
Using Trémaux Trees to Compute Small Conjunctive
Queries that Separate Positive and Negative Examples
Francesco Kriegel1,2

1Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
2Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden and Leipzig, Germany

Abstract
We investigate the problem of computing small conjunctive queries that separate positive from negative examples
in ontology-enriched systems. This work builds upon prior research on the query-by-example paradigm, which
focused on the existence of separating queries. Here, we go beyond mere existence and study how to construct
separating queries that are both correct and compact. Specifically, we define a new recursive notion of homo-
morphism based on Trémaux trees (normal spanning trees), show that it allows us to extract small separating
conjunctive queries from the chase (universal model), and provide an algorithm for this query construction process.
Our results offer both theoretical insights and practical tools for making ontology-based query-by-example more
usable for end-users.

1. Introduction

The query-by-example (QBE) paradigm has recently emerged as a promising approach for making
ontology-enriched systems (OES) more accessible to non-expert users. By allowing users to provide sets
of positive and negative examples instead of formal queries, QBE bridges the gap between intuitive data
exploration and formal query languages like description-logic concepts [1–3], conjunctive queries (CQs)
or unions of conjunctive queries (UCQs) [4–8], and first-order formulas [9]. This paper specifically
follows earlier work [4], in which foundational results were established regarding the existence of
queries that correctly separate the positive examples from the negative ones w.r.t. ontologies formulated
in rather expressive description logics (DLs) such as Horn-𝒜ℒ𝒞 and Horn-𝒜ℒ𝒞ℐ . However, deciding
the existence of a separating query is only the first step. In practical applications, the ultimate goal is to
compute a concrete query that explains the given examples. More importantly, such queries should
ideally be as small and as understandable as possible. A large or overly complex query may defeat the
purpose of QBE as a tool for intuitive data access and explanation.

In this paper, we investigate the computational construction of small separating CQs in OES. Our focus
lies not on particular DLs to formulate the ontology but rather on existential rules in general, however
we restrict attention to unary and binary predicates. The core technical contribution of this work is a
novel use of Trémaux trees (also known as: normal spanning trees) to guide the search for separating
queries. By leveraging the tree structure, we define a recursive notion of homomorphisms — called
Trémaux homomorphisms — and show that existence of a Trémaux homomorphism coincides with
existence of a usual homomorphism. These new homomorphisms allow us to develop a new algorithmic
approach to extracting small separating queries from the chase of a knowledge base — a canonical
representation of its entailments. Our approach not only advances the theoretical understanding of
query computation in OES but also opens up new directions for developing more intuitive and compact
interfaces for QBE tools.

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ francesco.kriegel@tu-dresden.de (Francesco Kriegel)
� https://tu-dresden.de/inf/lat/francesco-kriegel (Francesco Kriegel)
� 0000-0003-0219-0330 (Francesco Kriegel)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:francesco.kriegel@tu-dresden.de
https://tu-dresden.de/inf/lat/francesco-kriegel
https://orcid.org/0000-0003-0219-0330
https://creativecommons.org/licenses/by/4.0/deed.en

2. Preliminaries

Signature. Consider a countable set C of constants and a countable set R of relations such that each
relation 𝑅 in R has an arity ar(𝑅) ∈ N. These two sets must be disjoint and together they constitute
the signature. In Description Logic, constants are usually referred to as individuals, unary relations are
called (atomic) concepts, and binary relations are roles. Further assume a countably infinite set V of
variables disjoint with the signature. A term is either a constant or a variable.1

Syntax. An atom is of the form (𝑡1, . . . , 𝑡𝑛) :𝑅 where each 𝑡𝑖 is a term and 𝑅 is an 𝑛-ary relation. A
substitution is a partial mapping 𝜎 : V ↦→ C ∪V. If 𝛼 is an atom, then 𝛼𝜎 denotes the term obtained
by simultaneously replacing all occurrences of each variable 𝑥 by 𝜎(𝑥) if defined.2 Given sets 𝒜 and ℬ
of atoms, a match of 𝒜 in ℬ is a substitution 𝜎 such that 𝒜𝜎 ⊆ ℬ, where 𝒜𝜎 := {𝛼𝜎 | 𝛼 ∈ 𝒜}. We
write 𝒜 =| ℬ if there is such a match. Then =| is a preorder (i.e. reflexive and transitive) on the set of
all sets of atoms. From each match 𝜎 of 𝒜 in ℬ, we obtain a so-called homomorphism from 𝒜 to ℬ as
the mapping ℎ : C ∪V → C ∪V where ℎ(𝑡) := 𝜎(𝑡) if the latter is defined and ℎ(𝑡) := 𝑡 otherwise;
there are no further homomorphisms. Given a set 𝒜 of atoms, Var(𝒜) is the set of all variables in 𝒜
and Terms(𝒜) consists of all terms in 𝒜.

Semantics. An interpretation ℐ is a set of atoms, and a database 𝒟 is a finite set of atoms.3 A tuple-
generating dependency (TGD) or existential rule is of the form ℬ ⇒ ℋ where the body ℬ and the head ℋ
are finite sets of atoms. Var(ℬ)∩Var(ℋ) is called the frontier of ℬ ⇒ ℋ. An interpretation ℐ is a model
of a database 𝒟 if 𝒟 =| ℐ . A TGD ℬ ⇒ ℋ is satisfied in an interpretation ℐ if every match of ℬ in ℐ
can be extended to a match of ℋ in ℐ (i.e. for each match 𝜎 of ℬ in ℐ , there is a match 𝜏 of ℋ in ℐ such
that, for each variable 𝑥 ∈ Var(ℬ), if 𝜎(𝑥) is defined, then 𝜎(𝑥) = 𝜏(𝑥), else 𝜏(𝑥) is also undefined).
A knowledge base (KB) is a pair (𝒟,𝒪) consisting of a database 𝒟 and a finite set 𝒪 of TGDs (called
ontology). An interpretation ℐ is a model of (𝒟,𝒪) if it is a model of 𝒟 and satisfies all TGDs in 𝒪.

Chase. In the setting considered here, each KB (𝒟,𝒪) has a model (i.e. is consistent). Such a model
can be constructed by means of the chase: it initializes an interpretation ℐ with the database 𝒟 and
then, simply put, it successively extends ℐ whenever there is a TGD in 𝒪 such that there is match of its
body in ℐ that cannot be extended to a match of the head in ℐ . The limit of this construction is also
called chase, viz. the chase of (𝒟,𝒪), symbol: chase(𝒟,𝒪). The chase does not terminate for every KB,
meaning that chase(𝒟,𝒪) might be countably infinite, and different variants of the chase exist [10].
Chase termination is undecidable [11] but can be guaranteed by restrictions [12].

Conjunctive Queries. An 𝑛-ary conjunctive query (CQ) is of the form (𝑥1, . . . , 𝑥𝑛) :𝒬 where each
𝑥𝑖 is a variable, called answer variable, and 𝒬 is a finite set of atoms. A mapping 𝜎 : {𝑥1, . . . , 𝑥𝑛} → C
is an answer to this CQ w.r.t. an interpretation ℐ if 𝒬𝜎 =| ℐ (i.e. if 𝜎 can be extended to a match from
𝒬 to ℐ), and is a certain answer to this CQ w.r.t. a KB (𝒟,𝒪) if it is an answer to the CQ w.r.t. every
model of (𝒟,𝒪). Query Answering is the problem consisting of all tuples of (string encodings of) a
KB, a CQ, and a mapping such that the mapping is a certain answer to the CQ w.r.t. the KB. In general,
query answering is undecidable [13, 14]. Query answering can be done by means of the chase: the
certain answers w.r.t. (𝒟,𝒪) coincide with the answers w.r.t. chase(𝒟,𝒪). This is because the chase is
universal in the sense that it matches every model of the KB.

1This coincides with the elements of the term algebra of type C over V since constants have the same semantics as nullary
function symbols.

2Each substitution has a unique extension to a homomorphism ℎ from the term algebra to itself, which here sends each
constant to itself, i.e. we obtain the mapping ℎ : C ∪V → C ∪V where ℎ(𝑥) = 𝜎(𝑥) for each variable 𝑥 and ℎ(𝑐) = 𝑐 for
each constant 𝑐. With that, ((𝑡1, . . . , 𝑡𝑛) :𝑅)𝜎 = (ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) :𝑅.

3Other authors disallow variables in databases, but we find them reasonable in order to account for objects that do not have or
need a unique identifier to be shared with other knowledge bases.

Query Containment. Given CQs (𝑥1, . . . , 𝑥𝑛) : 𝒬1 and (𝑥1, . . . , 𝑥𝑛) : 𝒬2 with the same answer
variables, we say that the first is contained in the second if, for every interpretation ℐ , each answer to
the first CQ in ℐ is also an answer to the second CQ in ℐ . This is the case iff. there is match 𝜎 of 𝒬2 in
𝒬1 that preserves the answer variables, i.e. where 𝜎(𝑥𝑖) = 𝑥𝑖 for each 𝑖 [15]. Query containment is
NP-complete [15].

Unions of Conjunctive Queries. A union of conjunctive queries (UCQ) is of the form (𝑥1, . . . , 𝑥𝑛) :
𝒬1 ⊔𝒬2 ⊔ · · · ⊔ 𝒬𝑚 where each (𝑥1, . . . , 𝑥𝑛) :𝒬𝑖 is a CQ and all these CQs have the same arity and
the same answer variables. Answers to this UCQ w.r.t. ℐ are all answers to any CQ (𝑥1, . . . , 𝑥𝑛) :𝒬𝑖

w.r.t. ℐ , and similarly for the certain answers w.r.t. (𝒟,𝒪). Given UCQs (𝑥1, . . . , 𝑥𝑛) :𝒫1⊔ · · · ⊔𝒫ℓ and
(𝑥1, . . . , 𝑥𝑛) :𝒬1 ⊔ · · · ⊔ 𝒬𝑚 with the same answer variables, the first is contained in the second iff.,
for each index 𝑖 ∈ {1, . . . , ℓ}, there is some index 𝑗 ∈ {1, . . . ,𝑚} such that the CQ (𝑥1, . . . , 𝑥𝑛) : 𝒫𝑖 is
contained in the CQ (𝑥1, . . . , 𝑥𝑛) :𝒬𝑗 [16].

Translation to First-order Logic. Databases, CQs, and TGDs can be syntactically translated into
first-order logic by replacing each finite set 𝒜 of atoms by its conjunction

⋀︀
𝒜 and adding quantifiers

for the variables. In particular, a database 𝒟 translates to ∃𝑥1.∃𝑥2. . . . ∃𝑥𝑛.
⋀︀
𝒟 for an arbitrary

enumeration Var(𝒟) = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a CQ (𝑥1, . . . , 𝑥𝑛) :𝒬 translates to ∃𝑦1.∃𝑦2. . . . ∃𝑦𝑚.
⋀︀

𝒬
for an arbitrary enumeration Var(𝒬) ∖ {𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑦1, 𝑦2, . . . , 𝑦𝑚}, and a TGD ℬ ⇒ ℋ trans-
lates to ∀𝑥1.∀𝑥2. . . . ∀𝑥𝑛.(

⋀︀
ℬ → ∃𝑦1.∃𝑦2. . . . ∃𝑦𝑚.

⋀︀
ℋ) for arbitrary enumerations Var(ℬ) =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} and Var(ℋ) ∖ Var(ℬ) = {𝑦1, 𝑦2, . . . , 𝑦𝑚}. Assuming The Axiom of Choice, the
Löwenheim-Skolem Theorem implies that this translation preserves the semantics — it suffices to con-
sider countable structures in order to interpret first-order theories over at most countable signatures.
Since we can rewrite between countable structures (first-order interpretations) and the above defined
interpretations in the obvious way, every first-order model yields a model in the above sense and vice
versa.

Products. Given finitely many sets 𝒜1, . . . ,𝒜𝑛 of atoms, their product 𝒜1 × · · · × 𝒜𝑛 is a set
consisting of the atoms (𝑓(𝑡11, . . . , 𝑡𝑛1), . . . , 𝑓(𝑡1𝑘, . . . , 𝑡𝑛𝑘)) : 𝑅 for all atoms (𝑡11, . . . , 𝑡1𝑘) : 𝑅 ∈ 𝒜1, . . . ,
(𝑡𝑛1 , . . . , 𝑡

𝑛
𝑘) :𝑅 ∈ 𝒜𝑛, where 𝑓 : (C ∪V)𝑛 → C ∪V is an arbitrary bijection such that 𝑓(𝑐, . . . , 𝑐) =

𝑐 for each constant 𝑐 and otherwise 𝑓(𝑢1, . . . , 𝑢𝑛) is a variable (i.e. if the 𝑢𝑖 are not all the same
constant). Since V is countably infinite, such bijections always exist. In technical considerations we
use this function 𝑓 only implicitly and rather assume that all atoms in the product are of the form
((𝑡11, . . . , 𝑡

𝑛
1), . . . , (𝑡

1
𝑘, . . . , 𝑡

𝑛
𝑘)) : 𝑅, where constants 𝑐 and according tuples (𝑐, . . . , 𝑐) are treated as

synonyms.

Undirected Graphs. An undirected graph (with loops) is a pair (𝑉,𝐸) consisting of a set 𝑉 of vertices
and a set 𝐸 of edges such that 𝐸 consists of subsets of 𝑉 with one or two elements. Edges with one
element are called loops. A walk from a vertex 𝑣 to a vertex 𝑤 is a sequence 𝑣0, 𝑣1, . . . , 𝑣𝑛 of vertices
such that 𝑣0 = 𝑣, 𝑣𝑛 = 𝑤, and {𝑣𝑖−1, 𝑣𝑖} ∈ 𝐸 for each 𝑖 ∈ {1, . . . , 𝑛}; its length is 𝑛. It is a path if all
vertices are pairwise distinct, and it is empty if 𝑛 = 0. We say that a vertex 𝑣 is reachable from another
vertex 𝑤 if there is a walk from 𝑣 to 𝑤. A graph (𝑉,𝐸) is connected if each vertex is reachable from
each other vertex. The distance between vertices 𝑣 and 𝑤 is the smallest length of a path from 𝑣 to 𝑤,
or ∞ if no such path exists. A cycle is a non-empty walk that starts and ends with the same vertex
and otherwise consists of pairwise distinct vertices, and we call a graph (𝑉,𝐸) acyclic if it does not
contain any cycles. A connected, acyclic undirected graph is usually called an undirected tree. In each
undirected tree, there is a unique shortest path from each vertex to each other vertex. Furthermore,
each undirected tree (𝑉,𝐸) with a distinguished vertex 𝑣0, called the root, admits a partial order ≤
on 𝑉 , namely where 𝑣 ≤ 𝑤 if the (unique) shortest path from 𝑣0 to 𝑣 can be extended to the (unique)
shortest path from 𝑣0 to 𝑤.

Further Notions. Consider a set 𝒜 of atoms. Given a set 𝑈 of terms, the subset of 𝒜 generated by 𝑈
is the smallest subset ℬ of 𝒜 containing all atoms from 𝒜 that involve some term contained in 𝑈 or
occuring in some atom in ℬ. The induced graph of 𝒜 is the undirected graph 𝐺𝒜 := (𝑉,𝐸) where 𝑉
consists of all terms and 𝐸 consists of all edges {𝑡, 𝑢} such that 𝑡 and 𝑢 occur together in some atom
involving a predicate with arity ≥ 2 (where 𝑡 and 𝑢 might be equal). The distance in 𝒜 between two
terms is the distance between them in 𝐺𝒜. We call 𝒜 connected if the induced graph 𝐺𝒜 is connected.
Similarly, a CQ (𝑥1, . . . , 𝑥𝑛) :𝒬 is connected if 𝒬 is connected.

3. Learning Conjunctive Queries from Examples

The query-by-example (QBE) paradigm considers a KB (𝒟,𝒪) and sets 𝑃 and 𝑁 of positive and,
respectively, negative examples. These examples are mappings from a fixed set of answer variables
𝑥1, . . . , 𝑥𝑛 to the set of constants. A solution is a (U)CQ that separates the positive from the negative
examples in the sense that all mappings in 𝑃 are certain answers w.r.t. the KB but none of the negative
ones. QBE is useful in situations where users do not have the ability to formulate queries themselves —
they can then rather use such a solution query.

As solutions we will only consider constant-free (U)CQs, i.e. where no constants occur in the atoms. To
this end, we ignore the semantics of constants and rather treat them as if they were variables. Formally,
we use constant-ignoring homomorphisms from 𝒜 to ℬ, which are defined like homomorphisms but
without the requirement to leave constants unchanged (i.e. ℎ(𝑐) = 𝑐 is not required for each constant
𝑐).

Definition 1. Consider a KB (𝒟,𝒪), variables 𝑥1, . . . , 𝑥𝑛, and finite sets 𝑃 and 𝑁 of mappings
𝜎 : {𝑥1, . . . , 𝑥𝑛} → C. A (U)CQ with answer variables 𝑥1, . . . , 𝑥𝑛 separates 𝑃 and 𝑁 if all mappings
in 𝑃 are certain answers to it w.r.t. (𝒟,𝒪) but no mapping in 𝑁 is a certain answer.

By slightly adapting the proof of Theorem 1 in [4] and further utilizing Lemma 4 in [4] we immediately
obtain a proof for the following statement.4

Theorem 2. Assume a KB (𝒟,𝒪), variables 𝑥1, . . . , 𝑥𝑛, and finite sets 𝑃 and 𝑁 of mappings
𝜎 : {𝑥1, . . . , 𝑥𝑛} → C, where 𝑃 = {𝜎1, . . . , 𝜎𝑝}. Consider the mapping 𝜎𝑃 : {𝑥1, . . . , 𝑥𝑛} → C ∪V
where 𝜎𝑃 (𝑥𝑖) := (𝜎1(𝑥𝑖), . . . , 𝜎𝑝(𝑥𝑖)). There is a constant-free CQ that separates 𝑃 and 𝑁 iff. the
following two conditions hold:

1. For each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}, the term 𝜎𝑃 (𝑥𝑖) occurs in some atom of×𝑝
𝑖=1 chase(𝒟,𝒪)

(the 𝑝-fold product of the chase).

2. For each 𝜏 ∈ 𝑁 , there is no constant-ignoring homomorphism from ×𝑝
𝑖=1 chase(𝒟,𝒪) to

chase(𝒟,𝒪) that sends 𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}.

Condition 2 is equivalent to each of the following conditions, where 𝒫 is the subset of×𝑝
𝑖=1 chase(𝒟,𝒪)

generated by the terms 𝜎𝑃 (𝑥1), . . . , 𝜎𝑃 (𝑥𝑛):

2’. For each 𝜏 ∈ 𝑁 , there is no constant-ignoring homomorphism from 𝒫 to chase(𝒟,𝒪) that sends
𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}.

2”. There is a depth 𝑑 ∈ N such that, for each 𝜏 ∈ 𝑁 , there is no constant-ignoring homomorphism
from 𝒫↾𝑑 to chase(𝒟,𝒪) that sends 𝜎𝑃 (𝑥𝑖) to 𝜏(𝑥𝑖) for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛}, where
𝒫↾𝑑 is the subset of 𝒫 that consists only of the atoms involving terms with a distance of at most 𝑑 to
some term 𝜎𝑃 (𝑥𝑖).

4Actually, Lemma 4 is implicitly used in the proof of Theorem 1, i.e. within [4] Lemma 4 should have been proven before
Theorem 1.

Specifically, it follows that there is a constant-free CQ separating 𝑃 and 𝑁 iff. there is a connected
such CQ. Both above conditions can be decided if the chase terminates — in this case we obtain a CQ
that separates 𝑃 and 𝑁 and is most specific w.r.t. query containment as the query (𝑥1, . . . , 𝑥𝑛) :𝒬,
where the atom set 𝒬 is the product×𝑝

𝑖=1 chase(𝒟,𝒪) specifically constructed with a bijection 𝑓 such
that all values of 𝑓 are variables (since we want a constant-free CQ) and 𝑓(𝜎𝑃 (𝑥𝑖)) = 𝑥𝑖 for each
answer variable 𝑥𝑖.

Existence of a constant-free separator CQ is undecidable w.r.t. ℰℒℐ KBs [1]. If the KB is expressible
in Horn-𝒜ℒ𝒞, then non-existence of a constant-free separator CQ is complete for non-deterministic
exponential time [4]. Furthermore if a CQ exists, then in Condition 2” there is a depth 𝑑 that is
exponential in the size of the KB — thus there is a connected separating CQ of double exponential size
[4]. However, a most specific CQ need not exist w.r.t. Horn-𝒜ℒ𝒞 KBs. As a counterexample consider
the database {𝑎 :𝐴, 𝑏 :𝐵, 𝑐 :𝐶}, the ontology {{𝑥 :𝐴} ⇒ {(𝑥, 𝑦) : 𝑟, 𝑦 :𝐴}, {𝑥 :𝐵} ⇒ {(𝑥, 𝑦) : 𝑟,
𝑦 :𝐵}}, where the first TGD is 𝐴 ⊑ ∃𝑟.𝐴 in DL notation, positive examples {𝑥1 ↦→ 𝑎, 𝑥1 ↦→ 𝑏}, and
negative examples {𝑥1 ↦→ 𝑐}. The above conditions are obviously fulfilled, i.e. there exists a separating
CQ. However, a most specific CQ would need to contain an infinite 𝑟-chain issuing from the answer
variable 𝑥1, which is impossible.

For the cases where a CQ separator does not exist, there could still be a UCQ separator. Of course,
such a UCQ exists iff., for each positive example 𝜎 ∈ 𝑃 , there is a CQ separating {𝜎} and 𝑁 , say
(𝑥1, . . . , 𝑥𝑛):𝒬𝜎 — a UCQ separating 𝑃 and 𝑁 is then (𝑥1, . . . , 𝑥𝑛):

⨆︀
𝜎∈𝑃 𝒬𝜎 . For this reason, existence

of a constant-free separator UCQ w.r.t. Horn-𝒜ℒ𝒞 KBs is complete for (deterministic) exponential time
[4]. However, due to the excessive usage of disjunction, such an UCQ solution could suffer from
over-fitting. Therefore, the number of disjuncts of such a UCQ solution should be minimized.

Determining the minimal number of disjuncts is already NP-hard since we can reduce the minimum-
set-cover problem [17] as follows. Consider a set 𝑃 = {𝑐1, . . . , 𝑐𝑛} and subsets 𝑆1, . . . , 𝑆𝑚 ⊆ 𝑃 such
that 𝑆1 ∪ · · · ∪ 𝑆𝑚 = 𝑃 . A minimum set cover is a size-minimal subset 𝐼 ⊆ {1, . . . ,𝑚} such that⋃︀

𝑖∈𝐼 𝑆𝑖 = 𝑃 . For the reduction, we treat the 𝑐𝑖 as constants and the 𝑆𝑗 as unary relations, and consider
a further constant 𝑑, the database 𝒟 := { 𝑐𝑖 :𝑆𝑗 | 𝑐𝑖 ∈ 𝑆𝑗 }, positive examples 𝑃 , and negative examples
𝑁 := {𝑑} (where we assume a single answer variable 𝑥1 and do not distinguish between the element 𝑐𝑖
and the mapping 𝑥1 ↦→ 𝑐𝑖, and likewise for 𝑑). Then for each subset 𝑃 ′ ⊆ 𝑃 , there is a CQ separating
𝑃 ′ and 𝑁 iff. 𝑃 ′ ⊆ 𝑆𝑗 for some 𝑗. Thus a separating UCQ with the fewest disjuncts yields a minimum
set cover.

In practice, one might do it the greedy way: determine a first maximal subset 𝑃1 of 𝑃 such that a CQ
separating 𝑃1 and 𝑁 exists, next find a maximal subset 𝑃2 of 𝑃 ∖ 𝑃1 that can be separated from 𝑁 by a
CQ, and likewise continue inductively with the remaining positive examples until none is left over.

When we are only interested in a subset S of the set R of relations to be used in the separator (U)CQs,
then Theorem 2 holds accordingly when the 𝑝-fold product×𝑝

𝑖=1 chase(𝒟,𝒪) is replaced by its subset
consisting of all atoms with a relation in S.

4. Trémaux Trees

A Trémaux tree of an undirected graph is a spanning tree such that every edge of the graph connects
an ancestor–descendant pair in the tree. Trémaux trees are named after Charles Pierre Trémaux, a
19th-century French author who used a form of depth-first search as a strategy for solving mazes. In
computer science they are also called depth-first trees [18], whereas in graph theory they are rather
called normal spanning trees [19]. Trémaux trees exist for all finite graphs and can be computed in
polynomial time [20] as well as by a randomized NC algorithm [21].

Definition 3. Let (𝑉,𝐸) be a connected undirected graph with loops. Further let 𝑣0 ∈ 𝑉 be a vertex.
A Trémaux tree of (𝑉,𝐸) with root 𝑣0 is a subset 𝐹 of 𝐸 such that

1. (𝑉, 𝐹) is an undirected tree, and

2. 𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣 for each edge {𝑣, 𝑤} ∈ 𝐸, where ≤ is the induced partial order of (𝑉, 𝐹) for
root 𝑣0.

Although the following result is already known, we want to provide an own proof.5

Proposition 4. For each finite connected undirected graph with loops and with a distinguished vertex, a
Trémaux tree can be computed in polynomial time.

Proof. Assume that (𝑉,𝐸) is a connected undirected graph with loops and let 𝑣0 be a distinguished
vertex from 𝑉 . In the following, we will devise a recursive procedure that produces a Trémaux tree.
Firstly, initialize an undirected graph (𝑉, 𝐹) where 𝐹 := 𝐸. During the run of the procedure, we
maintain a set 𝑈 of unprocessed vertices that we initialize as 𝑈 := 𝑉 . The invariant during the
construction is that, for each processed vertex 𝑣 ∈ 𝑉 ∖ 𝑈 , there is a unique shortest path from 𝑣0 to 𝑣
within (𝑉, 𝐹). The computation starts by calling the following recursive procedure on the distinguished
vertex 𝑣0.

Process(𝑣): Mark 𝑣 as processed by removing 𝑣 from 𝑈 . The unprocessed neighborhood of 𝑣 is the set
𝑁𝑈 (𝑣) := {𝑤 | 𝑤 ∈ 𝑈 and {𝑣, 𝑤} ∈ 𝐸 }. Define the undirected graph (𝑉 ′, 𝐸′) by

𝑉 ′ := {𝑣} ∪𝑁𝑈 (𝑣),

𝐸′ := { {𝑣, 𝑤} | 𝑤 ∈ 𝑁𝑈 (𝑣) } ∪ { {𝑤1, 𝑤2} | 𝑤1, 𝑤2 ∈ 𝑁𝑈 (𝑣) and 𝑤1 ∼ 𝑤2 },

where 𝑤1 ∼ 𝑤2 if 𝑤1 is reachable from 𝑤2 in the subgraph (𝑉,𝐸)↾𝑈 := (𝑈, { 𝑒 | 𝑒 ∈ 𝐸 and 𝑒 ⊆
𝑈 }). Note that ∼ is an equivalence relation on 𝑁𝑈 (𝑣), i.e. it is reflexive, symmetric, and transitive.
Thus, the subgraph of (𝑉 ′, 𝐸′) obtained by removing 𝑣 is a disjoint union of complete graphs,6
and all vertices of each such complete graph are connected with 𝑣 by an edge. A schematic
presentation of the graph (𝑉 ′, 𝐸′) is given in Figure 1. For each complete graph, select one vertex

𝑣
...

𝑁𝑈 (𝑣)

Figure 1: A schematic presentation of the graph (𝑉 ′, 𝐸′)

𝑤, delete from 𝐹 all edges from 𝑣 into that complete graph except {𝑣, 𝑤}, and then proceed
recursively by calling Process(𝑤). Note that, if 𝑣0, 𝑣1, . . . , 𝑣 is the unique shortest path from 𝑣0
to 𝑣 within (𝑉, 𝐹), then 𝑣0, 𝑣1, . . . , 𝑣, 𝑤 is the unique shortest path from 𝑣0 to 𝑤 within (𝑉, 𝐹),
i.e. the invariant is satisfied.

5In fact, the author only later recognized that Trémaux trees have already been well investigated.
6A complete graph is a graph in which all vertices are connected by an edge.

After termination, the invariant is still satisfied and so it follows that the resulting graph (𝑉, 𝐹) is an
undirected tree. It remains to show that 𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣 for each edge {𝑣, 𝑤} ∈ 𝐸, where ≤ is the
partial order on 𝑉 that is induced by (𝑉, 𝐹) for root 𝑣0. For this purpose, consider an edge {𝑣, 𝑤} ∈ 𝐸.

• If {𝑣, 𝑤} has not been deleted, i.e. is contained in 𝐹 , then either the unique shortest path from 𝑣0
to 𝑣 can be extended to the unique shortest path from 𝑣0 to 𝑤 or vice versa. It follows that either
𝑣 ≤ 𝑤 or 𝑤 ≤ 𝑣.

• Otherwise, the edge {𝑣, 𝑤} has been deleted from 𝐹 , i.e. during the call either of Process(𝑣) or
of Process(𝑤). We only treat the first case, the other is analogous. During the call of Process(𝑣),

𝑣 𝑤′

𝑤

Figure 2: After the call of Process(𝑣)

a vertex 𝑤′ in the complete graph containing 𝑤 was selected and all edges from 𝑣 into this
complete graph except {𝑣, 𝑤′} were deleted, see Figure 2. Due to the invariant it follows that,
after termination, the unique shortest path from 𝑣0 to 𝑤 must go through 𝑣 and thus 𝑣 ≤ 𝑤 must
be satisfied.

We conclude that, after termination, the resulting graph (𝑉, 𝐹) is a Trémaux tree of (𝑉,𝐸) with root 𝑣0.
Since each vertex is processed only once, there are only linearly many calls to the procedure Process(·).

It is well-known that graph reachability can be decided in polynomial time and thus the intermediate
graph (𝑉 ′, 𝐸′) during each call to Process(·) can be constructed in polynomial time. We conclude that
the initial call of Process(𝑣0) terminates in polynomial time.

In the remainder of this article we assume that the signature consists only of constants, unary
relations, and binary relations.

Definition 5. Let 𝒟 be a database and 𝑡 a term in 𝒟. A Trémaux order of 𝒟 with root 𝑡 is the partial
order ≤ on Terms(𝒟) induced by some Trémaux tree of the induced graph 𝐺𝒟 with root 𝑡.

According to Proposition 4, Trémaux orders can be computed in polynomial time.
Let 𝒟 be a database and 𝑡0 a term occurring in 𝒟. Further assume that ≤ is a Trémaux order of 𝒟

with root 𝑡0 and denote by ≺ the neighborhood relation of ≤, i.e. 𝑡 ≺ 𝑢 if 𝑡 < 𝑢 and there is no 𝑣 such
that 𝑡 < 𝑣 < 𝑢. Note that, if 𝑡 ≺ 𝑢, then the edge {𝑡, 𝑢} must be present, i.e. there is a role 𝑟 such that
𝒟 contains at least one of the atoms (𝑡, 𝑢) : 𝑟 or (𝑢, 𝑡) : 𝑟. We will also write (𝑡, 𝑢) : 𝑟− for the latter,
where 𝑟− denotes the inverse of 𝑟, i.e. we do not distinguish between the atoms (𝑢, 𝑡) : 𝑟 and (𝑡, 𝑢) : 𝑟−.
For each 𝑡 ≺ 𝑢, we choose some atom (𝑡, 𝑢) :𝑅 in 𝒟, where 𝑅 is a role 𝑟 or an inverse 𝑟−, and then set
𝑅𝑡,𝑢 := 𝑅. To indicate that 𝑡 ≺ 𝑢 and 𝑅𝑡,𝑢 = 𝑅, we occasionally write 𝑡 ≺𝑅 𝑢.

Example 6. Consider the database 𝒟 := {(𝑥, 𝑦) : 𝑟, (𝑥, 𝑦) : 𝑠, (𝑦, 𝑧) : 𝑟, (𝑦, 𝑧) : 𝑠, (𝑧, 𝑥) : 𝑟,
(𝑧, 𝑥) : 𝑠} and let 𝑥 be the root term. The induced graph 𝐺𝒟 := (𝑉,𝐸) has vertex set 𝑉 := {𝑥, 𝑦, 𝑧}
and edge set 𝐸 := {{𝑥, 𝑦}, {𝑦, 𝑧}, {𝑧, 𝑥}}. A Trémaux tree of 𝐺𝒟 with root 𝑥 is (𝑉, 𝐹) with edge set
𝐹 := {{𝑥, 𝑦}, {𝑦, 𝑧}}. The induced partial order ≤, which is a Trémaux order of 𝒟 with root 𝑥, has
the neighborhood relation ≺ where 𝑥 ≺ 𝑦 ≺ 𝑧. We choose 𝑅𝑥,𝑦 := 𝑟 and 𝑅𝑦,𝑧 := 𝑟. The below figure
shows the Trémaux order ≤, where solid lines represent edges in the Trémaux tree and dashed lines
represent the remaining edges.

𝑥 𝑦 𝑧
𝑟 𝑟

𝑠− 𝑠−

𝑟
𝑠

5. Constructing Small Separating Queries

Consider a KB (𝒟,𝒪) defined over a signature that consists only of constants, unary relations, and
binary relations. Further consider a single answer variable 𝑥1 and finite sets 𝑃 and 𝑁 of mappings
𝜎 : {𝑥1} → C, which are the positive and negative examples, such that there is a constant-free CQ that
separates 𝑃 and 𝑁 . Our goal now is to construct a small separating CQ.

By assumption, the two conditions in Theorem 2 must be satisfied. Condition 1 ensures that we can
find a term in the 𝑝-fold product of the chase that “describes” all commonalities of the positive examples,
viz. in our setting the tuple 𝜎𝑃 (𝑥1) consisting of all 𝜎(𝑥1) where 𝜎 ranges over 𝑃 . Condition 2 ensures
that these commonalities are not all fulfilled by any negative example. Together both conditions ensure
the existence of a separating CQ.

Specifically by Condition 2” there is a depth 𝑑 such that it suffices to consider all terms with a distance
≤ 𝑑 to 𝜎𝑃 (𝑥1), and already this finite7 subset 𝒫↾𝑑 of the 𝑝-fold product of chase(𝒟,𝒪) does not admit,
for any negative example 𝜏 , a constant-ignoring homomorphism to chase(𝒟,𝒪) that maps 𝜎𝑃 (𝑥1) to
𝜏(𝑥1). We then obtain a separating CQ 𝑥1 :𝒫↾𝑑 when 𝒫↾𝑑 is taken from the product×𝑝

𝑖=1 chase(𝒟,𝒪)
specifically constructed with a bijection 𝑓 such that 𝑓(𝜎𝑃 (𝑥1)) = 𝑥1 and all values of 𝑓 are variables.
However, this CQ can be quite large.

Now we exploit the particular structure of a Trémaux order in order to recursively define Trémaux
homomorphisms, and then we show that existence of a constant-ignoring homomorphism is equivalent
to existence of such a Trémaux homomorphism. Afterwards, we show how a small subset 𝒬 of 𝒫↾𝑑 can
be extracted for which 𝑥1 :𝒬 is already a CQ separating 𝑃 and 𝑁 .

Definition 7. Let 𝒟 be a connected database, 𝑡 a term in 𝒟, and ℬ a set of atoms. Further let ≤
be a Trémaux order of 𝒟. A Trémaux homomorphism from 𝒟 to ℬ up to 𝑡 is a partial mapping
ℓ : Terms(𝒟) ↦→ Terms(ℬ) that fulfills the following conditions:

1. ℓ(𝑢) is defined for each 𝑢 ≤ 𝑡.

2. ℓ(𝑢) :𝐴 ∈ ℬ for each 𝑢 :𝐴 ∈ 𝒟 where 𝐴 is a unary relation and 𝑢 ≤ 𝑡.

3. (ℓ(𝑢1), ℓ(𝑢2)) : 𝑅 ∈ ℬ for each (𝑢1, 𝑢2) : 𝑅 ∈ 𝒟 where 𝑅 is a binary relation (or its inverse),
𝑢1 ≤ 𝑡, and 𝑢2 ≤ 𝑡.

4. ℓ can be extended to a Trémaux homomorphism from 𝒟 to ℬ up to each 𝑣 where 𝑡 ≺ 𝑣.
Formally: for each 𝑣 where 𝑡 ≺𝑅 𝑣, there is some 𝑤 such that (ℓ(𝑡), 𝑤) :𝑅 ∈ ℬ and the extended
partial mapping ℓ ∪ {𝑣 ↦→ 𝑤} is a Trémaux homomorphism from 𝒟 to ℬ up to 𝑣.

Proposition 8. Let 𝒟 be a connected database, ℬ a set of atoms, 𝑡 a term in 𝒟, and 𝑢 a term in ℬ. Further
let ≤ be a Trémaux order of 𝒟 with root 𝑡. The following statements are equivalent.

1. There is a constant-ignoring homomorphism from 𝒟 to ℬ that maps 𝑡 to 𝑢

2. {𝑡 ↦→ 𝑢} is a Trémaux homomorphism from 𝒟 to ℬ up to 𝑡.

7Since there are only finitely many TGDs, the chase is finitely branching.

Proof. Regarding the only-if direction, let ℎ be a homomorphism from 𝒟 to ℬ such that ℎ(𝑡) = 𝑢.
Therefore ℎ already satisfies Conditions 2 and 3 in Definition 7 for every term in 𝒟 (not only for
those ≤ 𝑡). Condition 4 follows by induction w.r.t. ≤ since, if 𝑡′ ≺𝑅 𝑢′, then (𝑡′, 𝑢′) :𝑅 ∈ 𝒟 and thus
(ℎ(𝑡′), ℎ(𝑢′)) :𝑅 ∈ ℬ.

In the converse direction, we obtain a homomorphism in the limit. More specifically, we can lazily
build it by Condition 4, i.e. we traverse through 𝒟 along ≺ starting from 𝑡 and construct the union
of all partial mappings ℓ ∪ {𝑡′ ↦→ 𝑢′}. This yields a well-defined mapping since, on the one hand,
assignments of terms that are smaller w.r.t. ≤ are never overwritten and, on the other hand, all terms 𝑢′
next to a term 𝑡′ (i.e. where 𝑡′ ≺ 𝑢′) can be processed independently of each other due to Condition 2 in
Definition 3. Since all terms are reachable from 𝑡, this limit mapping is defined for all terms in 𝒟.

One point worthy of remark is that, since all terms next to a term can be processed independently, we
can easily implement a parallel procedure for deciding homomorphism existence when the signature is
at most binary.8

Finally, we come back to our goal of constructing a small separating CQ. Proposition 8 yields that,
for each 𝜏 ∈ 𝑁 , the partial mapping {𝜎𝑃 (𝑥1) ↦→ 𝜏(𝑥1)} is no Trémaux homomorphism from 𝒫↾𝑛 to
chase(𝒟,𝒪) up to 𝜎𝑃 (𝑥1), and thus Conditions 2 or 3 in Definition 7 must already be violated by the
root 𝜎𝑃 (𝑥1) or, by following the recursion in Condition 4, one of them must be violated by a term
≥ 𝜎𝑃 (𝑥1). We use this observation to collect a small but sufficiently large subset of 𝒫↾𝑑 that already
witnesses the non-existence of homomorphisms for all negative examples, and afterwards transform
this subset into a CQ.

We initialize the subset𝒬 of𝒫↾𝑑 as the empty set. Furthermore, we maintain a mapping𝐿 that assigns
to each term in 𝒫↾𝑑 a set of partial mappings, where we initialize 𝐿(𝜎𝑃 (𝑥1)) := { {𝜎𝑃 (𝑥1) ↦→ 𝜏(𝑥1)} |
𝜏 ∈ 𝑁 } and 𝐿(𝑡) := ∅ for each term 𝑡 ̸= 𝜎𝑃 (𝑥1). The invariant is that each set 𝐿(𝑡) will always contain
only such mappings ℓ where ℓ(𝑢) is defined for each 𝑢 ≤ 𝑡 and that are no Trémaux homomorphisms
from 𝒫↾𝑑 to chase(𝒟,𝒪) up to 𝑡. We start with processing 𝜎𝑃 (𝑥1), i.e. we call Process(𝜎𝑃 (𝑥1)).

Process(𝑡): For each ℓ ∈ 𝐿(𝑡), do the following.
1. Choose one of the following two instructions and try to execute it. If it cannot be executed,

try the other.
a) Try to choose a unary atom 𝑡 :𝐴 in 𝒫↾𝑑 where ℓ(𝑡) :𝐴 is not in chase(𝒟,𝒪), and add

the atom 𝑡 :𝐴 to 𝒬.
b) Try to choose a binary atom (𝑡, 𝑢) :𝑅 in 𝒫↾𝑑 such that 𝑢 ≤ 𝑡 and where (ℓ(𝑡), ℓ(𝑢)) :𝑅

is not in chase(𝒟,𝒪), and add the atom (𝑡, 𝑢) :𝑅 to 𝒬.
2. If none of the two above instructions can be executed, then choose a term 𝑣 where 𝑡 ≺𝑅 𝑣

such that, for each term 𝑤 where (ℓ(𝑡), 𝑤) :𝑅 is in chase(𝒟,𝒪), the extension ℓ∪{𝑣 ↦→ 𝑤}
is no Trémaux homomorphism from 𝒫↾𝑑 to chase(𝒟,𝒪) up to 𝑣. Due to the invariant and
Condition 4 in Definition 7, such a term 𝑣 must exist. Then, add the atom (𝑡, 𝑣) : 𝑅 to 𝒬
and further add ℓ ∪ {𝑣 ↦→ 𝑤} to 𝐿(𝑣) for each 𝑤 where (ℓ(𝑡), 𝑤) :𝑅 is in chase(𝒟,𝒪).

Afterwards, call Process(𝑣) for each 𝑣 where 𝑡 ≺ 𝑣 and 𝐿(𝑣) ̸= ∅.

Termination of the initial call Process(𝜎𝑃 (𝑥1)) is guaranteed since 𝒫↾𝑛 is finite and chase(𝒟,𝒪) is
finitely branching. Further note that in Instruction 1 it suffices to consider the atoms at 𝑡 since those
with terms < 𝑡 have already been tried earlier. In the end, 𝑥1 :𝒬 is CQ separating 𝑃 and 𝑁 .

It is easy to see that the above procedure yields a minimal separating CQ (i.e. with a smallest number
of atoms) when there is only one negative example. The author claims that with a suitable strategy the
procedure can also yield minimal CQs for multiple negative examples, but existing results on verifying
extremal separating CQs already imply high computational complexity even without TGDs [6]. Within
the framework of PAC-learning, computation of size-minimal separating queries expressible by ℰℒ
concepts has already been considered [2].
8The author does not know whether this has already been exploited in query answering systems.

Future Prospects. In order to expand on this result, it would be interesting to lift the current
restriction to only one answer variable of separating CQs and, furthermore, to investigate how higher-
arity relations in the signature can be handled.

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) in Project 389792660 (TRR
248: Foundations of Perspicuous Software Systems) and in Project 558917076 (Construction and Repair
of Description-logic Knowledge Bases) as well as by the Saxon State Ministry for Science, Culture,
and Tourism (SMWK) by funding the Center for Scalable Data Analytics and Artificial Intelligence
(ScaDS.AI).

Declaration on Generative AI

During the preparation of abstract and introduction of this work, the author used ChatGPT in order to:
Paraphrase and reword, Improve writing style. After using this tool, the author reviewed and edited the
content as needed and takes full responsibility for the publication’s content.

References

[1] Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Learning De-
scription Logic Concepts: When can Positive and Negative Examples be Separated? In: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019. 2019, pp. 1682–1688. doi:10.24963/ijcai.2019/233.

[2] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. SAT-Based PAC Learning of
Description Logic Concepts. In: Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. 2023, pp. 3347–3355.
doi:10.24963/IJCAI.2023/373.

[3] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Separating Data Examples
by Description Logic Concepts with Restricted Signatures. In: Proceedings of the 18th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, KR 2021, Online event,
November 3-12, 2021. 2021, pp. 390–399. doi:10.24963/KR.2021/37.

[4] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Leif Sabellek. Reverse Engineering Queries in
Ontology-Enriched Systems: The Case of Expressive Horn Description Logic Ontologies. In:
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. 2018, pp. 1847–1853. doi:10.24963/ijcai.2018/255.

[5] Balder ten Cate, Victor Dalmau. Conjunctive Queries: Unique Characterizations and Exact
Learnability. In: ACM Trans. Database Syst. 47.4 (2022), 14:1–14:41. doi:10.1145/3559756.

[6] Balder ten Cate, Victor Dalmau, Maurice Funk, Carsten Lutz. Extremal Fitting Problems for
Conjunctive Queries. In: Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023. 2023, pp. 89–98.
doi:10.1145/3584372.3588655.

[7] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. On the non-efficient
PAC learnability of conjunctive queries. In: Inf. Process. Lett. 183 (2024), p. 106431.
doi:10.1016/J.IPL.2023.106431.

[8] Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz. Fitting Algorithms for Con-
junctive Queries. In: SIGMOD Rec. 52.4 (2023), pp. 6–18. doi:10.1145/3641832.3641834.

[9] Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, Frank Wolter. Logical separabil-
ity of labeled data examples under ontologies. In: Artif. Intell. 313 (2022), p. 103785.
doi:10.1016/J.ARTINT.2022.103785.

https://doi.org/10.24963/ijcai.2019/233
https://doi.org/10.24963/IJCAI.2023/373
https://doi.org/10.24963/KR.2021/37
https://doi.org/10.24963/ijcai.2018/255
https://doi.org/10.1145/3559756
https://doi.org/10.1145/3584372.3588655
https://doi.org/10.1016/J.IPL.2023.106431
https://doi.org/10.1145/3641832.3641834
https://doi.org/10.1016/J.ARTINT.2022.103785

[10] Markus Krötzsch, Maximilian Marx, Sebastian Rudolph. The Power of the Terminating Chase
(Invited Talk). In: 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal. 2019, 3:1–3:17. doi:10.4230/LIPICS.ICDT.2019.3.

[11] Alin Deutsch, Alan Nash, Jeffrey B. Remmel. The chase revisited. In: Proceedings of the Twenty-
Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008,
June 9-11, 2008, Vancouver, BC, Canada. 2008, pp. 149–158. doi:10.1145/1376916.1376938.

[12] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,
Boris Motik, Zhe Wang. Acyclicity Notions for Existential Rules and Their Application to Query
Answering in Ontologies. In: J. Artif. Intell. Res. 47 (2013), pp. 741–808. doi:10.1613/jair.3949.

[13] Catriel Beeri, Moshe Y. Vardi. The Implication Problem for Data Dependencies. In: Automata,
Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981, Proceedings.
1981, pp. 73–85. doi:10.1007/3-540-10843-2_7.

[14] Ashok K. Chandra, Harry R. Lewis, Johann A. Makowsky. Embedded Implicational Depen-
dencies and their Inference Problem. In: Proceedings of the 13th Annual ACM Symposium
on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA. 1981, pp. 342–354.
doi:10.1145/800076.802488.

[15] Ashok K. Chandra, Philip M. Merlin. Optimal Implementation of Conjunctive Queries in Relational
Data Bases. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA. 1977, pp. 77–90. doi:10.1145/800105.803397.

[16] Yehoshua Sagiv, Mihalis Yannakakis. Equivalences Among Relational Expressions with the Union
and Difference Operators. In: J. ACM 27.4 (1980), pp. 633–655. doi:10.1145/322217.322221.

[17] Richard M. Karp. Reducibility Among Combinatorial Problems. In: Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, USA. 1972, pp. 85–103.
doi:10.1007/978-1-4684-2001-2_9.

[18] Shimon Even, Guy Even. Graph Algorithms. 2012. doi:10.1017/CBO9781139015165.
[19] Reinhard Diestel. Graph Theory. 2025. doi:10.1007/978-3-662-70107-2.
[20] John H. Reif. Depth-First Search is Inherently Sequential. In: Inf. Process. Lett. 20.5 (1985), pp. 229–

234. doi:10.1016/0020-0190(85)90024-9.
[21] Alok Aggarwal, Richard J. Anderson. A random NC algorithm for depth first search. In: Comb.

8.1 (1988), pp. 1–12. doi:10.1007/BF02122548.

https://doi.org/10.4230/LIPICS.ICDT.2019.3
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1613/jair.3949
https://doi.org/10.1007/3-540-10843-2_7
https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/322217.322221
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1017/CBO9781139015165
https://doi.org/10.1007/978-3-662-70107-2
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1007/BF02122548

	1 Introduction
	2 Preliminaries
	3 Learning Conjunctive Queries from Examples
	4 Trémaux Trees
	5 Constructing Small Separating Queries

