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Abstract
We demonstrate a principled way to query semistructured data by integrating natural language processing

capabilities into knowledge graph generation. We instantiate RML mappings with LLM queries to extract

ontological terms from plain text. We evaluate our approach on pharmaceutical data in JSON format.
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1. Introduction

The Ontology-Based Data Access (OBDA) framework [1] has provided the theoretical foundations

for representing data stored in a database as a knowledge graph – a collection of facts formulated

using high-level concepts and relationships. A standard formalism for describing knowledge graphs in

practice is the Resource Description Framework (RDF) [2]. Once the data has been represented as a

knowledge graph, it can be analysed using a formal query language with a well-defined semantics, for

instance such as SPARQL, a standard query language for RDF [3]. Importantly, for such structured data

representations and query languages, there is a guarantee that the answers are correct as long as the

data is correct.

A crucial component of the OBDA framework is mappings, which declaratively specify how knowl-

edge graph entities should be populated from values found in the data. Historically the prevailing

database management systems were relational, so originally OBDA was used to facilitate access to

relational data and the mapping languages were only concerned with relational data sources. R2RML,

the RDB to RDF Mapping Language, was developed as a W3C recommendation for specifying declarative

mappings from relational databases to RDF datasets [4]. With the advent of non-relational databases,

the OBDA framework has been extended to accommodate alternative data models [5, 6]. Likewise,

in line with the general trend of data in non-relational formats being widely available on the Web,

an extension of R2RML to support generic data sources has been under development, resulting in

RML [7, 8], the RDF Mapping Language. RMLMapper is a library for generating knowledge graphs

from various data formats, including CSV, JSON, and XML [9].

Despite the recent advances in accommodating a wider range of data formats, a fundamental assump-

tion when generating knowledge graphs following the OBDA principle is that the data are inherently

structured. However, a significant portion of data available on the Internet is, at best, semi-structured.

As a running example, consider online databases that catalogue medicines and information about

them [10]. Notably, information such as the name of a drug or its interactions with other drugs is

structured. Other bits of information, though, may come as unstructured text. For instance, “1 g,

every 4–6 hours; maximum 4 g per day” is a dosage information for paracetamol. In general, dosage

instructions may come in a variety of formats, even for the same drug, e.g., “1 g, every 4–6 hours, dose
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to be administered over 15 minutes; maximum 4 g per day”. Assuming a scenario where the goal is to

extract a knowledge graph from such a database in order to provide answers to pharmaceutical queries,

the dosage information would be expected to have a structured representation. This highlights the

necessity for extracting structured information from unstructured data.

The standard solution when dealing with unstructured data nowadays is to employ large language

models (LLMs)–natural language processing tools that excel at understanding and generating language

[11]. For instance, a state-of-the-art LLM would be capable of extracting the dosage amount and

recommended administration frequency from a dosage instruction string as above. In the context of

knowledge graph construction from text corpora, LLMs have been used for named entity recognition,

relation extraction, as well as for fact generation [12, 13, 14, 15, 16, 17]. Despite the advances, however,

the main challenge remains in terms of factual correctness of the extracted assertions, due to the

so-called hallucinations [18], the consequence of LLMs being essentially statistical models outputting

words that have high probability of continuing the current phrase. A pure LLM-based solution to

knowledge graph construction, therefore, may not be acceptable in a high stakes application, where

either the generated knowledge graph would be expected to be factually correct, or the correctness of

query answers would need to be easily verifiable.

To combine the best of two worlds, the ability of LLMs to intelligently process arbitrary natural

language and the correctness guarantees associated with the OBDA approach, we propose leveraging

LLMs in a more surgical fashion. Namely our methodology involves integrating LLM queries within

the RML mappings, where the input to the LLM is computed by the source part of a mapping rule and

the output of the LLM is used to generate RDF terms. There are several advantages of our approach

over an end-to-end LLM solution, where pharmaceutical queries are answered by an LLM directly over

the data sources. First, the LLM is not used to deal with information that is already structured and can

be processed using the standard RML rules. Second, the LLM is fed only short and focused snippets of

text, thus reducing the risk of confusing it. Finally, it allows for a more straightforward verification

of the correctness of the knowledge graph/query answers, as each fact generated by an LLM could be

annotated with the text used to extract it. To the best of our knowledge, this is the first such application

of LLMs in the OBDA context. The only other work that used LLMs within the OBDA framework

employed LLMs to generate mappings automatically [19]. Other information extraction techniques

have been used to convert textual documents to structured representations [20, 21], however these

techniques are less powerful than LLMs.

We instantiate and evaluate our approach on a Medicines Information (MI) use-case. We use a small

JSON dataset created to mimic the existing online MI datasets and a number of SPARQL queries. We

compare our approach to the pure LLM-based solution and to the pure RML-based solution. We assess

the correctness and completeness of the resulting knowledge graphs and of the query answers. Our

experiments show that integrating LLMs into RML results in fewer hallucinations than the pure LLM

solution, and as expected, makes more information available for structured processing comparing to

the pure RML solution.

2. Preliminaries

Knowledge Graphs. A Knowledge Graph (KG) is a structured representation of information in the form

of a graph, where nodes represent entities of interest, and edges represent the semantic relationships

between those entities. The Resource Description Framework (RDF) is a W3C-standard model for data

interchange on the Web and serves as the foundational representation format for specifying Knowledge

Graphs (KGs). In RDF, knowledge is encoded as a set of triples of the form (𝑠 𝑝 𝑜), where 𝑠 denotes the

subject, 𝑝 the predicate, and 𝑜 the object. The subject 𝑠 is either an Internationalized Resource Identifier

(IRI) or a blank node1
, the predicate 𝑝 is an IRI specifying the relationship, and the object 𝑜 is an IRI,

a blank node, or a literal2
. For example, the triple :aspirin :usage :indication1 expresses that

1

An unnamed resource

2

A concrete data value such as a string, number, or date



the drug aspirin has usage for an indication identified by the :indication1 IRI, whereas the triple

:dosage1 :amount "100"^^xsd:decimal states that the amount for the dosage entity :dosage1 is

100, where "100"^^xsd:decimal is an RDF literal with an associated datatype. An RDF graph is a finite

set of RDF triples. SPARQL is a standard query language for RDF [3].

Knowledge graph extraction from data. In traditional OBDA, one provides access to an (external)

relational database (DB) through an ontology, which is connected to the DB by means of mappings.
Given a DB schema 𝒮 and an ontology 𝒯 , a (GAV) mapping assertion between 𝒮 and 𝒯 is an expression

of the form 𝑞(𝑥⃗)⇝ 𝜏(𝑥⃗) where 𝑞(𝑥⃗) is a (SQL) query over 𝒮 , also called the source query, and 𝜏(𝑥⃗) an

RDF triple template over 𝒯 , also called the target query. A triple template (𝑓(𝑥⃗) rdf:type 𝐴), for a

class name 𝐴 in 𝒯 and a template function 𝑓 , asserts that the IRI computed as 𝑓(𝑥⃗) is an instance of

𝐴, whereas (𝑓(𝑥⃗) 𝑃 𝑓 ′(𝑥⃗)), for a property name 𝑃 in 𝒯 , asserts that 𝑓(𝑥⃗) is connected to 𝑓 ′(𝑥⃗) via 𝑃 .

Note that template functions are used to build IRIs, literals, or blank-nodes in an RDF triple.

Given a database instance 𝐷 of 𝒮 and a set ℳ of mapping assertions between 𝒮 and 𝒯 , we denote

by ℳ(𝐷) the KG generated by ℳ from 𝐷 (which is an RDF graph):

{(𝑓(𝑜⃗) rdf:type 𝐴) | 𝑜⃗ ∈ ans(𝜓,𝐷) and 𝜓 ⇝ (𝑓(𝑥⃗) rdf:type 𝐴) is in ℳ}∪
{(𝑓(𝑜⃗) 𝑃 𝑓 ′(𝑜⃗)) | 𝑜⃗ ∈ ans(𝜓,𝐷) and 𝜓 ⇝ (𝑓(𝑥⃗) 𝑃 𝑓 ′(𝑥⃗)) is in ℳ}.

In this paper, we follow the materialisation approach to query answering, i.e., SPARQL queries are

answered by a triplestore into which the generated KG is loaded (i.e., materialised). This is mainly

motivated by the fact that the data sources we target (such as online databases with API access to JSON

files) might not support arbitrary queries.

RML is a flexible, declarative language designed for specifying (GAV) mappings from heterogeneous

data sources to RDF. Building on R2RML, it extends support beyond relational databases to handle

JSON, XML, and CSV formats. Its modular architecture [22] includes the RML-core module
3
, which

inherits the core mechanisms of R2RML for RDF triple generation, and the RML-IO module
4
, which

enables access to diverse data sources by defining logical sources and providing a relational abstraction

for them.

The use of LLM queries in RML mappings is possible thanks to the RML-FNML module
5
, which

enables the specification of user-defined functions within triple maps (i.e., in the target of GAV-style

mappings). We can distinguish between two disjoint classes of function symbols: (i) uninterpreted
function symbols (e.g., IRI templates), and (ii) function symbols with associated semantics (e.g., concat
computing the concatenation of two strings, or an LLM query).

For conciseness and readability, throughout the paper, we adopt the mapping language of Ontop, a

popular Virtual Knowledge Graph system [23], for concrete examples of (RML) mapping rules. This

language closely aligns with the abstract syntax introduced in the previous section. Below is an example

of a mapping assertion in this syntax:

source SELECT m_id, name FROM medicines
target :med-{m_id} rdf:type :Drug .

:med-{m_id} :prefLabel {name} .

This example corresponds to two GAV-style mapping assertions. The template :med-{m_id} denotes

an uninterpreted unary function symbol applied to the database attribute m_id, while :Drug and

:prefLabel are IRIs in the target RDF graph. Assuming a database instance where the SQL query in

the source clause returns the tuple (m_id ↦→ "001-100", name ↦→ "Amoxicillin"), the mapping

generates the following RDF triples
6
:

:med-001-100 rdf:type :Drug .
:med-001-100 :prefLabel "Amoxicillin" .

3

https://kg-construct.github.io/rml-core/ontology/documentation/index-en.html

4

https://kg-construct.github.io/rml-io/ontology/documentation/index-en.html

5

https://kg-construct.github.io/rml-fnml/ontology/documentation/index-en.html

6

Expressed in Turtle syntax (https://www.w3.org/TR/turtle/).
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3. LLM-Enhanced Mappings with RML

The novel idea of this paper is to integrate LLMs into OBDA mappings so as to extract more structured

information from semi-structured data. Our approach leverages the expressiveness of the RML-FNML

module, which permits the specification of arbitrarily complex user-defined functions within mapping

assertions. This integration enables the dynamic extraction of structured facts from unstructured fields

at mapping time, while preserving the declarative nature of RML mappings. In this section we present

it conceptually. Then in Section 4 we instantiate it on a medicines information use-case.

To begin with, we define a logical source 𝑆 over the raw data (JSON documents in our case). For

our purposes, 𝑆 can be viewed as an instance of a relation over a fixed schema, where the attributes

correspond to references specified in the RML mappings for 𝑆. In 𝑆, we distinguish structured attributes,
the values of which can be directly mapped to RDF terms using standard RML templates, and unstructured
attributes, the values of which are free-text fields in natural language, so may require natural language

processing to meaningfully map them to RDF terms.

We assume a fixed LLM Λ. For simplicity, we abstract it as a total deterministic function from strings

to strings, where Λ(𝑠) denotes the output of Λ on an input string 𝑠. Furthermore, we introduce a

number of user-defined function symbols, such as getAnswerFromLLM and getFloatFromLLM, with

semantics parameterised by Λ. These function names are interpreted by querying Λ and then extracting

the answer of the expected type from the output of Λ. For example, assuming that toJSONObject
converts a string to a JSON object, the output of Λ is of the form “{"answer": ". . . "}”, and for a

JSON object 𝑜 = {𝑘 : 𝑣}, the expression 𝑜.𝑘 evaluates to 𝑣, the semantics of getAnswerFromLLM on a

string 𝑠 can be defined as:

getAnswerFromLLMΛ(𝑠) := toJSONObject( Λ(𝑠) ).answer

Now, for each property 𝑃 the value of which should be extracted from an unstructured attribute 𝑈 , we

assume to have a prompt template 𝜋𝑃 —an instruction string or a few-shot example. Then the expression

getAnswerFromLLM( concat(𝜋𝑃 , 𝑈) )

may appear as a term in the target of a mapping assertion for 𝑃 . Its semantics is as one would expect,

with 𝑈 evaluating to the textual content of attribute 𝑈 for a given tuple in 𝑆.

Finally, the definition of the generated KG ℳ(𝐷) should be extended to take into account Λ. It is

straightforward to do so; we omit it due to the lack of space.

Example Suppose 𝑆 contains an attribute doseInfo and we want to extract from it the value for

property hasDoseAmount. This can be done in an RML triple pattern of the form:

:med-{m_id} :hasDoseAmount getAnswerFromLLM(concat(PROMPT, {doseInfo})) .

where PROMPT is the string :

Produce output as a JSON string of format {"answer": DOSAGE_AMOUNT}.
Extract dosage amount:

For a value “1 g, every 4–6 hours; maximum 4 g per day” of doseInfo and 001-100 of a structured

attribute m_id, the generated RDF triple could be:

:med-001-100 :hasDoseAmount "1" .

4. Medicines Information Use-Case with LLM-Enhanced RML

In this section we demonstrate our approach on a medicines information use-case. We start with a

motivation for the use-case in Section 4.1 and then in Section 4.2 describe our full OBDA setup. All our

artefacts and code can be found at https://github.com/pharmaKG/rmlai.

4.1. Medicines Information

Annually, there is an estimated 66 million medication errors occurring within the NHS that are harmful

to patients. Each year, avoidable adverse drug events are estimated to cause or contribute to a thousand

https://github.com/pharmaKG/rmlai


{
"identifier": "apixaban",
"title": "Apixaban",
"breastFeeding": {

"specificInfo": "A risk cannot be excluded: animal studies shows presence in milk."
},
...
"sideEffects": {

"specificInfo": "Common: haemorrhage, contusion, epistaxis, haematoma. Uncommon: thrombocytopenia,
hypotension, post procedural haematoma."

},
"therapeuticPlan": [{

"indications": ["Treatment of deep-vein thrombosis", "Treatment of pulmonary embolism"],
"dosages": [{

"id": "4b59244d-c27d-4be2-a954-6a793f1c7cb0",
"patientGroup": "adult",
"detailedPatientGroup": "Adult",
"doseInfo": "10 mg taken twice daily for 7 days.",
"routeOfAdministration": "By mouth"

}]
}]

}

Figure 1: A fragment of the JSON document about Apixaban from our dataset.

deaths [24]. The use and application of medicines are often complex, requiring choosing the right

drug, its dosage, administration modality and considering interaction with the existing treatments or

conditions [25]. For instance, a nurse may need to know if a medication can be administered through a

nasogastric tube or if a particular drug is safe to use while breastfeeding. A consultant might inquire

about the occurrence of rare side effects.

To ensure proper use of medicines, medicines information (MI) departments exist to assist healthcare

staff and patients with their queries [26]. When an MI department receives a query, it is their respon-

sibility to sift through a number of dedicated online databases [10, 27, 28] to find accurate answers,

which then should be compiled into a document including all relevant references. A limitation of this

manual process is that even for relatively straightforward questions, it requires significant time, as each

database must be reviewed individually, and the answer must be properly collated and referenced.

Automating the MI delivery service, at least for basic enquiries, has the potential to reduce the

number of medication errors by providing access to timely and accurate medicines information to

health professionals. We demonstrate how our approach can be used towards this automation when the

medicines data comes as semi-structured information in JSON format. Our idea is to extract a KG from

the data using OBDA mappings, so that answering MI enquiries would amount to answering SPARQL

queries over the extracted KG.

4.2. The OBDA Setup

We describe our OBDA instantiation of the medicines information use-case.

Data. We assume that information about drugs is available in JSON format, where some part of

information is structured, while some information is given in the form of plain text, similarly to the

online databases such as BNF [10] and EMC [27]. For the experiments, we created JSON documents,

each stored in a separate file on the local file system, about 20 drugs providing (a subset of) information

on their usage (including patient group, indications, dosage, frequency), side-effects, as well as advice

for patients that are breastfeeding, pregnant, or have hepatic or renal impairment.

A fragment of one of such documents is shown in Figure 1. Here, the route of administration in

dosages is structured, given that it takes one of the possible values, “By mouth”. However the dosage

amount and frequency are stated in one string “10 mg taken twice daily for 7 days”. Advice for special

categories of patients and the side effects are unstructured as well.

We note that for the sake of our small scale experiment, there is always at most one entry in the

therapeutic plan and at most one entry in dosages. This does not restrict the scope of our methodology.



interactingDrug

2

Drug

+ prefLabel: string (1)
+ sideEffect: string (0..n)
+ sideEffectDesc: string (0..1)

usage 1..n

Usage

+ indication: string (0..1)
+ patientCondition: string
+ safetyLevel: string (1)
+ description: string (0..1)

Dosage

+ route: string (0..n)
+ description: string (0..1)
+ amount: decimal (0..1)
+ unit: string (0..1)
+ frequency: decimal (0..1)
+ duration: xs:duration (0..1)
+ group: string (1)
+ patientGroupDesc: string (0..1)
+ minAge: decimal (0..1)
+ maxAge: decimal (0..1)
+ ageUnit: string (0..1)
+ minWeight: decimal (0..1)
+ maxWeight: decimal (0..1)
+ weightUnit: string (0..1)
+ gender: string (0..1)

interactionDetail 1..n

DrugInteraction InteractionDetail

+ severity: string (0..1)
+ evidence: string (0..1)
+ description: string (0..1)

dosage 0..n

Figure 2: The UML class diagram for the Medicines Information ontology.

Also, we created auxiliary identifiers at various levels of the JSON documents to simplify the subsequent

linking of different entities (see, e.g., the id field inside dosages).

Ontology. We built a simple ontology to capture the data in our dataset along with a SHACL file that

defines the schema of a valid RDF graph. There are 5 classes and 24 properties, see Figure 2 for an

overview. For every drug there may be several usages, one for each indication and patient condition.

Usually, one usage is reserved for patients without special conditions. Further, there may be up to 4

different usage instances: for pregnant, breastfeeding and patients with hepatic or renal impairment.

These typically include a safety advice. Then, each usage is associated with dosage instances, one

for each patient group. Dosage information includes the route of administration, the amount, unit,

frequency and duration of the dosage, as well as the information pertaining to the patient group such

as gender and the age and weight ranges.

Note that the values for properties highlighted in bold are those that need to be extracted from

unstructured text. We refer to those properties as LLM-extracted properties. All IRIs and the rest of

the values can be extracted directly from JSON. We refer to properties the value for which could be

mapped directly from JSON as immediately accessible. When an entity has LLM-extracted properties,

the original unstructured string is stored in one of the description or xxxDesc properties.

Mappings We created RML mapping rules for all our classes and properties. For each class and

immediately accessible property, we created standard rules. For each LLM-extracted property, the

mapping rule involves a call to a user-defined function implementing an LLM query. For sideEffect
and safetyLevel prompts, we adopted a zero-shot prompting strategy, while for the remaining

properties a few-shot prompting strategy, where each prompt included few examples consisting of an

input and its corresponding expected output. The choice of the strategy was made based on initial

testing; a more thorough evaluation of different prompting strategies could be included in a future

work.

Below we provide mapping rules for the Dosage class, the route and amount properties (instantiated

for apixaban). For readability, we present them using the more concise Ontop-like notation:

source json_to_table("$.therapeuticPlan[*].dosages[*]", apixaban.json)

target http://drug.uk/dosage/{id} rdf:type drug:Dosage ;
drug:route {routeOfAdministration};
drug:amount grel:getFloatFromLLM(

grel:concat(DOSAGE_PROMPT, {doseInfo})
) .

The source declaration in the first line essentially creates a relation with the attributes

(id, patientGroup, detailedPatientGroup, doseInfo, routeOfAdministration), through a JSON-



path
7

query over the file “apixaban.json”. Each tuple in this relation corresponds to an element of the

dosages array (see Figure 1). In the target part, the first two rules are standard R2RML/RML rules. The

rule for the amount property states that the object value is computed as grel:getFloatFromLLM(𝑝),
where

∙ 𝑝 is the string obtained as the concatenation of the fixed string DOSAGE_PROMPT with the value of

doseInfo.

∙ grel:getFloatFromLLM is a user-defined function returning a decimal number. Its definition is

provided in the functions.ttl file that defines standard and custom functions used within RML

mapping rules to transform, enrich or filter data during the mapping process. In particular, this file

specifies the Java class and the name of the method within it implementing the actual call to the LLM

and extraction of the floating point value from its reply.

∙ DOSAGE_PROMPT is the following prompt template:

task: Extract dosage amount from the provided text.
output: a json string of format: {"response": DOSAGE_AMOUNT}. DO NOT RETURN ADDITIONAL EXPLANATIONS OR TEXT

OR MARKDOWN FORMATTING. Only JSON as string.
rule: DOSAGE_AMOUNT is a float value. And it should be a valid xsd:decimal. If no relevant information is

found in the text, DOSAGE_AMOUNT is null. Do not put null within double quotes.
example: if the text says 50mg daily, DOSAGE_AMOUNT is 50. if it says 50mg in 2 divided dose, as 50 divided

by 2 is 25, DOSAGE_AMOUNT is 25. if text says apply 1 millimeter, DOSAGE_AMOUNT is 1.
text:

5. Evaluation

In this section we evaluate our approach in terms of correctness of the generated knowledge graph and

of the answers to SPARQL queries over this graph. For all experiments, we employed three versions of

varying sizes of DeepSeek-R1-Distill-Qwen, an open-source LLM with reasoning capabilities [29], with

7, 14 and 32 billion parameters. We chose these models because they could be installed and run locally,

whereas their increasing sizes allowed us to explore the trade-off between their computational cost and

performance. All experiments were run on Intel Xeon Gold 5317 CPU with 32 cores and NVIDIA A100

GPU with 80GB memory.

5.1. Correctness of the Generated Knowledge Graph

We report our findings on the quality of the KGs generated using our OBDA setup, RMLMapper v7.3.3,

and the three LLMs.

For each LLM, we repeated the KG generation process three times to account for possible differences

in its outputs. Since for our tasks we were interested in a more deterministic behaviour of the LLMs, we

set the temperature parameter to 0. Typically, lower values of the temperature parameter correspond to

more deterministic behaviours of LLMs: 0 forces an LLM to output a word with the highest probability.

In our experiments, this ensured that all three runs for each LLM were identical. In what follows, all

statistics refer to one run for an LLM.

We now discuss the correctness of the LLM-extracted values (the ground truth was established

manually). Across 20 drugs, the total number of triples in the extracted RDF graph was 14,641. Out of

these, the object value of 963 triples was LLM-extracted. For each LLM, we summarise the number and

ratio of errors within LLM-extracted facts, as well as the ratio of errors in the context of the complete

RDF graph, and report the average generation time in Table 1. We also present a breakdown of the

errors per property together with the count of values to be extracted using LLM. The smallest model

performed worst (0.25% error rate for LLM-extracted values and 0.16% error rate for the whole graph),

and one run took around 13 minutes. The two bigger models performed similarly (0.05% error rate for

LLM-extracted values and 0.003% error rate for the whole graph), while DeepSeek-14b was about twice

faster than DeepSeek-32b.

7

https://en.wikipedia.org/wiki/JSONPath

https://en.wikipedia.org/wiki/JSONPath


DeepSeek-7b DeepSeek-14b DeepSeek-32b

Number and ratios of errors 237 / 0.25% / 0.16% 50 / 0.05% / 0.003% 53 / 0.05% / 0.003%

Generation time 13min 20min 40min

safetyLevel / 80 22 3 9
amount / 19 2 1 1

unit / 19 2 2 1
frequency / 18 2 1 1

duration / 19 6 2 2
sideEffect / 790 203 41 39

Table 1
Error number, ratio of errors out of extracted values and out of all RDF triples in the generated RDF graph, and
the generation time, per LLM (1 run). We also show the breakdown of errors per property; the number of values
to be extracted is shown next to the property name.

We cautiously consider our approach to be successful at generating “almost correct” knowledge

graphs from semi-structured information: 50 errors in 14,641 facts amount to 0.003% error rate. Although

we do not include a comparison with a pure LLM-based solution (left for future work), we conjecture

that such a solution would either produce significantly more errors than ours, or would require relying

on more advanced, and hence more expensive, LLMs. Another advantage of our solution is that it

guarantees the conformance of the generated graph with the ontology. For each LLM, the generated RDF

graph has successfully passed SHACL validation for the portion of the data available in our JSON dataset.

Whereas a pure LLM-based solution may produce RDF triples formulated using wrong vocabulary or

not satisfying integrity constraints.

5.2. Answers to queries

We now evaluate our approach in terms of SPARQL query answers over the generated RDF graphs,

and compare it to three other solutions to accessing data: (i) SPARQL queries evaluated over the

KG generated using ‘standard’ (i.e., not LLM-enhanced) RML mappings, referred to as SPARQL-over-

RML-KG; (ii) Natural language queries answered by LLM, referred to as NL-over-LLM; (iii) Natural

language queries answered by LLM, each over a single JSON document, referred to as NL-over-JSON.

In NL-over-LLM, we are essentially probing the knowledge acquired by LLM from the training data,

while NL-over-JSON follows a RAG-like (retrieval augmented generation) architecture, where LLM is

expected to pull relevant information from a provided document, a JSON document about a drug in our

case.

We selected 28 queries, loosely based on actual MI enquiries, to be answerable over our dataset. Each

query is over a specific drug. The first 8 queries are expected to return one of three values Yes, No or

Unknown. The latter value should be returned when there is no evidence to back up a positive or a

negative answer. The remaining 20 queries ask the dosage amount and unit for an indication, for each

of the 20 drugs in our dataset. The correct answers were determined by evaluating the queries of the

ground truth graph.

We employed zero-shot prompting strategy for the LLM queries in NL-over-LLM and NL-over-JSON.

Based on our initial experiments, we asked LLMs to provide an answer in a structured format. Below

are the zero-shot instructions we used for the dosage queries:

Rule:
- Provide the answer in a structured plain text JSON format
- JSON should contain "dosage amount" and "dosage unit" as keys and their respective values.
- Do not include any additional information or explanation.
- Do not provide JSON in markdown formatting. Only provide plain text JSON.

For SPARQL-over-RML-KG, there were two correct Yes answers, all other answers were Unknown
since the relevant data was not accessible when using standard RML mappings. Six of the unknown

answers coincided with the ground truth, therefore we consider that SPARQL-over-RML-KG returned



DeepSeek-7b DeepSeek-14b DeepSeek-32b

NL-over-LLM 24 / 110s 21 / 180s 21 / 300s
NL-over-JSON 14 / 90s 8 / 150s 6 / 330s

SPARQL-over-RML-LLM-KG 3 2 1

Table 2
Number of incorrect query answers out of 28, per query answering approach and LLM. For the natural language
queries, we report the average time it took to answer all 28 queries with LLMs.

20 incorrect answers. As for the approaches involving calls to LLMs, either for KG construction or for

direct query answering, we summarise the numbers of incorrect query answers in Table 2. Asking for

answers directly from LLMs results in over 20 errors for all three models. Providing LLMs relevant

information in a JSON file reduces the number of errors to 14 for the smallest, 8 for the medium and

6 for the largest models. The number of errors in SPARQL query answers over the three generated

graphs ranges from 3 for the smallest LLM, to 2 for the medium and 1 for the largest one.

This simple comparison shows that our approach advances the existing work along two dimensions.

First, with respect to the standard RML mappings, our LLM-enhanced mappings make more data

accessible for structured query answering, whose benefits include better explainability of the answers.

Second, providing LLMs with fine-grained context in LLM-enhanced mappings can reduce the risk

of incorrect answers, comparing to probing the implicit knowledge of an LLM as in NL-over-LLM,

or to providing a potentially much bigger context as in NL-over-JSON. Finally, though not currently

implemented, our approach allows for easy verification of query answers, by providing to the user

the original (relatively short) unstructured text from which the values involved in deciding the query

outcome were extracted. Arguably, verification in this case is more straightforward than in NL-over-

LLM or NL-over-JSON, where the user would have to look at a whole (possibly quite large) JSON

document.

6. Conclusions

In this paper, we presented a promising approach for generating Knowledge Graphs (KGs) from semi-

structured data by integrating LLM queries within RML mappings. Our method improves correctness

of query answers as opposed to an LLM-based solution to query answering, as demonstrated through

our preliminary experiments.

In the future, we plan to address the limitation of RMLMapper that prevents the simultaneous

extraction of semantically related property values, requiring each property to be extracted individually.

This may increase the risk of inconsistencies when these values are interpreted collectively. For instance,

“1 dose every 6 hours” is equivalent to “4 doses every day”. Therefore, two different LLM queries might

extract 1 as frequency and 1 as duration, resulting in an incorrect pair. Moreover, this constraint increases

the number of LLM queries, which in turn increases the overall KG generation time. To address these

issues, future work will explore using LLMs in the source component of mapping assertions, e.g.,

by relying on the RML-LV module
8
, which introduces the notion of logical views specifying virtual

relational schemas over data, and consequently allows for a two-stage mapping process.

In our experiments we materialised the whole KG. This would not be feasible in real life when

offering a fully-fledged solution to accessing online databases. Therefore, future work could look into

materialising only the portion of the KG relevant to answering the current query.
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