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Abstract
The relationships between a more general class of membrane systems, called kernel P systems, and other variants
of membrane systems are presented. The process of translating the main types of spiking P systems into kernel P
systems are analysed with respect to certain complexity metrics. Formal verification, through model checking,
and testing procedures are discussed for the models obtained from these mappings.
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Membrane computing is a natural computing paradigm inspired by the structure and bio-chemical
interactions of the living cells. The key models are called membrane systems or P systems. A standard
(basic) membrane system model consists of three main elements: (i) a set of components, called
membranes or regions, organised in a hierarchical structure and included in an outer membrane, called
the skin membrane; each region contains (ii) multisets of objects and (iii) evolution and communication
rules acting on the local objects, transforming or sending them to the regions from its vicinity. The
main membrane-based structure is inspired by the eukaryotic cell’s structure containing a nucleus
and specialised membrane-bound organelles such as mitochondria, endoplasmic reticulum, Golgi
apparatus. The objects encode either simple elements (hydrogen, oxygen, nitrogen, carbon, sulfur) or
bio-chemical compounds (carbohydrates, lipids, proteins, and nucleic acids) and the rules stand for
various interactions (chemical reactions, more complex transcription and translation, cell division and
cell death processes).
A membrane system is a theoretical (mathematical) model meant to provide a highly parallel and

distributed computing device with interactions amongst objects running in parallel both at the system
level and in each compartment. The computational power of many variants of this model is equivalent
to that of a Turing machine and, due to their highly parallel behaviour, time efficient solutions to many
difficult problems are provided.
The field has developed very fast on various research directions, with many classes of membrane

systems (P systems) being defined and investigated. These may be classified as cell-like, tissue-like and
neural-like P systems, corresponding to various system structures considered for the model. The most
important membrane computing variants, as well as key theoretical developments, connections with
other computational models and the most relevant applications, have been presented in a handbook [1]
and later on summarised based on various criteria in a survey paper [2].

A special type of P systems, called kernel P systems (kP systems, for short), has been introduced in [3]
in order to capture in a unified manner features of existing membrane computing models together with
new concepts, such as types and compartments instantiated from them, guarded rules using Boolean
conditions, creation and destruction of links between compartments, user defined execution strategy
for each component type. All these make the kP system model more amenable for describing different
problems occurring in various areas, from specific computer science topics, such as communication
and synchronisation [4], to applications in synthetic biology [5]. kP systems have been conceived as
a membrane computing model allowing to specify problems, verify the models correctness and test
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the implementations. They are supported by an expressive domain specific formal language allowing
the models to be simulated with a software framework, called kPWorkbench, which also includes a
verification component. A detailed presentation of this tool has been made in [6]. The modelling,
simulation, verification and testing aspects of kP systems have been presented in [4].
A class of neural-like P systems, called Spiking Neural P systems (SN P systems, for short), has been

introduced in [7], inspired by the neuro-physiological behaviour of neurons (in the brain) sending
electrical impulses along axons to other neurons. This class of P systems can be regarded as a special type
of spiking neural networks (SNNs), a special class of artificial neural networks mimicking more closely
the biological neurons. Similar to SNNs, SN P systems use discrete spikes as activation mechanisms.
SN P systems have been initally introduced as computing devices and then learning capabilities have
been added to them and used in various applications. A multitude of SN P system models have been
considered and investigated with features such as: anti-spikes and inhibitory synapses, inhibitory
rules, astrocytes, polarizations, with multiple channels, with weights and potential (threshold) and
many others. A survey of the main classes of SN P systems is presented in [8]. Theoretical results and
applications of SN P systems are discussed in a 2024 research textbook dedicated to this subject [9]. For
several of the above mentioned SN P systems have been considered different strategies for using the
rules as well as ways of encoding the results of the computation – the key topics in this respect have
been presented in [8].

In this work are first presented some relationships between, on the one hand, kP systems and, on the
other hand, neural-like P systems and membrane systems with active membranes. The main focus is on
describing how the classes of standard and extended SN P systems with and with no delay, with colored
spikes, multiple channels, anti-spikes, polarizations, weights on synapses, potential and threshold. are
mapped into kP systems exhibiting the same behaviour. Two types of encoding the computation results
and various strategies of using the rules that are defined and investigated for SN P systems are studied
in the context of kP systems as well. A logical gate example illustrates how different SN P systems and
their kP system counterparts can model the problem. Finally, a short presentation on how verification
and testing methods developed for kP systems can be used to formally verify the SN P system model of
the logical gate example and test its implementation.

Algorithms for translating each of the SN P systems investigated into corresponding kP systems are
provided and metrics to assess the impact of various features of the classes of SN P systems considered
on the complexity of their kP system representations are presented. Moreover, the instrumentation
provided by the kPWorkbench environment facilitates the verification of the model correctness, through
model checking methods, and the automated testing of the implementations based on the initial SN P
systems.

Some future research developments based on the work reported here are: (i) investigate relationships
between other classes of SN P systems and kP systems; (ii) extend the set of features of kP systems
such that they provide better mappings for the SN P systems, with respect to the complexity metrics
introduced; (iii) identify more complex examples or case studies based on SN P systems and apply
formal verification and testing procedures to their corresponding kP systems, tracing the results back
to the original models.
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