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Abstract

Bipartite graphs naturally arise in structured data applications such as recommendation systems and knowledge
graphs. While Graph Neural Networks (GNNs) excel when rich node features are available, many real-world
scenarios lack such features, leaving only structural information. This raises a fundamental practical question:
How should practitioners approach method selection for learning on feature-poor bipartite graphs? We develop
a systematic framework grounded in five empirical hypotheses about method effectiveness, validated through
comprehensive comparison of 16 methods across six real-world datasets. Our results reveal that method effec-
tiveness is highly dataset-dependent, with no single approach dominating all scenarios. Traditional methods
like Label Propagation provide excellent starting points due to their computational efficiency (2-3 orders of
magnitude faster), while well-established GNNs like HGCN offer competitive performance when additional
resources are available. Our framework provides systematic guidance through four tiers of increasing complexity,
with clear decision points based on confident prediction assessment and resource allocation principles that address
real-world deployment constraints.
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1. Introduction

Graph Neural Networks (GNNs) have demonstrated remarkable success for learning on graph-structured
data when rich node features are available. However, many real-world bipartite graph scenarios—in-
cluding recommendation systems, citation networks, and knowledge graphs—naturally lack meaningful
node features, leaving only structural information for learning. This characteristic fundamentally
challenges the conventional assumption that GNNs consistently outperform traditional graph learning
methods, since their primary advantage of joint structure-feature learning is diminished. Moreover,
GNNss introduce practical limitations that become pronounced in feature-poor scenarios: extensive
computational requirements (2-3 orders of magnitude higher than traditional methods), complex hy-
perparameter optimization, and implementation challenges that may not be justified when their core
advantage is reduced. This raises the fundamental question: How should practitioners systematically
approach method selection for learning on feature-poor bipartite graphs?

We address this challenge by developing a systematic framework grounded in five empirical hypothe-
ses about method effectiveness in feature-poor scenarios. Our comprehensive evaluation compares 16
methods across six real-world datasets, revealing that method effectiveness is highly dataset-dependent
with no universal winner across scenarios. Traditional methods like Label Propagation provide excel-
lent starting points due to their computational efficiency and reliable optimization, while established
GNNss offer competitive performance when additional resources are justified. Our key contribution is a
four-tier progression framework with clear decision points based on confident prediction assessment,
enabling practitioners to balance performance requirements against computational constraints and
implementation complexity in real-world deployment scenarios.
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Paper Organization: We formalize the bipartite graph learning problem, then present our hypothesis-
driven framework for systematic method selection. Related work provides tier-based method catego-
rization and dataset context, followed by empirical evidence supporting our framework hypotheses and
conclusions with future research directions.

2. Problem Formulation

2.1. Notation and Definitions

We consider bipartite graphs G = (U, V, E) where U and V are disjoint node sets and E C U x Vrepresents
edges. The bipartite structure is characterized by the incidence matrix H € {0, BUXVI where Hj=1
if there exists an edge between y; € Uand v; € V. No additional node features are provided beyond
structural information encoded in H.

Methods requiring unipartite graph input (such as GraphSAGE or label propagation) convert the
bipartite graph to a unipartite representation using the adjacency matrix
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For node u; € U, we denote its neighborhood in Vias N(w;) = {v; € V : Hj; = 1}. Feature-based methods
first compute dense node representations through techniques such as matrix factorization or spectral
embedding of H. Computation of dense representation introduces additional computational overhead
compared to methods. These methods operate directly on the sparse structural information and they
use one-hot feature matrix (H) representation.

We examine two fundamental learning tasks on these feature-poor bipartite graphs:

Classification Task: Given a training set T C U with known labels, we predict labels for nodes in U.
Performance is measured using classification accuracy, which assesses average performance across all
predictions.

Retrieval Task: For datasets with multi-class labels, we formulate retrieval as a series of one-
versus-rest binary classification problems. For each class ¢ € {1, 2,...,C}, given a training set THcU
containing only positive examples for class ¢, methods must retrieve the top-k nodes most likely to
belong to class ¢. Performance is measured using Precision@k (P@k), which assesses performance
where models are most confident. The final retrieval performance is computed as the average over all
classes: P@k = ézcczl P@k,.

2.2. Problem Statement

The central research question addressed in this paper is: How should practitioners systematically select
methods for learning on feature-poor bipartite graphs, where Graph Neural Networks lose their primary
advantage of joint structure-feature learning?

This question becomes particularly relevant because:

« GNNs typically require dense feature representations, making them computationally expensive
compared to methods that operate directly on sparse structural information

« Traditional graph methods may offer competitive performance with significantly lower computa-
tional overhead and greater reliability

« The absence of rich node features challenges the conventional assumption that GNNs consistently
outperform traditional approaches

Rather than focusing on developing new algorithms or providing theoretical analysis of method
capabilities, this paper addresses the practical challenge of efficient method selection in resource-
constrained settings. Our goal is to provide systematic, evidence-based guidance that helps practitioners
navigate the trade-offs between computational cost, implementation complexity, and performance
across different method categories.



Scope and Contribution: This work focuses specifically on providing practical method selection
guidance through systematic empirical analysis. We aim to share actionable insights that inform
decision-making when computational budgets, implementation timelines, and optimization resources
are limited—constraints that are common in real-world deployment scenarios but often overlooked in
academic evaluations focused primarily on performance maximization.

3. Method Selection Framework for Feature-Poor Bipartite Graphs

Based on our comprehensive empirical analysis across six bipartite graph datasets, we present a sys-
tematic framework for method selection that addresses the core challenge practitioners face: efficiently
navigating the trade-offs between computational cost, implementation complexity, and performance
when Graph Neural Networks lose their primary advantage of joint structure-feature learning.

3.1. Empirical Hypotheses

Our framework is grounded in five key hypotheses derived from systematic evaluation across diverse
bipartite graph scenarios. These hypotheses form the theoretical foundation for our practical guidance,
with confidence levels reflecting the strength of supporting evidence from our empirical study.

Hypothesis 1: No Universal Winner. Method effectiveness is fundamentally dataset-dependent in
feature-poor bipartite graphs, with no single approach consistently dominating across all scenarios.
This hypothesis provides the core motivation for systematic evaluation rather than assuming GNN
superiority across all bipartite graph learning tasks.

Hypothesis 2: Implementation Maturity Effects. Implementation reliability and optimization stability
often outweigh theoretical performance advantages, particularly for specialized methods lacking stan-
dard library support. Methods requiring extensive custom implementation frequently exhibit reliability
issues that limit practical applicability.

Hypothesis 3: Dense Feature Extraction Trade-off. Dense feature extraction through matrix factor-
ization or spectral embedding could provide performance benefits but at 2—-3 orders of magnitude
computational cost compared to methods operating directly on sparse structural information. This
trade-off defines a natural complexity boundary in method selection.

Hypothesis 4: Simple Method Failure Principle. If simple methods fail to achieve reliable performance
on confident predictions, complex methods rarely provide significant improvements. This principle
guides the critical decision between method progression versus data quality improvement.

Hypothesis 5: Optimization Budget Constraints. With realistic hyperparameter optimization bud-
gets, systematic progression through increasing complexity tiers typically provides better return on
investment than directly applying the most sophisticated methods. Simpler methods benefit from more
thorough optimization within fixed time constraints.

3.2. Four-Tier Method Selection Framework

Our framework organizes methods into four tiers of increasing implementation complexity and compu-
tational requirements. Each tier boundary is motivated by specific empirical hypotheses:

Tier 1 - Structural Baselines: Methods operating directly on bipartite graph structure using one-hot
representations (CSP [1], Label Propagation, One-Hot Logistic Regression). Motivated by Hypothesis 3:
These approaches avoid the computational overhead of dense feature extraction while providing rapid
feasibility assessment with straightforward hyperparameter optimization.

Tier 2 - Traditional ML Methods: Traditional machine learning methods requiring dense feature
extraction (Feature-based Logistic Regression, Random Forest, MLP) and simple single-layer neural
networks (HGCN [2]). Motivated by Hypotheses 3 and 5: These methods accept the computational
cost of feature preprocessing but maintain manageable configuration spaces that benefit from thorough
optimization within realistic time constraints.



Tier 3 - Established Graph Neural Networks: Well-established GNN architectures with large configura-
tion spaces (e.g. HGCN with multiple layers [2], HyperND [3], etc.). Motivated by Hypotheses 2 and 5:
These methods offer sophisticated graph-aware learning through reliable implementations, but their
extensive hyperparameter spaces require significant optimization resources that may limit practical
advantages.

Tier 4 - Specialized Experimental Methods: Methods specifically designed for feature-poor scenarios
but lacking mature implementations (VilLain [4], Subgradient methods [5]). Motivated by Hypothesis
2: These approaches may offer theoretical advantages but present implementation challenges and
reliability concerns that limit practical deployment.

3.3. Systematic Selection Strategy

Our framework provides clear decision points based on the empirical hypotheses:

Phase 1 - Initial Assessment: Identify whether Tier 1 methods can handle “simple examples”—test
instances that are very similar to training examples according to the given structural representation.
If they demonstrate this fundamental capability, proceed to Phase 2 for systematic enhancement. If
not, focus on data quality improvement by enhancing the representation (either through improved
graph construction or additional features). This assessment can be operationalized through sufficient
retrieval performance on confident predictions (start with P@100 < 0.5 for identification of insufficient
performance, but adapt this threshold to your specific problem characteristics). This principle reflects
Hypothesis 4: when simple methods fail on their most confident predictions, complex architectures
rarely overcome fundamental task limitations.

Phase 2 - Progressive Enhancement: Based on Hypothesis 5: When Tier 1 methods demonstrate fun-
damental capability but insufficient performance for application requirements, progress systematically
through higher tiers. Each tier transition should be justified by clear performance requirements that
outweigh increased computational costs and optimization complexity.

Resource Allocation Guidance: Based on Hypotheses 2 and 5. Allocate optimization effort proportion-
ally to method reliability - invest heavily in Tier 1-2 hyperparameter exploration, moderately in Tier 3
given large configuration spaces, and cautiously in Tier 4 given implementation uncertainties.

3.4. Framework Validation and Limitations

Our empirical evaluation demonstrates that this systematic approach effectively captures performance-
complexity trade-offs across diverse bipartite graph scenarios. The framework successfully identifies
when simple methods suffice (high confident prediction performance) versus when sophistication is
warranted (clear progression benefits).

Confidence Assessment: Hypotheses 1-3 receive strong support across all evaluated datasets, while
Hypotheses 4-5 show consistent but more limited evidence requiring broader validation. The framework
principles appear robust, but specific thresholds and decision points may require adaptation for different
domains or task characteristics.

Practical Impact: When the framework’s assumptions hold, it enables efficient resource allocation and
reduces the risk of over-engineering solutions for tasks where simple methods suffice. When assump-
tions fail, systematic evaluation through the tier structure still provides valuable comparative insights
while avoiding premature commitment to complex approaches. If medium-confidence hypotheses (4-5)
prove invalid in specific scenarios - for example, if complex methods succeed when simple methods
fail on confident predictions, or if extensive optimization consistently improves complex method per-
formance - practitioners should adapt resource allocation and decision thresholds accordingly while
maintaining the systematic tier-based evaluation structure.

This framework transforms our empirical findings into actionable guidance while acknowledging
the need for continued validation across broader domains and graph types. The systematic progression
strategy addresses real-world constraints of limited computational budgets and optimization time while
providing clear decision points for when to invest in increased method sophistication.



Table 1

Method categorization and key characteristics driving tier assignment

Method

Key Characteristic

‘ Tier Rationale

CSP [1]

Label Propagation

One-hot Logistic Regression
One-hot Naive Bayes

Parameter-free, direct structure
One-hot, small config space
One-hot, standard ML
One-hot, standard ML

No optimization needed

Fast, reliable optimization
Well-understood hyperparams
Well-understood hyperparams

Feature-based Logistic Regression
Feature-based Random Forest
Feature-based Naive Bayes

MLP

HGCN (1-layer)

Dense features, manageable config
Dense features, moderate config
Dense features, manageable config
Dense features, neural baseline
Simple GNN, small config space

Feature extraction + simple ML
Moderate complexity increase
Feature extraction + simple ML
Structure-agnostic neural
Limited architectural complexity

HGCN (multi-layer)

Complex GNN, large config space

Extensive hyperparameter tuning

GraphSAGE Established GNN, reliable impl. Large config, reliable library

HCHA Established GNN, reliable impl. Large config, reliable library
UniGCNII Established GNN, reliable impl. Large config, reliable library
EHGNN 3 Advanced GNN, extensive config Sophisticated but well-implemented
HyperND Advanced GNN, extensive config Sophisticated but well-implemented
AllSetTransformer Advanced GNN, extensive config Sophisticated but well-implemented
AllSetTransformerNormalized Advanced GNN, extensive config Sophisticated but well-implemented
AllDeepSets Advanced GNN, extensive config Sophisticated but well-implemented
AllDeepSetsNormalized Advanced GNN, extensive config Sophisticated but well-implemented
VilLain 4 Custom implementation required Implementation challenges

Subgradient No standard library support Reliability concerns

4. Related Work

Having established our problem formulation and framework, we position our work within the broader
landscape of bipartite graph learning methods and systematic approach selection for machine learning
tasks.

4.1. Evolution of Bipartite Graph Learning Methods

The development of bipartite graph learning methods follows a natural progression of increasing
sophistication that aligns with our tier-based framework, as summarized in Table 1.

Tier 1 - Structural Methods: Early collaborative filtering approaches [6] operated directly on bipartite
user-item structures without requiring dense feature representations. Classical label propagation [7]
extended semi-supervised learning to graph structures through iterative message passing on converted
unipartite representations. CSP [1] recently introduced a parameter-free hypergraph variant that
works natively on bipartite structures, implementable with simple SQL operations while avoiding
hyperparameter optimization entirely.

Tier 2 - Traditional ML Methods: Traditional machine learning methods leveraging dense repre-
sentations emerged with matrix factorization techniques [8] and spectral methods for collaborative
filtering. These approaches accept the computational overhead of feature extraction while maintaining
manageable configuration spaces. Simple neural baselines like MLPs provide structure-agnostic learning
on dense features, while single-layer graph neural networks like HGCN [2] offer limited architectural
complexity with small configuration spaces.

Tier 3 - Established Graph Neural Networks: The rise of Graph Neural Networks marked a paradigm
shift in graph-based learning. Dai et al. [9] demonstrated that GNNs can be viewed as learned message
passing algorithms, bridging classical approaches with modern deep learning such as GraphSAGE [10].
Extensions to hypergraph and bipartite scenarios include HGCN [2], UniGCNII [11], HyperND [3],
EHGNN [12], HCHA [13], and AllSetTransformer [14]. While these methods demonstrate sophisticated



architectural designs, they require extensive hyperparameter tuning and significant computational
resources.

Tier 4 - Specialized Experimental Methods: Recent approaches like VilLain [4] and subgradient hyper-
graph classifiers [5] specifically target feature-poor scenarios through novel optimization procedures.
However, these methods lack mature implementations in standard libraries, presenting deployment
challenges and reliability concerns that limit practical applicability.

4.2. Method Selection and Systematic Evaluation Approaches

Our work contributes to the broader challenge of systematic method selection in machine learning,
particularly for graph-structured data where method choice significantly impacts both performance
and computational requirements.

AutoML and Method Selection: The automated machine learning community has developed systematic
approaches for algorithm selection [15], typically focusing on tabular data with extensive feature
engineering. However, these approaches rarely address the unique challenges of graph-structured data
where structural representation choices fundamentally affect method applicability.

Graph Learning Method Comparisons: Prior comparative studies in graph learning have primarily
focused on rich-feature scenarios where GNNs demonstrate clear advantages [16]. Systematic eval-
uation of traditional versus modern methods specifically for feature-poor bipartite graphs remains
underexplored, with most studies assuming GNN superiority rather than providing decision frameworks
for method selection.

Practical Guidelines in Machine Learning: The machine learning community increasingly recognizes
the need for practical guidance that considers implementation constraints alongside theoretical perfor-
mance [17]. Our tier-based framework contributes to this direction by providing systematic decision
points based on computational budgets, optimization reliability, and implementation maturity rather
than focusing solely on performance maximization.

Empirical Methodology for Graph Learning: Recent work has begun questioning universal GNN supe-
riority, particularly when their primary advantage of joint structure-feature learning is diminished [18].
Our systematic empirical approach builds on this trend by providing evidence-based method selection
guidance specifically for feature-poor bipartite scenarios.

4.3. Bipartite Graph Datasets and Evaluation Domains

Our empirical evaluation spans six real-world bipartite graph datasets that naturally lack rich node
features, requiring methods to learn exclusively from structural information. These datasets represent
two primary domains where feature-poor bipartite graphs commonly arise in practice.

Academic Citation Networks: Five datasets derive from scholarly publication databases, each offering
different structural perspectives on academic relationships. Cora provides dual bipartite representations
connecting papers to authors (Cora-CA) and papers to citation contexts (Cora-CC), demonstrating
how the same underlying data can yield fundamentally different bipartite structures [19]. CiteSeer and
PubMed follow citation-based approaches in computer science and biomedical domains respectively [20,
21], while DBLP represents author-paper collaborations across computer science publications [22].
These datasets exhibit substantial structural diversity, with node counts ranging from 2,708 to 41,302
and varying degrees of connectivity.

E-commerce Domain: The Walmart dataset represents product co-purchase relationships, where
bipartite edges indicate items frequently bought together. This domain introduces different structural
properties compared to citation networks, with higher edge density (460,629 edges across 88,860
products) and distinct degree distributions that stress-test method generalization across application
domains.

Dataset Characteristics and Challenges: Our collection exhibits natural diversity in structural com-
plexity, from sparse citation networks to dense co-purchase graphs. The presence of isolated nodes
varies dramatically (from 0 in DBLP to 15,877 in PubMed), providing systematic evaluation of how



methods handle nodes with no structural information. This diversity enables assessment of method
robustness across different bipartite graph characteristics while maintaining the common constraint
of feature-poor scenarios. Complete dataset statistics and experimental protocols are detailed in the

appendix.

Our contribution addresses the gap between theoretical method development and practical deploy-
ment guidance by providing systematic, tier-based evaluation that considers the full spectrum of
implementation and optimization constraints faced by practitioners working with feature-poor bipartite

graphs.

5. Empirical Evidence for Framework Hypotheses

Table 2

Performance Summary: Method categories achieving top and competitive performance across tasks.

#Top Perf. indicates datasets where any Tier method achieves best performance. Within 5% best
indicates datasets where any Tier method performs within 5% of the optimal result (excluding methods
already counted as top performers).

Method Category Classification Retrieval
# Top Perf.  # within 5% of best | # Top Perf. # within 5% of best
Tier 1 1 1 1 1
Tier 2 2 3 2 4
Tier 3 2 5 3 4
Tier 4 1 1 0 0
Table 3

Retrieval performance (P@100) measuring confident predictions on bipartite graphs G = (U,V, E).
Bold indicates best performance per dataset; underlined indicates performance within 5% of optimum.

Methods above midrule are neural/GNN approaches; below are traditional methods.

Tier ‘ Method ‘ Cora-CA Cora-CC CiteSeer-CC PubMed-CC DBLP-CA Walmart
| Random | 0144 0.134 0.150 0.350 0.168 0.084
CSP 0.721 0.446 0.387 0.747 0.867 0.134

1 Label Propagation 0.731 0.686 0.503 0.730 0.878 0.202
One-hot Naive Bayes 0.714 0.443 0.382 0.767 0.950 0.204
One-hot Logistic Regression 0.726 0.447 0.405 0.783 0.963 0.286
Feature-based Logistic Regression 0.710 0.681 0.473 0.810 0.825 0.109

9 Feature-based Random Forest 0.709 0.684 0.412 0.807 0.960 0.350
HGCN_one_layer 0.760 0.823 0.433 0.857 0.970 0.113
MLP 0.767 0.789 0.427 0.883 0.740 0.123
HGCN_multiple_layers 0.760 0.759 0.480 0.913 0.727 0.105
EHGNN 0.770 0.693 0.380 0.823 0.182 0.0936
HyperND 0.756 0.763 0.485 0.740 0.980 0.0864
GraphSAGE 0.744 0.770 0.462 0.893 0.502 0.125

3 HCHA 0.720 0.660 0.435 0.450 0.167 0.0855
AllDeepSetsNormalized 0.744 0.727 0.363 0.620 0.775 0.131
AllDeepSets 0.734 0.659 0.460 0.767 0.938 0.122
AllSetTransformerNormalized 0.577 0.727 0.427 0.907 0.375 0.127
AllSetTransformer 0.673 0.763 0.347 0.843 0.912 0.146
UniGCNII 0.619 0.461 0.363 0.543 0.225 0.0918

4 VilLain 0.274 0.511 0.417 0.690 N/A N/A
Subgradient 0.116 0.109 0.150 N/A N/A N/A




Table 4

Classification accuracy measuring average performance on bipartite graphs G = (U, V, E). Bold indicates
best performance per dataset; underlined indicates performance within 5% of optimum. Methods above
midrule are neural/GNN approaches; below are traditional methods.

Tier ‘ Method ‘ Cora-CA Cora-CC CiteSeer-CC PubMed-CC DBLP-CA Walmart
| Random | 0.192 0.190 0.185 0.364 0.166 0.113
CSP 0.501 0.238 0.229 0.407 0.501 0.313

1 Label Propagation 0.551 0.358 0.267 0.433 0.641 0.366
One-hot Naive Bayes 0.468 0.215 0.247 0.264 0.407 0.356
One-hot Logistic Regression 0.479 0.241 0.258 0.264 0.412 0.359
Feature-based Logistic Regression 0.446 0.425 0.319 0.458 0.681 0.359

9 Feature-based Random Forest 0.425 0.430 0.277 0.400 0.680 0.371
HGCN_one_layer 0.496 0.496 0.283 0.465 0.596 0.351

MLP 0.477 0.399 0.283 0.455 0.610 0.350
HGCN_multiple_layers 0.465 0.542 0.249 0.465 0.652 0.360
EHGNN 0.449 0.298 0.0712 0.249 0.221 0.359
HyperND 0.515 0.509 0.245 0.453 0.666 0.365
GraphSAGE 0.442 0.302 0.273 0.453 0.496 0.352

3 HCHA 0.507 0.472 0.189 0.443 0.647 0.374
AllDeepSetsNormalized 0.451 0.389 0.253 0.382 0.527 0.362
AllDeepSets 0.347 0.370 0.221 0.440 0.387 0.371
AllSetTransformerNormalized 0.484 0.517 0.307 0.447 0.187 0.372
AllSetTransformer 0.283 0.291 0.282 0.442 0.630 0.295
UniGCNII 0.389 0.368 0.258 0.406 0.549 0.227

4 VilLain 0.355 0.535 0.260 0.393 0.696 N/A
Subgradient 0.155 0.311 0.214 0.208 N/A N/A

Our experimental evaluation across six bipartite graph datasets provides systematic evidence for the
five hypotheses underlying our method selection framework. The results demonstrate clear patterns
that validate our tier-based approach while revealing the practical trade-offs that guide effective method
selection.

5.1. Hypothesis 1: No Universal Winner

Tables 3 and 4 provide compelling evidence that method effectiveness is fundamentally dataset-
dependent in feature-poor bipartite graphs. No single method achieves top performance across all
datasets for either task. Traditional methods achieve best performance on multiple datasets: Label
Propagation excels on Cora-CA classification, while Feature-based Random Forest leads on Walmart
retrieval. Conversely, GNN methods dominate other scenarios, with HGCN variants achieving top
performance on PubMed and Cora-CC tasks respectively.

Table 2 quantifies this diversity, showing that each tier contributes top performers across both
tasks. This dataset-dependent performance validates our systematic evaluation approach rather than
assuming universal GNN superiority. The variation in optimal methods across structurally different
datasets (sparse citation networks vs. dense co-purchase graphs) demonstrates that bipartite graph
characteristics fundamentally influence method effectiveness.

5.2. Hypothesis 2: Implementation Maturity Effects

The reliability challenges of Tier 4 methods provide strong evidence for implementation maturity effects.
VilLain and Subgradient methods failed to execute on multiple datasets despite theoretical sophistication,
with "N/A” entries in Tables 3 and 4 indicating memory constraints that prevented execution. When
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Figure 1: Retrieval performance vs. computational complexity averaged across all datasets. Methods operating
on one-hot features (bottom-left cluster) achieve 2-3 orders of magnitude faster execution than dense represen-
tation methods while maintaining competitive performance.

these methods did execute, they often underperformed simpler alternatives, suggesting that resource
requirements compromise their practical value.

In contrast, well-established methods in Tiers 1-3 demonstrated consistent execution across all
datasets with reliable performance patterns. This reliability difference validates our framework’s
emphasis on implementation maturity alongside theoretical performance, supporting the progressive
tier structure that prioritizes proven methods before exploring experimental approaches.

Even if Tier 4 method can achieve a competetive performance — VilLain in classification task — the
execution times one order of magnitude higher than other methods demonstrating downsite of their
not-mature implementation for practical use.

5.3. Hypothesis 3: Dense Feature Extraction Trade-off

Figures 1 and 2 dramatically illustrate the computational cost of dense feature extraction, showing 2-3
orders of magnitude differences between Tier 1 methods (green) operating on one-hot representations
and higher tiers requiring dense features. The bottom-left clusters in both figures represent Tier 1
methods achieving competitive performance with minimal computational overhead.

The performance-complexity trade-off varies by task and dataset. For retrieval tasks, several Tier 1
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Figure 2: Classification performance vs. computational complexity averaged across all datasets. Dense represen-
tation methods (right side) show improved accuracy over one-hot approaches but at significant computational
cost, with traditional methods often matching GNN performance.

methods achieve performance within 5% of the best while maintaining the fastest execution times.
Classification tasks show more pronounced benefits from dense representations, but often at computa-
tional costs that may not justify modest performance improvements. This trade-off validates our tier
boundary between structural methods (Tier 1) and dense representation approaches (Tiers 2-3).

5.4. Hypothesis 4: Simple Method Failure Principle

When simple methods cannot reliably identify the most obvious positive examples in a dataset, complex
architectures rarely overcome these fundamental limitations. This principle provides a critical decision
point: rather than immediately progressing to sophisticated methods when Tier 1 performance appears
insufficient, practitioners should first assess whether the limitation stems from method inadequacy or
fundamental task characteristics that no learning approach can easily overcome.

We operationalize this assessment through confident prediction performance, where P@100 proves
more suitable than accuracy for evaluating performance on ”simple examples”—instances where methods
should excel if they can capture fundamental data patterns. Our empirical analysis reveals that higher-
tier methods improve performance meaningfully only when Tier 1 methods achieve sufficient confident
prediction performance. Based on our results, P@100 < 0.5 serves as a practical indicator for this



threshold, though this value may require adjustment for different domains.

This pattern is evident across our datasets: scenarios where even the strongest Tier 1 methods achieve
limited confident prediction performance (CiteSeer-CC at 0.503, Walmart at 0.286-0.350) consistently
show traditional methods matching or outperforming sophisticated GNNs. Conversely, datasets with
higher P@100 baselines (Cora variants, PubMed, DBLP with values above 0.7) demonstrate clearer
benefits from method progression, validating our Phase 1 assessment strategy.

This hypothesis connects to our broader framework by providing a systematic decision point for
resource allocation. Rather than automatically progressing to higher tiers when Tier 1 performance ap-
pears insufficient, practitioners should first assess whether the limitation stems from method inadequacy
or fundamental task characteristics that no learning approach can easily overcome.

Confidence Assessment: We evaluate this hypothesis from multiple perspectives. The specific
threshold of 0.5 receives low-to-medium confidence, being based on only six datasets in our evaluation.
However, the P@k metric as an indicator of fundamental task failure appears quite reasonable for tasks
with reasonably uniform label distributions, where confident predictions should reflect the model’s
ability to identify the most obvious positive examples. The underlying assumption that test examples
range from easy to hard—while intuitively reasonable—lacks direct empirical confirmation in our study.
This assumption should be carefully considered when applying the framework, as violations could
explain cases where the framework’s guidance proves ineffective. Future work should validate both
the threshold values and the easy/hard example assumption across broader domains to strengthen this
hypothesis.

5.5. Hypothesis 5: Optimization Budget Constraints

The consistent performance of Tier 1 and Tier 2 methods across both tasks provides evidence for
optimization budget effects. These methods benefit from manageable hyperparameter spaces that enable
thorough exploration within realistic time constraints. Table 2 shows Tier 2 methods achieving the
highest number of competitive performances (within 5% of best), suggesting that moderate complexity
with reliable optimization often outperforms sophisticated architectures with optimization uncertainty:.

Our time-boxed optimization approach reveals that Tier 3 methods with extensive configuration spaces
may not achieve their full potential within practical constraints. This limitation actually reinforces our
framework’s value: when simpler methods achieve competitive performance with reliable optimization,
the additional complexity and optimization uncertainty of sophisticated architectures becomes a practical
disadvantage rather than merely a theoretical concern.

5.6. Integration of Evidence Supporting Framework Design

The empirical evidence collectively validates our tier-based progression strategy. Tier 1 methods like
Label Propagation and CSP provide excellent starting points with minimal computational overhead
and reliable optimization. Tier 2 methods offer systematic enhancement through dense representations
while maintaining manageable complexity. Tier 3 GNNs demonstrate sophisticated capabilities but with
optimization challenges that limit their practical advantages. Tier 4 methods show implementation
reliability issues that constrain their applicability.

The dataset-dependent performance patterns, combined with clear computational and optimization
trade-offs, support our systematic evaluation approach over universal method preferences. The frame-
work successfully identifies when simple methods suffice versus when sophistication is warranted,
providing practitioners with evidence-based decision points that balance performance requirements
against practical constraints.

6. Conclusions and Future Work

Our systematic framework for method selection in feature-poor bipartite graphs provides evidence-
based guidance through comprehensive evaluation of 16 methods across six real-world datasets. We



established five empirical hypotheses about method effectiveness and validated a four-tier progression
strategy that balances performance requirements against computational constraints and implementation
complexity. Our results demonstrate that method effectiveness is fundamentally dataset-dependent, with
traditional approaches like Label Propagation often achieving competitive performance at 2-3 orders of
magnitude lower computational cost than Graph Neural Networks. The framework’s key insight is the
confident prediction assessment principle: when simple methods achieve poor performance on their
most confident predictions (roughly P@100 < 0.5), complex architectures rarely provide significant
improvements, suggesting data quality enhancement as more effective than method sophistication. This
systematic approach enables practitioners to efficiently navigate the performance-complexity trade-off
space while avoiding over-engineering solutions for tasks where simple methods suffice.

Limitations and Future Work: Our framework validation is based on six datasets primarily from
academic citation networks, requiring broader domain validation to strengthen generalizability claims.
The framework’s core assumption—that test examples contain a range of difficulties from very simple to
very hard—underlies our confident prediction assessment strategy and may not hold universally across
all domains. Future work should focus on systematic validation across diverse domains to identify
when this difficulty distribution assumption fails and how practitioners should adapt their approach
accordingly. The main challenge for framework adaptation lies in identifying appropriate metrics
for detecting “simple examples” and establishing domain-specific thresholds for confident prediction
failure. For highly imbalanced tasks like threat detection, the P@100 < 0.5 threshold would likely need
adjustment to much lower values, while other domains may require entirely different confidence metrics
to assess fundamental task tractability. Additionally, extending our tier-based evaluation protocol to
incorporate new architectures as they emerge will ensure the framework remains current and actionable
for practitioners facing feature-poor bipartite graph learning challenges.
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A. Implementation Details and Reproducibility

This appendix provides essential implementation information for reproducing the presented results.
All methods were evaluated using identical experimental protocols with time-boxed hyperparameter
optimization to ensure fair comparison.

A.1. Dataset Construction and Preprocessing

Bipartite Graph Construction: Each dataset constructs bipartite graphs G = (U,V, E) where U
represents primary entities (papers/products) and V represents secondary entities (authors/citations/co-
purchases). Citation networks derive V from unique cited papers (CC variants) or individual authors
(CA variants). Walmart constructs V from co-purchase relationships.

Feature Extraction: Matrix Factorization uses the implicit library with 50 iterations and confidence
weighting. Spectral Embedding performs eigenvalue decomposition using scipy.sparse.linalg.eigsh on
the normalized Laplacian. One-hot encoding uses incidence matrix rows directly.

Data Splitting: Natural dataset splits when available, otherwise stratified random splitting ensuring
class balance. Training sets range from 53 nodes (PubMed) to 2,932 nodes (Walmart). Cross-validation
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employed for limited training data scenarios.

A.2. Method Implementation Sources

Tier 1 Methods: CSP implemented via custom SQL operations. Label Propagation uses sklearn.semi_su-
pervised with bipartite-to-unipartite conversion. One-hot methods use sklearn.linear_model and
sklearn.naive_bayes directly on incidence matrix rows.

Tier 2 Methods: Feature-based methods combine embedding techniques with sklearn implemen-
tations. MLP uses implementation from [23] that adapted the implementation from [24]. HGCN
single-layer implements a single HyperConv from the PyTorch Geometric library.

Tier 3 Methods: HGCN multi-layer uses PyTorch Geometric implementation with 1-5 hidden layers.
GraphSAGE uses PyTorch Geometric implementation with previously applied bipartite-to-unipartite
conversion. HyperND, EHGNN, HCHA, UniGCNII, and AllSet variants use implementations provided
by [23], the ED-HNN method proposed by was not included in results, because of consistently bad
performance with the current settings during the initial tests.

Tier 4 Methods: VilLain uses an implementation from its authors [4]. And subgradient method
uses a custom implementation without standard library support based on the provided by its authors
pseudocode algorithms [5], explaining execution failures on memory-constrained data

A.3. Hyperparameter Configuration Spaces

Traditional Methods: CSP is used in its parameter-free form [1]. Label Propagation searches alpha in
the range [0, 1.0] in 0.1 increments, num_layers [1-5]. Logistic Regression varies C [0.1, 1, 10], max_iter
[1000, 3000, 5000], solver [saga, liblinear, newton-cg]. Feature-based methods add embedding_dim [60,
120, 240, 480] and embedding type [mf, se], standing for matrix factorization and spectral embedding
correspondingly.

Neural Methods: All neural methods utilize embeddings computed by non-negative matrix factor-
ization or spectral embedding methods with dimensionality in the range [32-512]. MLP adds layers
[1-5], hidden size [8-1024], dropout [0.0-0.8]. Multi-layer GNNs include layers [1-5], hidden [8-1024],
dropout [0.0-0.8]. Advanced methods like EHGNN feature extensive configuration including classi-
fier_hidden [8-256], edconv_type [EquivSet, JumpLink, MeanDeg], activation [Id, relu, prelu]. VilLain
uses specialized parameters dim [128, 256, 512], steps [1-9], max_iter [10, 100, 1000].

Optimization Protocol: Time-boxed random grid search with equal computational budget per
method. Neural methods use early stopping on validation performance. Traditional methods use
optimal hyperparameters directly. Configuration spaces range from tens of combinations (traditional)
to thousands (neural) - (see above), justifying the extensive optimization effort and explaining compu-
tational cost differences between tiers. We consider 1 hour time budget for each method/dataset for
finding best hyperparameter setup (evaluated on validation set).

Computational Environment: All experiments conducted on identical hardware with consistent
memory and time constraints. The hardware specificaiton is Amazon EC2 G4.xlarge instances with
4 vCPUs, 16 GB RAM, and NVIDIA T4 GPU. All timing measurements exclude data loading and
preprocessing to focus on algorithm-specific computational costs. "N/A” entries indicate memory
limitations preventing method execution rather than implementation failures.

A.4. Results Presentation

Performance Analysis Methodology: Methods achieving performance within 5% of the dataset-
specific optimum are considered competitive and highlighted in results tables. For each dataset and
task, we compute the threshold as (best_performance x 0.95), with all methods meeting or exceeding
this threshold receiving equal consideration for practical deployment decisions.
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