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Concrete Domains. Concrete domains can be integrated in description logics (DLs) in order to
refer to concrete knowledge expressed by numbers, strings, and other concrete datatypes [3]. They
have mainly been investigated with DLs that are not Horn, such as 𝒜ℒ𝒞 and its extensions, regarding
decidability and complexity [4–9], reasoning procedures [6, 9–13], an algebraic characterization [14,
15], and their expressive power [16, 17].

For computationally tractable description logics, other conditions on the concrete domains than
above must be imposed. Suitable for the ℰℒ family are p-admissible concrete domains [18]: they are
convex (i.e. every finite disjunction of constraints and negated constraints is already equivalent to one
disjunct) and they guarantee that reasoning in the concrete domain is tractable. Due to convexity, it is
impossible to introduce disjunction into the ontological domain so that the DL part retains its Horn
character. ℰℒ underpins the profile OWL 2 EL of the Web Ontology Language [19], and we here use
“ℰℒ” and “OWL 2 EL” as synonyms despite some minor technical differences. Concrete domains have
also been integrated with DL-Lite [20].

State of the Art in OWL2EL. Existing p-admissible concrete domains for ℰℒ provide only limited
utility. Using the concrete domain𝒟Q,diff [18], we could express with the concept inclusions (sys=140)⊑
Hypertension, (sys>140)⊑Hypertension, (dia=90)⊑Hypertension, and (dia>90)⊑Hypertension
that a systolic blood pressure of 140 or higher indicates hypertension, as does a diastolic blood pressure
of at least 90, and for example specific values of a patient Bob can be expressed by a concept assertion
bob : (sys = 114) ⊓ (dia = 69). However, neither non-elevated blood pressure (dia. below 120 and
sys. below 70) nor elevated blood pressure (dia. between 120 and 140, and sys. between 70 and 90) are
expressible since the other relations ≥,≤, < are unavailable in order to avoid introducing disjunctions
“through the backdoor.” Otherwise the TBox {⊤ ⊑ (𝑓 > 0), (𝑓 = 3)⊑ 𝐶, (𝑓 > 3)⊑ 𝐶, (𝑓 < 3)⊑𝐴,
𝐶 ⊓ 𝐴⊑⊥} could enforce that the atomic concept 𝐴 is the complement of the concept 𝐶 , enabling
emulation of the expressivity of 𝒜ℒ𝒞 (which has exponential-time reasoning complexity).

Mixed inequalities ≥, >, ≤, < may be used under certain limitations which of them may occur in
left-hand sides and, respectively, in right-hand sides of concept inclusions [21]. While this ensures
convexity, reasoning is rather impaired since the usual completion procedure is only complete for
consistency and classification, but not for subsumption.

An algebraic characterization of p-admissible concrete domains has put forth a further concrete
domain 𝒟Q,lin, which supports linear combinations of numerical features [22, 23]. For instance, the
concept inclusion ⊤ ⊑ (sys − dia − pp = 0), where − is the difference operation in real arithmetic,
expresses that the pulse pressure is the difference between the systolic and the diastolic blood pressure.
In the medical domain, the combined expressivity of 𝒟Q,diff and 𝒟Q,lin would be useful since then with
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the concept inclusion ICUPatient⊓(pp>50)⊑NeedsAttention it could be expressed that intensive-care
patients with a pulse pressure exceeding 50 need attention — but this combination is not convex anymore
[24]. For instance, the TBox {⊤⊑ (𝑓 + 𝑔 = 0), (𝑓 = 0)⊑𝐶, (𝑓 > 0)⊑𝐶, (𝑔 > 0)⊑𝐴, 𝐶 ⊓𝐴⊑⊥}
declares 𝐴 as the complement of 𝐶 . Apart from these p-admissible concrete domains involving numbers,
there is another involving strings [18] but it is also too restricted to be of practical use.

Novel Contributions. We introduce a novel form of concrete domains based on semi-lattices. A
semi-lattice L := (𝐿,≤,∧) consists of a set 𝐿, a partial order ≤, and a binary meet operation ∧. The
elements of 𝐿 are taken as concrete values, and ≤ is understood as an “information order,” i.e. 𝑝 ≤ 𝑞
means that 𝑝 is equal to or more specific than 𝑞, like a subsumption order between concepts. The meet
operation ∧ is used to combine two values 𝑝 and 𝑞 to their meet value 𝑝 ∧ 𝑞, which is the most general
value that is equal to or more specific than both 𝑝 and 𝑞.

The hierarchical concrete domain 𝒟L has values in Dom(𝒟L) := 𝐿 and supports only constraints
of the form 𝑓 ≤ 𝑝 involving a feature 𝑓 and a value 𝑝. Like atomic concepts, these constraints 𝑓 ≤ 𝑝
can be used within compound concepts, i.e. the concepts’ syntax is 𝐶 ::= ⊥ | ⊤ | {𝑖} | 𝐴 | 𝑓 ≤ 𝑝 |
𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 . Their semantics is (𝑓 ≤ 𝑝)ℐ = { 𝑥 | 𝑓ℐ(𝑥) ≤ 𝑝 } where 𝑓ℐ is a partial function
from the domain of ℐ to the concrete values. Recall: this means that 𝑓 ’s value is 𝑝 or more specific,
not smaller like in the aforementioned examples. For instance, real intervals form a semi-lattice with
subset inclusion ⊆ as partial order and intersection ∩ as meet operation. With that, the statement
NonElevatedBP≡ (sys⊆ [0, 120))⊓ (dia⊆ [0, 70)) defines non-elevated blood pressure, where [0, 120)
and [0, 70) are real intervals.

In addition, we introduce FBoxes consisting of feature inclusions that describe dependencies between
features as well as aggregations of features. A feature inclusion 𝑓 ≤𝐻(𝑔1, . . . , 𝑔𝑛) consists of features
𝑓, 𝑔1, . . . , 𝑔𝑛 and a computable 𝑛-ary operation 𝐻 : 𝐿𝑛 → 𝐿 that is monotonic in the sense that
𝐻(𝑝1, . . . , 𝑝𝑛) ≤ 𝐻(𝑞1, . . . , 𝑞𝑛) whenever 𝑝1 ≤ 𝑞1, . . . , and 𝑝𝑛 ≤ 𝑞𝑛 (i.e. applying 𝐻 to equal or
more specific values yields equal or more specific values). For instance, through the feature inclusion
pp ⊆ sys − dia we can obtain an interval value of the pulse pressure given intervals of the systolic and
the diastolic blood pressure. The operator 𝐻 is the difference operation − in real interval arithmetic,
which, when applied to intervals 𝑃,𝑄, yields the set of all numbers 𝑝− 𝑞 where 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄. It is
monotonic w.r.t. subset inclusion ⊆ since, simply put, more numbers in 𝑃 or 𝑄 yield more numbers
in 𝑃 −𝑄. For instance, we have 𝐻([𝑝1, 𝑞1], [𝑝2, 𝑞2]) := [𝑝1 − 𝑞2, 𝑞1 − 𝑝2] and similarly for the other
interval types. With the concept inclusion ICUPatient⊓ (pp⊆ (50,∞))⊑NeedsAttention we can now
express that intensive-care patients having a pulse pressure above 50 need attention and, unlike in the
combination of 𝒟Q,diff and 𝒟Q,lin, computationally reason with that in polynomial time.

Our new hierarchical concrete domains are convex by design. This is because models can assign
to features any elements of the semi-lattice, and thus a general value of a feature does not imply the
disjunction of all more specific feature values. For example with real intervals, a model of the constraint
sys ⊆ [110, 120) can assign the interval [110, 120) to the feature sys, and thus this constraint does
not imply the disjunction of, say, sys ⊆ [110, 115) and sys ⊆ [115, 120). In a nutshell, the semi-lattice
semantics effectively expels disjunction. Atomic feature values are supported nonetheless when these
are available as atoms in the semi-lattice (e.g. singleton intervals [𝑝, 𝑝] represent specific numerical
values 𝑝). In general, 𝒟L is convex w.r.t. every FBox if the underlying semi-lattice L is complete (i.e.
every subset 𝑃 ⊆ 𝐿 has a meet

⋀︀
𝑃 ∈ 𝐿). Furthermore, for each semi-lattice L that is computable

(i.e. 𝐿 and ≤ are decidable and ∧ is computable) and bounded (i.e. it has a greatest element ⊤ such
that 𝑝 ≤ ⊤ for every 𝑝 ∈ 𝐿), 𝒟L is convex and decidable w.r.t. an FBox ℱ if L is well-founded or
ℱ is acyclic.

New Concrete Domains. Besides real intervals already mentioned above, we provide further hierar-
chical concrete domains based on 2D-polygons, regular languages, and graphs.

With a finite automaton A such that 𝐿(A) = Σ* ∘ {description logic} ∘ Σ*, the concept inclusion
ScientificArticle ⊓ (hasTitle ⪯A)⊑ DLPaper expresses that all scientific articles with a title containing
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Figure 1: Three graphs representing chemical compounds

“description logic” as substring are DL papers.
Structural formulas of molecules can be represented as labeled graphs. Each node is labeled with

the atom it represents, and the edges are labeled with the binding type (e.g. single bond, double
bond, etc.). The partial order ≤ is defined by 𝒢 ≤ ℋ if there is a homomorphism from ℋ to 𝒢, and
the meet of two graphs is their disjoint union. Figure 1 shows three exemplary graphs.1 Graph (c)
represents L-leucine, and we can integrate it into a knowledge base with the statement L-Leucine ≡
(hasMolecularStructure≤𝒢L-leucine). Moreover, the statement AminoAcid ≡ (hasMolecularStructure≤
𝒢carboxylic acid group) ⊓ (hasMolecularStructure ≤ 𝒢amino group) expresses that amino acids are organic
compounds that contain both amino and carboxylic acid functional groups. If 𝒦 is the knowledge
base consisting of the aforementioned statements, then 𝒦 |= L-Leucine ⊑ AminoAcid since 𝒢L-leucine ≤
𝒢carboxylic acid group ∧ 𝒢amino group.

Reasoning. Reasoning in ℰℒ can be done by means of a rule-based calculus [18, 25–27], and a
hierarchical concrete domain 𝒟L can be seamlessly integrated into this calculus. Compared to the
primal calculus [18, 25], it is only necessary to take the feature inclusions into account (which can now
be contained in knowledge bases). For integration into the improved calculus [26, 27] we only need to
add the following two rules responsible for interaction between concrete and logical reasoning (where
ℱ consists of all feature inclusions in the knowledge base).

R𝒟 :
𝐶 ⊑ (𝑓1 ≤ 𝑝1) · · · 𝐶 ⊑ (𝑓𝑚 ≤ 𝑝𝑚)

𝐶 ⊑ (𝑔 ≤ 𝑞)
: 𝒟L,ℱ |=

𝑚d

𝑖=1
(𝑓𝑖 ≤ 𝑝𝑖)⊑ (𝑔 ≤ 𝑞)

R𝒟,⊥ :
𝐶 ⊑ (𝑓1 ≤ 𝑝1) · · · 𝐶 ⊑ (𝑓𝑚 ≤ 𝑝𝑚)

𝐶 ⊑⊥ :
𝑚d

𝑖=1
(𝑓𝑖 ≤ 𝑝𝑖) unsatisfiable in 𝒟L,ℱ

W.r.t. p-admissible hierarchical concrete domains 𝒟L (e.g. the interval domain, or the convex-polygon
domain), the following reasoning tasks can be done in polynomial time: consistency, classification,
subsumption checking, instance checking, and concept satisfiability. If concrete reasoning in 𝒟L is
not tractable, then ontological reasoning in the pure ℰℒ part of the knowledge base is not affected
and still requires only polynomial time. However, the combined complexities of the aforementioned
reasoning tasks are then dominated by the complexity of concrete reasoning (e.g. non-deterministic
polynomial time with the graph domain, and exponential time with the regular-language domain or the
polygon domain).

Future Prospects. An interesting question for future research is whether non-local feature inclusions
𝑓 ≤𝐻(𝑅1 ∘ 𝑔1, . . . , 𝑅𝑛 ∘ 𝑔𝑛) would lead to undecidability or could be reasoned with, where the 𝑅𝑖 are
role chains. The operator must then be defined for lists of values, like in the non-local feature inclusion
combinedWealth⊆

∑︀
(hasAccount∘balance)+

∑︀
(holdsAsset∘value) over the interval domain, which

computes the aggregated wealth of a person or company. At first sight, it seems that the undecidability

1Graphs (a) and (b) are molecule parts whereas Graph (c) is a complete molecule, which cannot be a part of another molecule.
The lower left node in (a) and all outer nodes in (b) can match any element in a larger molecule, be it partial or complete. In
Graph (c) the skeletal formula is shown, where labels are optional for carbon atoms (C) and the hydrogen atoms (H) attached
to them.



proof for ℰℒ(𝒟Q2,aff) [22] cannot be adapted to this setting. (Mind the braces: (𝒟) instead of [𝒟] allows
for role chains in front of features.) The computation of canonical valuations must then take into
account the graph structure induced by the role assertions entailed by the knowledge base.

In general, it is unclear whether a hierarchical concrete domain is convex and decidable w.r.t. cyclic
FBoxes. According to our results for intervals and regular languages, convexity and decidability can
be ensured by approaches to solving systems of equations or inequations involving elements of the
underlying semi-lattice. This is still open for polygons and graphs.

Since hierarchical concrete domains are convex by design, they are also appropriate for other Horn
logics [28] such as ℰℒℐ [18], Horn-𝒜ℒ𝒞 [29], Horn-𝒮ℛ𝒪ℐ𝒬 [30], and existential rules [31] — extending
the chase procedure with support for them would be practically relevant. Interesting would further be
an empirical evaluation, at best with a clear separation of logical and concrete reasoning — especially
when tractable logics are equipped with intractable concrete domains. More hierarchical concrete
domains of practical relevance should be explored.
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