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Abstract

Neurosymbolic learning combines the representational power of neural networks with the data efficiency and
interpretability of symbolic methods. In this thesis, we investigate a hybrid approach using GOoGLENET as
a feature extractor and a random forest classifier trained on intermediate neuron activations. Focusing on
moderately small image datasets, we show that this combination can improve classification accuracy compared
to the neural network alone. Furthermore, we analyze the training time and find that the hybrid model can reach
the neural network’s peak accuracy in less time, depending on the layer used for feature extraction.
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1. Introduction

Neural networks (NNs) have driven major advances in machine learning across domains such as
computer vision, natural language processing, and bioinformatics. Their success stems from their ability
to learn high-level representations directly from raw data. However, this comes at a cost: training deep
networks often requires large datasets, significant computational resources, and dedicated hardware.

In contrast, traditional models like decision trees and random forests (RFs) offer an efficient training
procedure and strong interpretability. RFs, in particular, are competitive on small or tabular datasets,
often outperforming neural networks [1, 2]. Despite their simplicity, these models struggle with
high-dimensional unstructured data, such as images or text, where deep networks excel.

This motivates neurosymbolic learning, a paradigm that combines the representational power of NNs
with the efficiency of symbolic or rule-based methods. In this work, we investigate a hybrid architecture
where a random forest classifier is trained on intermediate activations of a pretrained neural network.
We focus on small-scale image datasets (1,000 and 10,000 samples).

It is known that an appropriate combination of a neural network and a symbolic classifier leads to
increased accuracy. In this work, we take it a step further and aim to explore how to best construct
such a combination. Specifically, we aim to answer the following research questions:

1. Which layer is the best for increasing accuracy or reducing training time without a significant
loss in accuracy?

2. How many epochs are needed to achieve the goal?

3. Do we need the activations of all neurons in a layer?

We evaluate this hybrid setup using GOOoGLENET [3] as a feature extractor and train RFs on selected
subsets of activation layers. Our findings suggest that combining lightweight neural feature extraction
with fast tree-based classifiers is a promising direction, particularly in low-data scenarios.

This article is based on research conducted as part of the Master’s thesis [4].
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2. Related Work

The relation between neural networks and decision trees (and random forests) has been studied multiple
times [5, 6]. The main motivation to combine these methods is to increase the interpretability of the
resulting model, increase accuracy or adapt NNs for problems with small datasets. [7] presents a well
organised survey of neural trees—the different combinations of NNs and DTs.

One common direction uses NNs as feature extractors, feeding intermediate activations into tree-
based models. This allows the NN to learn high-level representations, while the tree model performs
final classification. For example, [8, 9] trained RFs on the final layer of convolutional neural networks
(CNNs) for medical and aerial image classification, reporting higher accuracy and better robustness,
especially on small datasets.

Neural-backed Decision Trees [10] integrate soft decision trees into the architecture by reshaping
the NN’s final layer into a WordNet-aligned hierarchy, yielding interpretable misclassification paths
without sacrificing performance.

A setup closer to ours is presented in [11], where RFs are trained on full-layer activations from
multiple levels of a CNN, and their outputs are aggregated via voting. This leverages both low-level
and high-level features.

In contrast to prior work, we systematically evaluate which layers are most effective for hybrid
NN-REF classifiers, aiming for faster training and high accuracy with limited data. We also explore the
possibility of combining different neuron activations from various layers and epochs.

3. Hybrid Classifier

We study a hybrid classification model that combines deep neural networks with random forests. The
NN serves as a feature extractor, while the RF acts as the final classifier.

To train the model (see Algorithm 1), we fine-tune a pretrained GooGLENET on an image classification
task. During training, we periodically extract activations from five selected layers. These span from
early convolutional outputs to the final logits. The collected activations serve as input features for a
random forest classifier. The training alternates between updating the NN and training the RF on the
neural network’s activations.

During inference, samples are passed through the NN, and the RF uses the selected activations to
predict the final class label.

Algorithm 1 Training Hybrid NN-RF Classifier
Require: Training dataset D45, set of NN layers L, stopping criteria stopping_criteria
1: Initialize neural network 4" (®)
2: for epocht = 1to codo
3. Train #/® on Dirain from N 1) for one epoch
Extract activations &/® from layers L on Diyain
Train a RF % on some subsets of Uieo..,td(i)
if stoppingfcriteria(/l/(t), %) then
return J/ (t), F
end if
end for

4
5
6:
7.
8
9:

3.1. Neural Network Setup

We use the PyTorcH implementation of GooGLENET, selected for its moderate size and compatibility
with freely available GPU environments. The original final layer is replaced with a new fully connected
layer, initialized with Kaiming Uniform. All layers are fine-tuned using the Adam optimizer (learning
rate is fixed at 0.001), batch size 64, and cross-entropy loss. Auxiliary classifier heads are removed.



We extract activations from five layers (Table 1) distributed throughout the network to study the
effect of feature depth.

Table 1

Selected GooGLENET layers on which we will study the performance gains. Layer Name refers to the name of the
module in the implementation of GooGLENET in PYTorcH. Layer Size represents the total number of neurons in
the selected layer.

Layer Name Layer Size
maxpool2 150,528

maxpool3 94,080

maxpool4 40,768

dropout 1,024
fc 10

3.2. Random Forest Settings

The RF classifier is implemented using scIKIT-LEARN. We fix the number of trees to 100 and maximum
tree depth to 20, based on preliminary tuning on FAsH1oN-MNIST. These hyperparameters remain
constant across all experiments to ensure consistency. RFs are trained on flattened layer activations
stored during NN training.

3.3. Datasets

We evaluate the hybrid classifier on three small-to-moderate image classification datasets:

+ Fasaion-MNIST [12]: 10 grayscale clothing classes.
« EMNIST (letters) [13]: 26-class handwritten character grayscale dataset.
« CIFAR-100 [14]: 100-class colored object dataset.

All datasets are resized to 224x224 pixels. Grayscale images are converted to 3-channel RGB format.
Inputs are normalized using IMAGENET statistics [15]. Since we focus on moderately small datasets
only, the accuracy scores and training times are reported for random 1,000- and 10,000-sample subsets,
averaged across multiple random selections.

4. Results

This section presents the empirical findings from our experiments comparing the performance and
training efficiency of hybrid models to those of a fully trained GooGLENET and a conventional fully
trained Random Forest.

We evaluate classification accuracy, training time!, and performance stability using different neural
network layers and their combinations. The experiments include two specializations of Algorithm 1,
where some subsets refers to:

« Single-layer evaluation: A separate RF is trained on activations from a single layer of
GooGLENET from the most recent epoch to identify the most informative layers.

« Multi-layer and cross-epoch evaluation: Activations from multiple layers and epochs are
aggregated to find minimal configurations achieving strong performance with minimal training
time.

!Measured on Intel(R) Xeon(R) CPU @ 2.00GHz and Tesla T4 GPU.



4.1. Main Findings
Our results show that:

1. A random forest trained on activations from a single layer of a NN can exceed the NN’s classifi-
cation accuracy, with the effect being more pronounced for deeper layers—at the cost of longer
training time.

2. This hybrid architecture can match the NN’s performance in less time, showing that this approach
is viable in dynamic environments or prototyping.

3. We have also found that full-layer activations are often unnecessary; subsets of layers are equally
informative and allow training time savings without loss in performance.

4.2. Baseline
To establish a baseline, we evaluated GOOoGLENET trained end-to-end using cross-entropy loss and an

RF trained directly on flattened input images. The results are in Table 2.

Table 2
Comparison of test accuracy score and training time of GooGLENET (NN) and RF. Highlighted are the best
accuracy scores for each dataset and sample size split.

Dataset Size ‘ Method Acc Time (s)
1,000 NN 0.760 40.8
1,000 RF 0.798 0.9
FasHion-MNIST 0000 | NN 0.887 612.0
10,000 RF 0.849 1.1
1,000 NN  0.811 75.0
1,000 RF 0.645 0.9
EMNIST 10,000 | NN 0917 500.0
10,000 RF 0.803 8.6
1,000 NN 0.071 100.0
1,000 RF 0.081 1.2
CIFAR-100 10,000 | NN 0328 882.0
10,000 RF 0.162 96.3

RF trained on raw pixels generally underperforms GooGLENET, with two exceptions: 1,000-sample
Fasu1oN-MNIST and 1,000-sample CIFAR-100, where GooGLENET struggles due to insufficient data.
However, RF trains substantially faster, 1-2 orders of magnitude faster in some cases.

4.3. Single Layer Evaluation

We evaluated RFs trained on the activations from individual layers of a pre-trained GOOGLENET.
Specifically, for each pre-selected layer, we trained a separate RF to assess how informative different
stages of neural network processing are for downstream tasks. This setup allows us to probe the
representational quality of features extracted at various depths of the network. The performance of
these models is summarized in Table 3.

Across all datasets, the hybrid NN+RF models consistently achieved higher accuracy, with im-
provements ranging from 2% to 6%. These results validate our core hypothesis and align with prior
findings [8, 9, 11], where forests were shown to benefit from intermediate neural features.

Interestingly, the observed gains in accuracy and training efficiency were strongly dependent on
the selected layer. Shallower layers tended to converge more quickly, but deeper—and often sparser—
layers such as dropout or maxpool4 ultimately delivered better predictive performance. This suggests
that mid-to-deep layers strike a favorable balance between feature richness, dimensionality, and training
time, especially when training a single-layer RF.



Table 3

Training times and achieved accuracy for the trained GoocLENET (NN) and random forests trained on
intermediate layer outputs. Method refers either to the NN or contains the name of the layer the RF
was trained on, followed by the peak Accuracy by this method on the given dataset. Time contains the
total training time for the method to achieve the peak accuracy. Match NN represents the time needed
to match the performance of GooGLENET.

Dataset Size ‘ Method | Accuracy ‘ Time (s) ‘ Match NN (s)
NN 0.887 612.0 -
fc 0.900 786.0 235.8
10,000 | dropout 0.905 1030.0 309.0
maxpool4 0.900 2110.0 633.0
) maxpool3 0.880 843.0 843.0
FAsHION-MNIST maxpool2 0.860 225.0 -
NN 0.760 40.8 -
fc 0.800 66.4 24.9
1,000 dropout 0.800 47.5 19.0
maxpool4 0.820 73.0 14.6
maxpool3 0.810 12.9 12.9
maxpool2 0.800 13.8 13.8
NN 0.917 500.0 -
fc 0.923 972.0 405.0
10,000 | dropout 0.935 1045.0 209.0
maxpool4 0.923 874.0 437.0
EMNIST
NIS NN 0.811 75.0 -
fc 0.848 1134 56.7
1,000 | dropout 0.870 140.0 50.0
maxpool4 0.849 245.0 70.0
NN 0.328 882.0 -
fc 0.310 1827.0 -
10,000 | dropout 0.330 2790.0 2635.0
maxpool4 0.210 5020.0 -
CIFAR-100 NN 0.071 100.0 -
fc 0.073 198.0 135.1
1,000 dropout 0.080 280.0 144.9
maxpool4 0.084 512.2 37.3

The hybrid approach also exhibited notably lower variance across runs, indicating more stable
training dynamics. As illustrated in Figure 1, the NN+RF method consistently outperformed the NN
baseline at nearly every epoch, maintaining a lead until convergence. This increased stability can
be attributed to the RF’s ability to mitigate the effects of noisy or suboptimal mini-batch selections
during NN training—an issue especially pronounced in smaller datasets. By decoupling the prediction
mechanism from stochastic gradient updates, the RF introduces an ensemble-based smoothing effect
that dampens variance across training seeds.

Furthermore, the combined NN+RF approach maintains a consistent accuracy advantage across
epochs. Although both the NN and hybrid methods tend to converge toward similar final performance,
the RF-enhanced models often sustain a small but measurable lead. This suggests that RFs are particularly
effective at leveraging the internal representations learned by NNs—sometimes even more so than linear
classifiers typically used at the output layer.

Taken together, these results demonstrate that using RFs on top of neural features can provide both
accuracy and stability gains, especially in scenarios with limited data or noisy optimization dynamics.
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Figure 1: Test accuracy score for the FAsHION-MNIST dataset with 1,000 (left) and 10,000 (right) samples.
The x-axis corresponds to training epochs. The solid line represents the mean of five independent runs;
the shaded region shows the min-max range. Epoch zero corresponds to the pre-trained GooGLENET
model with no fine-tuning. The black line indicates the NN performance, while the colored lines
correspond to RFs trained on various layers. All models show improving accuracy, with the hybrid
NN+RF setup consistently outperforming the pure NN baseline throughout training.

The approach requires no retraining of the neural network and can be flexibly applied to various
intermediate layers, making it a lightweight and robust enhancement to existing NN pipelines.

4.4. Multi-Layer and Cross-Epoch Evaluation

We further examined whether the random forest could perform well when trained on only a subset of
neuron activations from a pre-trained neural network. All experiments in this section were conducted
on the FAsH1oN-MNIST dataset, using a 1,000-sample subset due to memory constraints. We also
adjusted the RF configuration by setting min_samples_leaf = 5, which encourages generalization by
limiting the size of individual branches.

Surprisingly, training on as few as 1-10% of a layer’s total neurons was often sufficient to match
the accuracy obtained using the whole layer (Figure 2). This suggests a high degree of redundancy
in the learned representation, and supports the idea that compact activation subsets can generalize
effectively—particularly in low-data regimes.

Fashion-MNIST Accuracy vs Number of Neurons
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Figure 2: Accuracy score for different sizes of activation subsets from a fixed layer, on FAsHION-MNIST (with
1,000 samples). Results are averaged across multiple random selections. While all ten neurons are needed for the
final fc layer, for other layers, the accuracy reaches a plateau well before the full layer size is considered. E.g. for
maxpool3 layer, the 1,000 neuron subset behaves similarly to the full, 94,080 neurons wide layer.

We then explored randomly sampled configurations that draw neurons from multiple layers and
epochs. As shown in Figure 3, most of these configurations outperformed the NN baseline in terms of



Table 4
Top RF configurations using subsets of neuron activations from GooGLENET.

Epoch Layer Neurons ‘ Accuracy ‘ Time (s)
1 maxpool2 500
1 maxpool3 300 0.798 129.0
5 maxpool3 50,000
3 maxpool3 1,000 0.782 %4
3 dropout 10
1 maxpool3 10,000
2 maxpool3 10 0.768 999
2 maxpool4 5
2 fc 10

accuracy, with training time primarily influenced by the number of epochs and the size of the feature
set. Notably, high-performing configurations often included neurons from at least one later epoch,
reinforcing the benefit of deeper or better-trained features. Poorer configurations, by contrast, tended
to involve only very deep (but not fully trained) layers or very small feature sets (less than 100 neurons).
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Figure 3: Maximal accuracy score for different combinations of layers and epochs, for FASHION-MNIST with
1,000 samples. The GooGLENET ’s performance is shown in the dashed line. The points are colour-coded based
on the maximal epoch used in the combination—which is, alongside the feature set size, proportional to the
training time.

Table 4 summarizes three top-performing configurations, balancing accuracy and training time.
These results highlight the effectiveness of combining moderate numbers of neurons from well-trained
intermediate layers.

Additionally, we found that the out-of-bag score of the RF strongly correlates with test accuracy
across datasets, offering a practical alternative to held-out validation sets or a proxy for early stopping.

These findings suggest that with smart selection of activation subsets—preferably from mid-to-deep
layers and later training epochs—it is possible to build compact, efficient, and competitive hybrid models

5. Discussion

We observed that deeper layers yielded better RF performance, in line with how NNs operate: early
layers capture low-level features, while deeper layers encode task-relevant abstractions. Surprisingly,
even randomly chosen subsets of activations provided sufficient signal, suggesting redundancy in
representations and hinting at opportunities for feature selection and dimensionality reduction.



Several limitations remain. The RFs are trained offline, requiring all activations to be stored, thus
limiting scalability. We also used random feature sampling rather than principled selection methods.
Furthermore, we evaluated only one architecture (GooGLENET), and did not explore how transferable
the findings are to others. Finally, although RFs offer improved interpretability over NNs, we did not
attempt to extract symbolic rules or explanations from them.

Importantly, our findings suggest that full convergence of a network may not be necessary if inter-
mediate representations are already informative—opening the door to faster, hybrid learning pipelines
in constrained environments.

It is worth mentioning that our approach parallels concept probing from XAI, where intermediate
activations are used to detect specific concepts via simple classifiers [16]. Like concept probes, training
a random forest on a layer’s outputs can reveal which features or abstractions the network has learned,
highlighting the informational content of each layer.

6. Conclusion

We presented a neurosymbolic approach that combines convolutional neural networks with random
forests by training the latter on intermediate network activations. This hybrid method leverages the
feature extraction capabilities of neural networks and the data efficiency of classical models.

Experiments across several image classification tasks demonstrated that random forests trained on
deeper neural activations consistently outperformed those trained on raw inputs and, in low-data
regimes, even rivaled the neural networks themselves. Moreover, using only a subset of activations was
often sufficient, reducing training time without sacrificing accuracy.

These findings highlight that intermediate neural representations carry a significant signal and that
symbolic models like random forests can effectively exploit them. Our results support the broader vision
of neurosymbolic learning: combining neural and symbolic methods can offer favorable trade-offs
between accuracy, interpretability, and computational efficiency.
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