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ, and further that 𝑢 ∈ Dom(𝑝) where
𝑝(𝑢) = ℎ(𝑢), hence (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.

Next, we show that there is a homomorphism from the 𝑝-difference to ∃𝑍.𝒞. We already know that ℎ
is a homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ ∪ ∃𝑍.𝒞, and further that the 𝑝-difference is obtained from a
sub-qABox of ∃𝑋.𝒜 by replacing, for every object 𝑢 with 𝑝(𝑢) an individual, each occurrence of 𝑢 by
𝑝(𝑢).

This replacement is formally done by the mapping 𝑝, i.e. the objects in the 𝑝-difference have the
form 𝑝(𝑢) as per Definition 6. We infer that ℎ(𝑝(𝑥)) = ℎ(𝑥) for each variable 𝑥 ∈ 𝑋 ∖ Dom(𝑝) and
ℎ(𝑝(𝑢)) = ℎ(𝑝(𝑢)) = 𝑝(𝑢) = ℎ(𝑢) for each 𝑢 ∈ Dom(𝑝) with 𝑝(𝑢) an individual. Thus, if an assertion
𝑝(𝑢) : 𝐴 is in the 𝑝-difference, then 𝑢 : 𝐴 is in 𝒜, and thus ℎ(𝑢) : 𝐴 is in ℬ ∪ 𝒞, and similarly for the
other assertions (𝑝(𝑢), 𝑝(𝑣)) : 𝑟. It follows that the restriction of ℎ to the objects of the 𝑝-difference is a
homomorphism from the 𝑝-difference to ∃𝑌.ℬ ∪ ∃𝑍.𝒞.

It remains to show that this restriction of ℎ is already a homomorphism to ∃𝑍.𝒞. For each variable
𝑥 ∈ 𝑋 ∖Dom(𝑝), we have ℎ(𝑝(𝑥)) = ℎ(𝑥) (see above) and ℎ(𝑥) ̸∈ Obj(∃𝑌.ℬ) (by definition of 𝑝), and
thus ℎ(𝑥) must be a variable of ∃𝑍.𝒞, i.e. ℎ(𝑥) ∈ 𝑍 . Moreover, for each object 𝑢 ∈ Dom(𝑝) with 𝑝(𝑢)
an individual, we have ℎ(𝑝(𝑢)) = ℎ(𝑝(𝑢)) = 𝑝(𝑢) = 𝑝(𝑢).

(H2) Thus, every assertion 𝑝(𝑢) :𝐴 in the 𝑝-difference is mapped by ℎ to the assertion 𝑝(𝑢) :𝐴, which
must be contained in 𝒞 since ℎ(𝑝(𝑢)) ∈ 𝑍 if 𝑢 ∈ 𝑋 ∖Dom(𝑝), and otherwise Definition 6 ensures
that this assertion is not in ℬ.

(H3) Each assertion (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 in the 𝑝-difference is treated similarly. If 𝑢 or 𝑣 is in 𝑋 ∖ Dom(𝑝),
then ℎ(𝑝(𝑢)) ∈ 𝑍 or, respectively, ℎ(𝑝(𝑣)) ∈ 𝑍 , and thus ℎ must map this assertion to one in 𝒞.
Otherwise, Definition 6 ensures that ℎ does not map this assertion to one in ℬ, hence ℎ must
map it to one in 𝒞.

(H1) Every individual 𝑎 is an object of the 𝑝-difference and we have ℎ(𝑎) = 𝑎 by (H1). Thus also the
considered restriction of ℎ sends 𝑎 to itself.

The important corollary to the previous lemma is that the set of all 𝑝-differences contains all minimal
explanations, up to equivalence.

Proposition 9. Every minimal abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ is equivalent to a 𝑝-difference
∃𝑋.𝒜 ∖𝑝 ∃𝑌.ℬ for some partial homomorphism 𝑝 from ∃𝑋.𝒜 to ∃𝑌.ℬ.

Proof. Let ∃𝑍.𝒞 be a minimal abductive difference. By Lemma 8 there is a partial homomorphism 𝑝
such that its 𝑝-difference is entailed by ∃𝑍.𝒞. Moreover, the 𝑝-difference is also an abductive difference
by Lemma 7. Since ∃𝑍.𝒞 is minimal, it follows that, in the opposite direction, also ∃𝑍.𝒞 is entailed by
the 𝑝-difference. Thus, ∃𝑍.𝒞 is equivalent to the 𝑝-difference.

We can finally formulate our main result regarding the computation of minimal explanations. Exam-
ple 3 yields that the below complexity result cannot be improved in general.

Theorem 10. Consider an observation ∃𝑋.𝒜 and a KB ∃𝑌.ℬ. Up to equivalence, each minimal explana-
tion has polynomial size and the set of all minimal explanations can be computed in exponential time.

Proof. By Proposition 9 every minimal explanation is equivalent to a 𝑝-difference, and each 𝑝-difference
has polynomial size, which yields the first claim. Further recall from Lemma 7 that every 𝑝-difference is
an explanation. Thus, it suffices to compute all minimal 𝑝-differences to obtain, up to equivalence, all
minimal explanations. A procedure that computes them all works as follows.

1. Enumerate all partial functions from Obj(∃𝑋.𝒜) to Obj(∃𝑌.ℬ), which are exponentially many
and each of them has polynomial size.



2. Retain only the partial homomorphisms. To this end, check whether each partial function satisfies
Definition 5, which can be done in polynomial time for a single function.

3. Compute all 𝑝-differences from the partial homomorphisms as per Definition 6, which needs
polynomial time for one 𝑝-difference.

4. Retain only the minimal 𝑝-differences. For this purpose, consider all pairs of 𝑝-differences,
determine which entails which, and remove the one that entails but is not entailed by the other.
Since every 𝑝-difference has polynomial size and qABox entailment is NP-complete, identifying
all minimal explanation terminates in exponential time.

4.1. Computing Partial Homomorphisms with Query Answering Systems

We have seen in Theorem 10 that we obtain all minimal explanations from the exponentially many
partial homomorphisms. Instead of enumerating all partial homomorphisms in the naïve manner as in
the proof of that theorem, we can rather reuse existing algorithms and implementations for enumerating
(non-partial) homomorphisms, viz. by employing off-the-shelf query answering systems.

To this end, we extend the given KB ∃𝑌.ℬ to a qABox ∃𝑌 *.ℬ* such that there is a correspondence
between the partial homomorphisms from the observation ∃𝑋.𝒜 to the KB ∃𝑌.ℬ and the (ordinary)
homomorphisms from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*. We achieve this by adding further assertions to which all
parts of the observation can be mapped that are not mapped by the partial homomorphisms since they
are missing from the KB. More specifically, we add all possible concept and role assertions involving
individuals, and we further add a fresh variable * that is asserted to “everything” in the sense that we
add all possible concept and role assertions involving this new variable * and possibly any individual
(see this precise definition below).

Then, we identify the observation ∃𝑋.𝒜 with the conjunctive query to be answered (but we treat all
variables in 𝑋 as answer variables, i.e. we drop the existential quantification) and further we identify
∃𝑌 *.ℬ* with the database over which the query is to be evaluated. Therefore each certain answer
represents a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ* and vice versa.

Lemma 11. Consider qABoxes ∃𝑋.𝒜 and ∃𝑌.ℬ, and define ∃𝑌 *.ℬ* by 𝑌 * := 𝑌 ∪ {*} and

ℬ* := ℬ ∪ { 𝑎 :𝐴 | 𝑎 is an individual and 𝐴 is a atomic concept }
∪ { (𝑎, 𝑏) : 𝑟 | 𝑎, 𝑏 are individuals and 𝑟 is a role }
∪ { (𝑎, *) : 𝑟, (*, 𝑎) : 𝑟 | 𝑎 is an individual and 𝑟 is a role }
∪ { * :𝐴 | 𝐴 is a atomic concept }
∪ { (*, *) : 𝑟 | 𝑟 is a role }.

1. If 𝑝 is a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ, then ℎwith ℎ(𝑢) := 𝑝(𝑢) for each 𝑢 ∈ Dom(𝑝)
and ℎ(𝑢) := * otherwise is a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*.

2. If ℎ is a homomorphism from ∃𝑋.𝒜 to ∃𝑌 *.ℬ*, then 𝑝 with 𝑝(𝑢) := ℎ(𝑢) for each 𝑢 with ℎ(𝑢) ̸= *
and 𝑝(𝑢) undefined otherwise is a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌.ℬ.

Proof. Let 𝑝 : ∃𝑋.𝒜 ↦→ ∃𝑌.ℬ be a partial homomorphism. We verify that ℎ as defined above is a
homomorphism.

(H1) Since 𝑝(𝑎) = 𝑎 for each individual 𝑎, we also have ℎ(𝑎) = 𝑎.

(H2) Consider an assertion 𝑢 :𝐴 in 𝒜. We distinguish two cases.
• Assume 𝑢 ∈ Dom(𝑝), and thus ℎ(𝑢) = 𝑝(𝑢). If ℎ(𝑢) is a variable (in 𝑌 ), then (PH2) ensures

that ℎ(𝑢) :𝐴 is in ℬ, and thus also in ℬ*. Otherwise, ℎ(𝑢) is an individual, and so ℬ* contains
ℎ(𝑢) :𝐴 by definition.

• In the remaining case we have ℎ(𝑢) = *, and ℬ* contains ℎ(𝑢) :𝐴 by definition.

(H3) Let (𝑢, 𝑣) : 𝑟 be an assertion in 𝒜.



• Assume 𝑢 ∈ Dom(𝑝), i.e. ℎ(𝑢) = 𝑝(𝑢), and further let ℎ(𝑢) be a variable (in 𝑌 ). Then (PH3)
ensures that (ℎ(𝑢), ℎ(𝑣)) : 𝑟 is in ℬ, and thus also in ℬ*. Similarly, if 𝑣 ∈ Dom(𝑝) and ℎ(𝑣) ∈ 𝑌 ,
then (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ∈ ℬ ⊆ ℬ* by (PH4).

• Moreover, if 𝑢, 𝑣 ∈ Dom(𝑝) and ℎ(𝑢), ℎ(𝑣) are individuals, then (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ∈ ℬ* by
definition of ℬ*.
• Now let 𝑢 ∈ Dom(𝑝), 𝑣 ̸∈ Dom(𝑝), and ℎ(𝑢) an individual. Then ℎ(𝑣) = * and so the

definition of ℬ* ensures that (ℎ(𝑢), ℎ(𝑣)) : 𝑟 is in ℬ*. The case where 𝑢 ̸∈ Dom(𝑝), 𝑣 ∈ Dom(𝑝),
and ℎ(𝑣) an individual is analogous.

• In the remaining case we have 𝑢, 𝑣 ̸∈ Dom(𝑝) and thus ℎ(𝑢) = * = ℎ(𝑣). Then ℬ* contains
(ℎ(𝑢), ℎ(𝑣)) : 𝑟 by definition.

Regarding the second statement, let ℎ : ∃𝑋.𝒜 → ∃𝑌.ℬ be a homomorphism. We show that 𝑝 as
defined above is a partial homomorphism.

(PH1) For each individual 𝑎, we have ℎ(𝑎) = 𝑎, and so 𝑝(𝑎) = ℎ(𝑎), i.e. 𝑝(𝑎) = 𝑎.

(PH2) Let 𝑢 :𝐴 be in 𝒜 where 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . The first assumption yields that ℬ* contains
ℎ(𝑢) :𝐴, the second yields 𝑝(𝑢) = ℎ(𝑢) ̸= *, and thus the third implies that 𝑝(𝑢) :𝐴 is already
in ℬ.

(PH3) Assume 𝒜 contains (𝑢, 𝑣) : 𝑟 where 𝑢 ∈ Dom(𝑝) and 𝑝(𝑢) ∈ 𝑌 . By the first assumption ℬ*

contains (ℎ(𝑢), ℎ(𝑣)) : 𝑟, the second implies 𝑝(𝑢) = ℎ(𝑢) ̸= *, and so by the third we conclude
that ℬ contains (𝑝(𝑢), ℎ(𝑣)) : 𝑟. Moreover, it follows that ℎ(𝑣) ̸= * and thus 𝑣 ∈ Dom(𝑝) where
𝑝(𝑣) = ℎ(𝑣), i.e. (𝑝(𝑢), 𝑝(𝑣)) : 𝑟 ∈ ℬ.

(PH4) Analogous to the previous case.

5. The Case with ℰℒ Ontologies and ℰℒ ABox Observations

We now turn our attention to the case with an ontology 𝒪. According to Example 4 there can be
infinitely many minimal explanations of an observation, even when 𝒪 is an ℰℒ ontology and the
observation is an ℰℒ ABox. A closer look at this example reveals that all these explanations are obtained
from “premises” of the observation, i.e. from qABoxes entailing the observation w.r.t. 𝒪. The following
lemma shows that this is true in general for all ontologies consisting of first-order sentences.

Lemma 12. Consider a qABox ∃𝑋.𝒜 as observation and a KB composed of a qABox ∃𝑌.ℬ and an
ontology 𝒪 consisting of first-order sentences. Every minimal abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ
and 𝒪 is equivalent w.r.t. 𝒪 to a 𝑝-difference ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ for some ∃𝑋 ′.𝒜′ with ∃𝑋 ′.𝒜′ |=𝒪 ∃𝑋.𝒜
and some partial homomorphism 𝑝 from ∃𝑋 ′.𝒜′ to ∃𝑌.ℬ.

Proof. Let ∃𝑍.𝒞 be a minimal abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪, i.e. ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪

∃𝑋.𝒜, and define ∃𝑋 ′.𝒜′ := ∃𝑌.ℬ ∪ ∃𝑍.𝒞. Clearly, we have ∃𝑋 ′.𝒜′ |=𝒪 ∃𝑋.𝒜.
Obviously, ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= ∃𝑋 ′.𝒜′ and so ∃𝑍.𝒞 is also an abductive difference of ∃𝑋 ′.𝒜′ w.r.t.

∃𝑌.ℬ (and the empty ontology). According to Lemma 8 there is a partial homomorphism 𝑝 from
∃𝑋 ′.𝒜′ to ∃𝑌.ℬ such that the 𝑝-difference ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ is entailed by ∃𝑍.𝒞. By Lemma 7, this
𝑝-difference is an abductive difference of ∃𝑋 ′.𝒜′ w.r.t. ∃𝑌.ℬ (and the empty ontology), and thus also
of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪. Since ∃𝑍.𝒞 |= ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ yields ∃𝑍.𝒞 |=𝒪 ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ and
∃𝑍.𝒞 is minimal, we conclude that ∃𝑍.𝒞 and ∃𝑋 ′.𝒜′ ∖𝑝 ∃𝑌.ℬ are equivalent w.r.t. 𝒪.

We conclude that enumerating a superset of all minimal explanations w.r.t. an ontology can be
“reduced” to enumerating minimal explanations without ontology. More specifically, since the set
of qABoxes is countable, we can enumerate all “premises” of the observation when entailment w.r.t.
the ontology is decidable, and thus the above lemma allows us to enumerate a superset that contains
all minimal explanations. However, using this approach only allows us to exclude a non-minimal



explanation as soon as a strictly entailed explanation has been enumerated, i.e. non-minimality is
semi-decidable. Future research should consider this problem in more detail, possibly for restricted
classes of ontologies only.

For an ℰℒ ontology and an observation in form of an ℰℒ ABox, the minimal explanations have a
special form, as the below lemma shows.

Lemma 13. Given an ℰℒ ABox 𝒜 as observation and a KB consisting of a qABox ∃𝑌.ℬ and an ℰℒ ontology
𝒪, every minimal abductive difference of 𝒜 w.r.t. ∃𝑌.ℬ and 𝒪 is equivalent w.r.t. 𝒪 to a 𝑝-difference4

𝒜′ ∖𝑝 ∃𝑌.ℬ where 𝑝 is a partial homomorphism from 𝒜′ to ∃𝑌.ℬ and the ABox 𝒜′ consists of

• a CA 𝑎 : 𝐶 ′ with 𝐶 ′ ⊑𝒪 𝐶 for each CA 𝑎 : 𝐶 in 𝒜 with ∃𝑌.ℬ ̸|=𝒪 𝑎 : 𝐶 ,
• and each RA (𝑎, 𝑏) : 𝑟 in 𝒜 that is not in ℬ.

Proof. Consider an observation in form of an ℰℒ ABox 𝒜, a KB consisting of a qABox ∃𝑌.ℬ and an ℰℒ
ontology 𝒪, and further let ∃𝑍.𝒞 be a minimal abductive difference of 𝒜 w.r.t. ∃𝑌.ℬ and 𝒪. We build
the ABox 𝒜′ as follows.

• Let 𝑎 : 𝐶 be a CA in 𝒜. By assumption, we have ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 𝑎 : 𝐶 . Lemma 22 in [23]
yields a concept 𝐶 ′ with ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= 𝑎 : 𝐶 ′ and 𝐶 ′ ⊑𝒪 𝐶 . We add 𝑎 : 𝐶 ′ to 𝒜′, but only if
𝑎 : 𝐶 is not already entailed by ∃𝑌.ℬ w.r.t. 𝒪 since otherwise it need not be explained.

• Now let (𝑎, 𝑏) : 𝑟 be a RA in 𝒜. The assumption yields that ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |=𝒪 (𝑎, 𝑏) : 𝑟, and thus
ℬ or 𝒞 contains this RA. In the former case the RA need not be explained, and in the latter case
we add the RA to 𝒜′.

By construction we have ∃𝑌.ℬ ∪ ∃𝑍.𝒞 |= 𝒜′, and thus ∃𝑍.𝒞 is an abductive difference of 𝒜′ w.r.t.
∃𝑌.ℬ (and the empty ontology). By identifying 𝒜′ with an equivalent qABox, Lemma 8 yields a partial
homomorphism 𝑝 : 𝒜′ ↦→ ∃𝑌.ℬ such that ∃𝑍.𝒞 |= 𝒜′ ∖𝑝 ∃𝑌.ℬ. According to Lemma 7, 𝒜′ ∖𝑝 ∃𝑌.ℬ is
an abductive difference of 𝒜′ w.r.t. ∃𝑌.ℬ (and the empty ontology), and thus also of 𝒜 w.r.t. ∃𝑌.ℬ and
𝒪. Since ∃𝑍.𝒞 |= 𝒜′ ∖𝑝 ∃𝑌.ℬ implies ∃𝑍.𝒞 |=𝒪 𝒜′ ∖𝑝 ∃𝑌.ℬ and ∃𝑍.𝒞 is minimal, we conclude that
∃𝑍.𝒞 and 𝒜′ ∖𝑝 ∃𝑌.ℬ are equivalent w.r.t. 𝒪.

Last, we can also employ saturations to construct abductive differences, but not in a complete manner
since in Example 4 there is a minimal explanation that cannot be constructed from the saturation. In
particular, the saturation equals the ABox already, from which we can only obtain the observation itself
as a minimal p-difference.

Lemma 14. For each partial homomorphism 𝑝 from ∃𝑋.𝒜 to the saturation of ∃𝑌.ℬ w.r.t. 𝒪, the
𝑝-difference is an abductive difference of ∃𝑋.𝒜 w.r.t. ∃𝑌.ℬ and 𝒪.

Proof. We denote the saturation by sat𝒪(∃𝑌.ℬ). By Lemma 7, the 𝑝-difference is an abductive difference
of ∃𝑋.𝒜 w.r.t. sat𝒪(∃𝑌.ℬ), i.e. sat𝒪(∃𝑌.ℬ) ∪ (∃𝑋.𝒜 ∖𝑝 sat𝒪(∃𝑌.ℬ)) |= ∃𝑋.𝒜. Since ∃𝑌.ℬ |=𝒪

sat𝒪(∃𝑌.ℬ), it follows that ∃𝑌.ℬ ∪ (∃𝑋.𝒜 ∖𝑝 sat𝒪(∃𝑌.ℬ)) |=𝒪 ∃𝑋.𝒜.

6. Outlook

After these first steps regarding abduction with quantified ABoxes, it would be interesting to investigate
in more details how exactly ontologies or restricted classes of ontologies can be treated when computing
minimal explanations. In order to alleviate the problem of infinitely many minimal explanations,
practically motivated metrics should be used to restrict and compare explanations. In ℰℒ, a further
approach to this problem would be using weaker entailment relations. For instance, instead of comparing
quantified ABoxes regarding their models we could compare them regarding the ℰℒ CAs and RAs they

4Technically, this 𝑝-difference 𝒜′ ∖𝑝 ∃𝑌.ℬ rather is ∃𝑋 ′′.𝒜′′ ∖𝑝 ∃𝑌.ℬ where ∃𝑋 ′′.𝒜′′ is a qABox equivalent to 𝒜′. Such a
qABox always exists as explained in the preliminaries.



entail (IRQ-entailment [24]). In Example 4, then only the explanations with 𝑛 ∈ {0, 1} would be be
minimal, as would be the observation itself. Yet another alternative to identifying practically useful
explanations would be to employ some form of user interaction, especially when only one explanation
is needed in the application.

In order to verify their applicability, it would be interesting to implement the presented results and
empirically evaluate them on real-world datasets.
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