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Abstract
This paper presents an efficient method for LR parsing of permutation phrases. In practical cases, the proposed
algorithm constructs an LR(0) automaton that requires significantly fewer states to process a permutation phrase
compared to the standard construction. For most real-world grammars, the number of states required to process
a permutation phrase of length 𝑛 is typically reduced from Ω(𝑛!) to 𝑂(2𝑛), resulting in a much more compact
parsing table. The state reduction increases with longer permutation phrases and a higher number of permutation
phrases within the right-hand side of a rule. We demonstrate the effectiveness of this method through its
application to parsing a JSON document.
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1. Introduction

Several of today’s languages allow for constructs consisting of unordered content, meaning that any
permutation of child-subconstructs is allowed. Examples of such languages include Java, Haskell, XML,
and JSON (JavaScript Object Notation) [1, 2]. JSON, an extremely popular tree format for data storage
and transmission, is perhaps the most prominent example, as JSON objects always consist of zero or
more unordered members. The structure of JSON data can be constrained by a schema, most commonly
using JSON Schema [3]. A large part of such schema can be expressed using a context-free grammar
(CFG) [4].

EBNF notation for CFGs requires all permutation options to be enumerated on the right-hand side of
the rule that results in 𝑛! grammar rules. For example, an unordered content over the symbols 𝐴,𝐵,𝐶
yields 3! = 6 rules:

𝑆 → 𝐴𝐵𝐶|𝐴𝐶𝐵|𝐵𝐴𝐶|𝐵𝐶𝐴|𝐶𝐴𝐵|𝐶𝐵𝐴

Cameron, in his work [5], proposed a shorthand notation for expressing unordered content, called a
permutation phrase:

𝑋 → ⟨⟨𝐴 ‖𝐵 ‖𝐶 ⟩⟩

Using this notation does not affect the expressiveness of CFGs, nor does it change the language generated
by the grammar. However, it makes the language specification significantly more concise and easier to
understand. Consequently, it is desirable to adapt common parsing algorithms to accept permutation
phrases in the input grammar and to process them more efficiently than the original algorithms, which
handled 𝑛! rules.

The main contribution of this paper is a modification to LR parsing algorithms that enables efficient
parsing of permutation phrases. The running time remains unaffected, and in practical cases, the
number of states in the LR(0) / LR(1) automaton, as well as the size of the resulting parsing table, are
significantly reduced compared to the original algorithm. This state reduction is achieved by changing
the semantics of LR(0) items: instead of tracking the exact sequence of symbols already seen and
expected, we only track the set of symbols seen and expected for permutation phrases. In the standard
algorithm, the number of states for processing a permutation phrase of length 𝑛 is computed as the
sum of all 𝑘-permutations of 𝑛, 0 < 𝑘 ≤ 𝑛. In the modified algorithm we only need to compute all
𝑘-combinations of 𝑛, 0 < 𝑘 ≤ 𝑛.
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Related work. To the best of our knowledge, ours it the first approach to efficient LR parsing of
permutation phrases. There are few works that extend top-down parsing methods for this purpose: In
[5], a modification to the LL parser is presented that keeps the 𝑂(𝑛) running time. In [6], a way how
to extend a parser combinator library is proposed. An XML parser presented in [7] uses a two-stack
pushdown automaton to parse XML documents against an LL(1) grammar with permutation phrases.

Algorithms for minimizing deterministic finite automata (DFA) [8, 9, 10] could be used to reduce
the states of LR(0) automaton. However they cannot be applied directly since minimizing an LR(0)
automaton is different from minimizing a general DFA – the content of the states must be taken into
account to ensure proper shift/reduce actions. In addition, an extra step in the generation of the parsing
table would be needed.

2. LR parsing

This section provides a brief informal overview of parsing, with a particular emphasis on LR parsing.
We assume the reader is familiar with the concepts of context-free grammars and finite automata. We
follow [11], where a formal treatment of these concepts can also be found.

By parsing, we mean recognizing the structure of a computer program or an instance of another type
of language under consideration. This structure is typically described by a CFG, as CFGs can capture
most of the syntactical constructs of common programming languages. During parsing, the goals are to
decide the membership problem (i.e., whether a given string belongs to the language generated by the
given CFG) and to construct the derivation, often represented as a derivation tree.

There exists a general algorithm for membership problem: the Cocke-Younger-Kasami (CYK) algo-
rithm. However it has a time complexity of 𝑂(𝑛3) and is therefore not convenient for real-world use
cases.

Two methods are commonly used to achieve parsing in linear time: LL parsing and LR parsing. LL
parsing is based on top-down approach meaning that it constructs the derivation tree from the root to
the leaves. In contrast, LR parsing uses a bottom-up approach, constructing the derivation tree from
the leaves to the root.

Both methods work only for restricted subsets of CFGs. These are referred to as LL(k) grammars and
LR(k) grammars, respectively, where 𝑘 denotes the length of lookahead – the number of symbols the
parser examines ahead in the input string. The class of LR(k) grammars is a superset of the class of
LL(k) grammars. This means that LR parsers are in general more powerful than LL parsers, and many
widely used compilers and compiler generators are based on the LR parsing or one of its variants.

In this work, we will focus in more detail on LR parsing. As mentioned earlier, the derivation tree is
constructed bottom-up; specifically, a right-most derivation in reverse is produced. The algorithm reads
the input string and attempts to match the right-hand side (RHS) of a CFG rule. If such an RHS is found,
it is reduced to the nonterminal on the left-hand side (LHS) of the corresponding rule. In this way, the
algorithm derives the second-to-last sentential form of the right-most derivation. It then repeats this
process using the new sentential form as input. The algorithm succeeds when the entire input string is
reduced to the start symbol of the grammar. Failure is reported if no valid reduction can be made, or if a
conflict arises – that is, either multiple reductions are possible at a given point (reduce/reduce conflict),
or the parser cannot decide whether to reduce or to read the next input symbol (shift/reduce conflict).

The simplest of the LR-based parsers, called the SLR parser, is based on a finite state machine known
as the LR(0) automaton. This automaton can be constructed automatically for a given CFG, hardcoding
the CFG’s rules into its states, and it handles exactly the logic described above. The states of an LR(0)
automaton consist of LR(0) items, which are CFG rules with a dot inserted somewhere in their right-hand
side (RHS). The dot divides the RHS into two parts – each possibly empty. In all LR parsing algorithms,
the dot serves as a marker: the portion before the dot represents what part of the rule has already been
recognized in the input, while the portion after the dot indicates what is yet to be recognized.

To achieve a deterministic LR(0) automaton, its states are defined as sets of LR(0) items – i.e., multiple
rules may be in progress simultaneously. A reduction is performed when the automaton reaches a state



that contains an LR(0) item with the dot at the end, meaning the RHS of the corresponding rule has
been fully recognized. Otherwise, the next symbol is read from the input string – this is known as the
shift action.

3. Permutation phrases in context-free grammars

In this section we introduce necessary definitions related to extending context free grammars with
permutation phrases. We follow the concept of permutation phrases that has been described informally
in [5]. Without loss of generality, we assume that the CFG under consideration does not contain
unreachable or non-generating nonterminals.

The RHS of a CFG rule is a sequence of grammar symbols called a simple phrase. Let us consider
Σ to be an alphabet of both terminals and nonterminals of a CFG, then we refer to the set of simple
phrases over Σ as Π𝑠(Σ), i.e., Π𝑠(Σ) = Σ*.

A permutation phrase over a set of non-empty simple phrases {𝜎1, 𝜎2, . . . , 𝜎𝑛} is denoted by

⟨⟨𝜎1 ‖𝜎2 ‖ . . . ‖𝜎𝑛 ⟩⟩,

where 𝑛 > 0. We consider a permutation phrase to be only a specific notation for a set of non-empty
elements, with its semantics explicitly defined by the 𝑒𝑥𝑝𝑎𝑛𝑑 function. Let 𝜋 be the permutation phrase
over the set {𝐴,𝐵,𝐶}, then 𝑒𝑥𝑝𝑎𝑛𝑑(𝜋) returns all concatenated permutation options:

𝜋 = ⟨⟨𝐴 ‖𝐵 ‖𝐶 ⟩⟩ then

𝑒𝑥𝑝𝑎𝑛𝑑(𝜋) = {𝐴𝐵𝐶,𝐴𝐶𝐵,𝐵𝐴𝐶,𝐵𝐶𝐴,𝐶𝐴𝐵,𝐶𝐵𝐴}.

We denote the set of all permutation phrases over simple phrases from Π𝑠(Σ) by Π𝑝(Σ). We use the
following notations for permutation phrases in the rest of this paper:

• |𝜋| - size,
• 𝜋 ∪ 𝜋′ - union,
• 𝜋 ∖ 𝜋′ - subtraction,
• 𝜎 ∈ 𝜋 - membership,
• {𝜋1, 𝜋2} - a partition of 𝜋 into two subsets.

The permutation phrases containing the same elements are considered equal.
Permutation phrases can be integrated into the RHSs of CFG rules as a shorthand notation for

unordered content. Then each rule with a permutation phrase replaces 𝑛! enumerated rules. Let 𝑟 be of
the form

𝑟 : 𝑋 → 𝑌 ⟨⟨𝐴 ‖𝐵 ‖𝐶𝐷 ⟩⟩.

Then we refer to the set of equivalent enumerated rules as 𝑒𝑥𝑝𝑎𝑛𝑑(𝑟):
𝑒𝑥𝑝𝑎𝑛𝑑(𝑟) = { 𝑋 → 𝑌 𝐴𝐵𝐶𝐷,𝑋 → 𝑌 𝐴𝐶𝐷𝐵,𝑋 → 𝑌 𝐵𝐴𝐶𝐷,

𝑋 → 𝑌 𝐵𝐶𝐷𝐴,𝑋 → 𝑌 𝐶𝐷𝐴𝐵,𝑋 → 𝑌 𝐶𝐷𝐵𝐴 }

Definition 1. Let Σ be an alphabet. The set Π(Σ) of grammatical phrases with intergated permutation
phrases over Σ and the expand function capturing their semantics are defined as follows:

1. 𝜎 ∈ Π𝑠(Σ) then

• 𝜎 ∈ Π(Σ),
• 𝑒𝑥𝑝𝑎𝑛𝑑(𝜎) = {𝜎},

2. 𝜋 ∈ Π𝑝(Σ), 𝜋 = ⟨⟨𝜎1 ‖𝜎2 ‖ . . . ‖𝜎𝑛⟩⟩, 𝑛 > 0 then

• 𝜋 ∈ Π(Σ),
• 𝑒𝑥𝑝𝑎𝑛𝑑(𝜋) = {𝜎𝑖1𝜎𝑖2 . . . 𝜎𝑖𝑛 | (𝑖1, . . . , 𝑖𝑛) ∈ 𝑃𝑒𝑟𝑚(𝑛)1},

1The set of all permutations of {1, . . . , 𝑛}.



3. 𝜔1, 𝜔2 ∈ Π(Σ) then
• 𝜔1𝜔2 ∈ Π(Σ),
• 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔1𝜔2) = 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔1) 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔2)

2.

Now we can define CFG with permutation phrases and its expanded grammar:

Definition 2. A context-free grammar with permutation phrases (CFGP) is a 4-tuple 𝐺 = (𝑁,𝑇, 𝑃, 𝑆)
where 𝑁 is a set of nonterminals, 𝑇 is a set of terminals, 𝑆 is the initial nonterminal, and 𝑃 is a finite set
of rules 𝑃 ⊆ 𝑁 ×Π(𝑁 ∪ 𝑇 ). The expanded grammar of 𝐺 is a CFG 𝐺𝑒 = (𝑁,𝑇, 𝑃𝑒, 𝑆) such that

𝑃𝑒 =
⋃︁
𝑟∈𝑃

𝑒𝑥𝑝𝑎𝑛𝑑(𝑟),

where 𝑒𝑥𝑝𝑎𝑛𝑑(𝑋 → 𝜔) = {𝑋 → 𝑤 |𝑤 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔)}.

Note that each CFG 𝐺 is also a CFGP and in that case 𝐺𝑒 = 𝐺. We refer to the rules of CFGP
that contain permutation phrases as permutation rules and we use the shorthand notation Π(𝐺) for
Π(𝑁 ∪ 𝑇 ). In the rest of this paper, we consider the following grammars (unless stated otherwise):

• 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) is a CFGP,
• 𝐺𝑒 = (𝑁,𝑇, 𝑃𝑒, 𝑆) is the expanded CFG for 𝐺.

In what follows, we restrict our attention to permutation phrases that consist of symbols only. Possible
approaches to overcome this limitation are discussed in Section 10.

4. LR(0) items of permutation rules

In this section we modify the definition of LR(0) items (shortly items) to cover also permutation rules.
We first define the set of item phrases, i.e., the possible RHSs of the items. To distinguish which level of
a given RHS is currently being recognized – whether the top level or a nested permutation phrase – we
use dots annotated with superscripts (1) and (2), respectively.

Definition 3. Given an alphabet Σ and 𝜔 ∈ Π(Σ), the set 𝐼𝑃 (𝜔) of item phrases of 𝜔 is defined as
follows:

1. 𝜔 ∈ Π𝑠(Σ) is a simple phrase then

𝐼𝑃 (𝜔) = {𝜎1 ·(1) 𝜎2 |𝜎1𝜎2 = 𝜔},
2. 𝜔 ∈ Π𝑝(Σ) is a permutation phrase then

𝐼𝑃 (𝜔) = {·(1)𝜋, 𝜋·(1)} ∪ {𝜋1 ·(2) 𝜋2 | {𝜋1, 𝜋2} is a partition of 𝜋},
3. 𝜔 = 𝜔1𝜔2, 𝜔1, 𝜔2 ∈ Π(Σ) is a concatenation of phrases then

𝐼𝑃 (𝜔) = {𝜔′
1𝜔2 |𝜔′

1 ∈ 𝐼𝑃 (𝜔1)} ∪ {𝜔1𝜔
′
2 |𝜔′

2 ∈ 𝐼𝑃 (𝜔2)}.

Definition 4. Let 𝑟 ∈ 𝑃 be of the form: 𝑋 → 𝜔. The set of LR(0) items of 𝑟, denoted by 𝐼(𝑟), is defined by

𝐼(𝑟) = {[𝑋 → 𝜔′] |𝜔′ ∈ 𝐼𝑃 (𝜔)}.

We extended the definition with the items of permutation rules. An item of the form [𝑋 → 𝜋1 ·(2) 𝜋2],
where {𝜋1, 𝜋2} is a partition of some permutation phrase 𝜋, indicates that the elements of 𝜋1 have
already been seen in some order, while the elements in 𝜋2 are expected to be seen in some order. It
means that the items for permutation phrases do not care about the exact order of the elements. The dot
is marked by the superscript (2) meaning that the content of a permutation phrase is begin processed.
On the other hand, the dot marked by the superscript (1) represents processing the RHS outside the
permutation phrases and it has the same semantics as the dot in the original LR(0) items.

The items containing a permutation phrase are referred to as permutation items. We define the set of
all items for a given CFGP as the union of items of its rules:

Definition 5. The set of items for grammar 𝐺 is defined by 𝐼(𝐺) =
⋃︀

𝑟∈𝑃 𝐼(𝑟).
2The concatenation of sets 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔1) and 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔2).



5. Modified algorithm for generating LR(0) automaton

We first define the ℎ𝑒𝑎𝑑 function which, for a given phrase 𝜔 of 𝐺, returns the set of grammar symbols
that appear at the beginning of its expansions.

Definition 6. The function ℎ𝑒𝑎𝑑 : Π(𝐺) → 2(𝑁∪𝑇 ) is defined by

• 𝜔 = 𝜀 then ℎ𝑒𝑎𝑑(𝜔) = ∅,
• 𝜔 = 𝑌 𝜔′, where 𝑌 ∈ (𝑁 ∪ 𝑇 ), then ℎ𝑒𝑎𝑑(𝜔) = {𝑌 },
• 𝜔 = ⟨⟨𝜎1 ‖𝜎2 ‖ . . . ‖𝜎𝑛⟩⟩𝜔′ then ℎ𝑒𝑎𝑑(𝜔) = {ℎ𝑒𝑎𝑑(𝜎1), ℎ𝑒𝑎𝑑(𝜎2), . . . , ℎ𝑒𝑎𝑑(𝜎𝑛)}.

Let 𝑖 ∈ 𝐼(𝐺) be an item of the form [𝑋 → 𝛼 ·(𝑗) 𝛽], 𝑗 ∈ {1, 2}, then ℎ𝑒𝑎𝑑 function for 𝑖 is defined by:

ℎ𝑒𝑎𝑑(𝑖) = ℎ𝑒𝑎𝑑(𝛽).

For a given item 𝑖 and a grammar symbol 𝑌 , the partial function 𝑠𝑡𝑒𝑝 returns the item that results
from the movement of the dot within the item 𝑖 on symbol 𝑌 . The function is defined only if such
movement is possible, i.e., 𝑌 ∈ ℎ𝑒𝑎𝑑(𝑖).

Definition 7. Let 𝑖 ∈ 𝐼(𝐺) such that 𝑌 ∈ ℎ𝑒𝑎𝑑(𝑖). Then the partial function 𝑠𝑡𝑒𝑝 : 𝐼(𝐺)× (𝑁 ∪ 𝑇 ) →
𝐼(𝐺) is defined as follows3:

1. Matching the first level (a concatenation of phrases):

𝑖 = [𝑋 → 𝜔1 ·(1) 𝜃𝜔2], 𝜃 ∈ 𝑁 ∪ 𝑇 ∪Π𝑝(𝐺) then

a) if 𝜃 = 𝑌 :
𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = [𝑋 → 𝜔1𝑌 ·(1) 𝜔2]

b) if 𝜃 ∈ Π𝑝(𝐺), 𝑌 ∈ 𝜃:

𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = [𝑋 → 𝜔1 ⟨⟨𝑌 ⟩⟩ ·(2) (𝜃 ∖ {𝑌 }) 𝜔2]

2. Matching the second level (the content of a permutation phrase):

𝑖 = [𝑋 → 𝜔1 𝜋1 ·(2) 𝜋2 𝜔2], 𝜋1, 𝜋2 ∈ Π𝑝(𝐺) then

a) if 𝜋2 = ⟨⟨𝑌 ⟩⟩:
𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = [𝑋 → 𝜔1(𝜋1 ∪ {𝑌 }) ·(1) 𝜔2]

b) if |𝜋2| ≥ 2 and 𝑌 ∈ 𝜋2:

𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = [𝑋 → 𝜔1 (𝜋1 ∪ {𝑌 }) ·(2) (𝜋2 ∖ {𝑌 }) 𝜔2]

Example 1. Let us consider an item with the dot at the beginning of its RHS, indicating that the corre-
sponding rule is just starting to be recognized:

𝑖0 = [𝑋 → ·(1)𝐴⟨⟨𝐵 ‖𝐶 ⟩⟩𝐷].

Using the notation 𝑖 →𝑠𝑡𝑒𝑝 𝑌 𝑗 for 𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = 𝑗, we get the following sequence of successive application
of the step function:

𝑖0 →𝑠𝑡𝑒𝑝𝐴 [𝑋 → 𝐴 ·(1) ⟨⟨𝐵 ‖𝐶 ⟩⟩𝐷]
→𝑠𝑡𝑒𝑝𝐶 [𝑋 → 𝐴 ⟨⟨𝐶 ⟩⟩ ·(2) ⟨⟨𝐵⟩⟩𝐷]
→𝑠𝑡𝑒𝑝𝐵 [𝑋 → 𝐴 ⟨⟨𝐵 ‖𝐶 ⟩⟩ ·(1) 𝐷]
→𝑠𝑡𝑒𝑝𝐷 [𝑋 → 𝐴 ⟨⟨𝐵 ‖𝐶 ⟩⟩𝐷·(1)]

Note that the step function preserves the rule being recognized, meaning that both the original item
and the resulting item belong to the set of items 𝐼(𝑟) for the same rule 𝑟.

3For better understanding, the processing of the content of a permutation phrase is marked by a box.



Proposition 1. Let 𝑟 ∈ 𝑃 and 𝑖 ∈ 𝐼(𝑟) then (𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = 𝑗) ⇒ 𝑗 ∈ 𝐼(𝑟).

Actually, the superscripts of the dot help to preserve the rule being processed as shown in the
following example.

Example 2. If we do not mark the dot to determine the level being processed, then the item

𝑖 = [𝑋 → ⟨⟨𝐴 ‖𝐵 ⟩⟩ · ⟨⟨𝐶 ‖𝐷 ⟩⟩]

can originate from two different rules 𝑟1, 𝑟2 and 𝑠𝑡𝑒𝑝(𝑖,𝐷) can result in two different options 𝑗1, 𝑗2:

𝑟1 : 𝑋 → ⟨⟨𝐴 ‖𝐵 ⟩⟩⟨⟨𝐶 ‖𝐷 ⟩⟩, 𝑗1 : [𝑋 → ⟨⟨𝐴 ‖𝐵 ⟩⟩⟨⟨𝐶 ⟩⟩ · ⟨⟨𝐷 ⟩⟩]
𝑟2 : 𝑋 → ⟨⟨𝐴 ‖𝐵 ‖𝐶 ‖𝐷 ⟩⟩, 𝑗2 : [𝑋 → ⟨⟨𝐴 ‖𝐵‖𝐶 ⟩⟩ · ⟨⟨𝐷 ⟩⟩]

Marking the dot in 𝑖 by the superscript (1) indicates that the top level is being processed - that corresponds to
the rule 𝑟1 and the resulting item 𝑗1. Marking the dot by the superscript (2) indicates that the permutation
phrase is being processed - that corresponds to the rule 𝑟2 and the resulting item 𝑗2.

We modify the standard algorithm for generating LR(0) automaton [11] as follows:

SetOfItems PERM_CLOSURE(𝐼) {
𝐽 = 𝐼;
repeat

for (each item [𝐴 → 𝛼 ·(𝑖) 𝛽] in 𝐽 such that 𝑖 ∈ {1, 2})
for (each nonterminal 𝐵 ∈ ℎ𝑒𝑎𝑑(𝛽))

for (each production 𝐵 → 𝛾 of 𝐺)
if ([𝐵 → ·(1)𝛾] not in 𝐽)

add [𝐵 → ·(1)𝛾] to 𝐽;
until no more items are added to 𝐽 on one round;

return 𝐽;
}

SetOfItems PERM_GOTO(𝐼, 𝑌 ) {
𝐽 = ∅;
for (each item [𝑋 → 𝛼 ·(𝑖) 𝛽] of 𝐼 such that 𝑌 ∈ ℎ𝑒𝑎𝑑(𝛽) and 𝑖 ∈ {1, 2})

add 𝑠𝑡𝑒𝑝([𝑋 → 𝛼 ·(𝑖) 𝛽], 𝑌 ) to 𝐽;
return PERM_CLOSURE(𝐽);

}

The algorithm uses the generic functions ℎ𝑒𝑎𝑑 and 𝑠𝑡𝑒𝑝 defined above, which can be applied to any
phrase, including those with integrated permutation phrases. The algorithm for constructing LR(0)
parsing table with shift/reduce actions remains unchanged. We define LR(0) automaton for CFGP 𝐺 as
follows:

Definition 8. Let 𝐺′ = (𝑁 ′, 𝑇, 𝑃 ′, 𝑆′) be the augmented grammar of 𝐺 such that 𝑁 ′ = 𝑁 ∪ {𝑆′} and
𝑃 ′ = 𝑃 ∪ {𝑆′ → 𝑆}. Then the LR(0) automaton for 𝐺 is a DFA 𝐴 = (Σ, 𝑄, 𝛿, 𝐼0, 𝐹 ) such that

• Σ = 𝑁 ∪ 𝑇 , 𝐼0 = {[𝑆′ → ·(1)𝑆]},
• 𝑄 and 𝛿 are constructed by PERM_GOTO function, they are extended by an error state ∅ and transitions

from/to this error state in a standard way to make 𝐴 complete.

Example 3. Let us consider processing a CFG rule

𝑋 → ⟨⟨𝐴 ‖𝐵 ‖𝐶⟩⟩.

The corresponding part of the LR(0) automaton has 8 states and the transitions among these states are
depicted in Figure 1. The LR(0) automaton for the extended grammar would have 16 states, as it allows only
exact sequences before the dot. Namely, states 𝐼5, 𝐼6 and 𝐼7 would be duplicated for the different prefixes,
and the single state 𝐼8 would be split into 6 separate rules, corresponding to the 6 permutations.



Figure 1: Processing of a permutation phrase

For simplicity, we assumed a single item per state in the example above. In general, there may be
multiple items within a state, and some of them may even interfere with the permutation items depicted.
Such a situation is discussed later in Section 6.

In addition to the grammars 𝐺,𝐺𝑒 defined before, we consider the following definitions in the rest
of this paper (unless stated otherwise):

• 𝐴 = (Σ, 𝑄, 𝛿, 𝐼0, 𝐹 ) is the complete LR(0) automaton for the grammar 𝐺 allowing permutation
rules constructed by our modified algorithm,

• 𝐴𝑒 = (Σ, 𝑄𝑒, 𝛿𝑒, 𝐼0𝑒, 𝐹𝑒) is the complete LR(0) automaton for the extended grammar 𝐺𝑒 con-
structed by the standard algorithm [11].

6. Map function

In this section, we define an 1:N mapping between the states of 𝐴 and 𝐴𝑒. We later use this mapping to
prove the correctness of our modified algorithm for constructing the LR(0) automaton, as well as to
carry out a complexity analysis.

We first introduce some supplementary concepts. In the LR(0) automaton, there is a close relationship
between the input strings leading to a state 𝐼 (called input paths) and before-the-dot parts of the items
within 𝐼 . To make the set of inputs paths for such a state 𝐼 finite, we consider only those whose lengths
are limited by the longest before-the-dot part among the items in 𝐼 .

Definition 9. Let 𝐼 ∈ 𝑄 and 𝑚𝑎𝑥 = 𝑚𝑎𝑥{|𝛼| | [𝑋 → 𝛼 · 𝛽] ∈ 𝐼}. Then the function 𝑝𝑎𝑡ℎ𝑠 : 𝑄 → 2Σ
*

returns input paths for 𝐼 and is defined by:

𝑝𝑎𝑡ℎ𝑠(𝐼) = {𝑤 | 0 < |𝑤| ≤ 𝑚𝑎𝑥 and there exists 𝐼 ′ ∈ 𝑄 such that (𝐼 ′, 𝑤) ⊢*
𝐴 (𝐼, 𝜀)}.

Note that 𝑝𝑎𝑡ℎ𝑠(𝐼) is empty only for the initial state 𝐼0 and if 𝑤 is in 𝑝𝑎𝑡ℎ𝑠(𝐼) then also all suffixes
of 𝑤 (except the empty word) are in 𝑝𝑎𝑡ℎ𝑠(𝐼). For the LR(0) automaton of a grammar with permutation
rules, the following proposition captures the relation between 𝑝𝑎𝑡ℎ𝑠(𝐼) and the before-the-dot parts of
items in 𝐼 .

Proposition 2. Let 𝐼 ∈ 𝑄 and 𝑖 ∈ 𝐼 be an item of the form 𝑖 : [𝑋 → 𝛼 · 𝛽]. Then

𝑝𝑎𝑡ℎ𝑠(𝐼)/|𝛼| ⊆ 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼)

where 𝑝𝑎𝑡ℎ𝑠(𝐼)/|𝛼| is a set of all suffixes of 𝑝𝑎𝑡ℎ𝑠(𝐼) of length |𝛼|.

Note that if the grammar has no permutation rules, the equality holds:

𝑝𝑎𝑡ℎ𝑠(𝐼)/|𝛼| = 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼) = {𝛼}.

This means that any viable prefix leading to 𝐼 has the before-the-dot part 𝛼 as its exact suffix of length
|𝛼| and no other strings appear as suffixes of that length.

If permutation items are present, they may interfere with other items in such a way that some states
are “split”. Such a situation is depicted in Figure 2: there are two states, 𝐼5 and 𝐼6, both containing the



Figure 2: An example of rule interference

item 𝑖 = [𝑋 → ⟨⟨𝐴 ‖𝐵⟩⟩ · ⟨⟨𝐶⟩⟩]. The splitting is caused by an interfering item [𝑌 → 𝐴𝐵 ·𝐸]. Let us
recall that in Figure 1, where the same rule is being processed but no interferences were assumed, there
was only a single state containing 𝑖, namely 𝐼5.

The PERM_GOTO function automatically handles rule interferences and generates as many states for 𝐴
as are actually needed. The more interferences occur, the more states of 𝐴 are generated, which results
in a lower state reduction between 𝐴 and 𝐴𝑒.

We say that a CFGP rule is independent when its items do not interfere with other items within
the same state. Thus, independency is defined based on the equality between the sets 𝑝𝑎𝑡ℎ𝑠(𝐼)/|𝛼|
and 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼) for each rule item that appears in some 𝐼 ∈ 𝑄. This concept is not required for the
definition of the mapping function, but it will be used later in the complexity analysis.

Definition 10. Let 𝐼 ∈ 𝑄 and 𝑖 ∈ 𝐼 be an item of the form 𝑖 : [𝑋 → 𝛼 ·𝛽]. Then the item 𝑖 is independent
in 𝐼 if and only if 𝑝𝑎𝑡ℎ𝑠(𝐼)/|𝛼| = 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼).

Definition 11. Let 𝑟 ∈ 𝑃 , 𝑟 is independent if and only if for each 𝑖 ∈ 𝐼(𝑟) and 𝐼 ∈ 𝑄:

𝑖 ∈ 𝐼 implies 𝑖 is independent in 𝐼.

Now we can proceed with the definition of the 𝑚𝑎𝑝 function itself. Intuitively, this 1:N mapping
translates a state 𝐼 of 𝐴 (the LR(0) automaton for the CFGP) into a set of states of 𝐴𝑒 (the LR(0)
automaton for the expanded grammar) in such a way that each item containing a permutation phrase
before the dot induces a separate state in 𝐴𝑒 for each expansion of this permutation phrase. However,
dependent rules must also be taken into account, as in such cases, some states in 𝐴 may already be split
(fully or partially). Both situations are depicted in Figure 3.

We first define a function 𝑚𝑎𝑝𝑠𝑡𝑎𝑡𝑒 with two arguments: for an input state 𝐼 ∈ 𝑄 and an input string
𝑤, it returns a state 𝐼𝑒 ∈ 𝑄𝑒, which handles the processing of the input paths of 𝑝𝑎𝑡ℎ𝑠(𝐼) that are
suffixes of 𝑤. The value of 𝑚𝑎𝑝(𝐼, 𝑤) is undefined if no suffix of 𝑤 is in 𝑝𝑎𝑡ℎ𝑠(𝐼).

We use two auxilliary partial functions 𝑚𝑎𝑝𝑝ℎ𝑟𝑎𝑠𝑒 and 𝑚𝑎𝑝𝑖𝑡𝑒𝑚 that map phrases and items of 𝐺 to
phrases and items of 𝐺𝑒, respectively, with respect to 𝑤.

Definition 12. The partial function 𝑚𝑎𝑝phrase : Π(𝐺)× Σ* → Π(𝐺𝑒) is defined by:

𝑚𝑎𝑝phrase(𝛼,𝑤) = 𝛼′ ∈ (𝑁 ∪ 𝑇 )* where 𝛼′ ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼) and 𝛼′ is a suffix of 𝑤.

The partial function 𝑚𝑎𝑝item : 𝐼(𝐺)× Σ* → 2𝐼(𝐺𝑒) is defined by:

𝑚𝑎𝑝item([𝑋 → 𝛼 · 𝛽], 𝑤) = {[𝑋 → 𝛼′ · 𝛽′] ∈ 𝐼(𝐺𝑒) |𝛼′ = 𝑚𝑎𝑝phrase(𝛼,𝑤), 𝛽
′ ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝛽)}. (1)

The function 𝑚𝑎𝑝state : 𝑄× Σ* → 𝑄𝑒 is defined by:

• 𝐼 = ∅ then 𝑚𝑎𝑝(𝐼, 𝑤) = ∅ for any 𝑤 ∈ Σ* (error state),
• 𝐼 ̸= ∅ and 𝑤 ̸= 𝑤1𝑤2 such that 𝑤2 ∈ 𝑝𝑎𝑡ℎ𝑠(𝐼) then 𝑚𝑎𝑝(𝐼, 𝑤) = ∅,



Figure 3: The mapping of a) an independent rule b) a dependent rule

• 𝐼 ̸= ∅ and 𝑤 = 𝑤1𝑤2 such that 𝑤2 ∈ 𝑝𝑎𝑡ℎ𝑠(𝐼) then 𝑚𝑎𝑝(𝐼, 𝑤) =
⋃︀

𝑖∈𝐼 𝑚𝑎𝑝item(𝑖, 𝑤).

Building on the preceding stepwise definitions, we now introduce the final 𝑚𝑎𝑝 function. It maps a
state 𝐼 of 𝐴 to the set of the 𝐴𝑒 states that handle the processing of the paths in 𝑝𝑎𝑡ℎ𝑠(𝐼) as shown in
Figure 3. Note that only the before-the-dot parts induce multiple states in 𝐴𝑒. The after-the-dot parts
containing permutation items are always expanded within the same state of 𝐴𝑒 allowing recognition of
any of the permutation options while processing the rest of the input (see (1)).

Definition 13. The function 𝑚𝑎𝑝 : 𝑄 → 2𝑄𝑒 is defined by:

𝑚𝑎𝑝(𝐼) =
⋃︁
w∈

paths(I)

𝑚𝑎𝑝(𝐼, 𝑤).

7. Correctness

Now we prove the key statements to show that 𝐴 is correct: the states reached by 𝐴 and 𝐴𝑒 on the same
input can be related by the 𝑚𝑎𝑝 function and additionally, 𝐴 and 𝐴𝑒 return the same parser action.
Note that both 𝐴 and 𝐴𝑒 perform 𝑚 computation steps to process an input of length 𝑚 since they are
deterministic and complete.

Lemma 1. Let 𝑤 ∈ Σ* and (𝐼0, 𝑤) ⊢|𝑤|
𝐴 (𝐽, 𝜀), (𝐼0𝑒, 𝑤) ⊢|𝑤|

𝐴𝑒
(𝐽𝑒, 𝜀). Then 𝐽𝑒 = 𝑚𝑎𝑝(𝐽,𝑤).

Proof. We give a proof by induction on |𝑤|. The base case |𝑤| = 0 trivially holds. Let us assume the
statement holds for 𝑛 = 𝑘 and let us have the following computations on the input |𝑤| = 𝑘 + 1, where
𝑤 = 𝑤′𝑌 , 𝑌 ∈ Σ:

(𝐼0, 𝑤
′𝑌 ) ⊢𝑘

𝐴 (𝐼, 𝑌 ) ⊢𝐴 (𝐽, 𝜀) and
(𝐼0𝑒, 𝑤

′𝑌 ) ⊢𝑘
𝐴𝑒

(𝐼𝑒, 𝑌 ) ⊢𝐴𝑒 (𝐽𝑒, 𝜀).
(2)

Then it also holds:
(𝐼0, 𝑤

′) ⊢𝑘
𝐴 (𝐼, 𝜀) and (𝐼0𝑒, 𝑤

′) ⊢𝑘
𝐴𝑒

(𝐼𝑒, 𝜀).

Based on the induction hypothesis 𝐼𝑒 = 𝑚𝑎𝑝(𝐼, 𝑤).We need to prove 𝐽𝑒 = 𝑚𝑎𝑝(𝐽,𝑤′𝑌 ). It is sufficient
to prove that mapping holds for kernel items4 - 𝑘𝑒𝑟𝑛𝑒𝑙(𝐽𝑒) = 𝑚𝑎𝑝(𝑘𝑒𝑟𝑛𝑒𝑙(𝐽), 𝑤′𝑌 ) – as that implies
that the mapping holds for non-kernel items as well and thus 𝐽𝑒 = 𝑚𝑎𝑝(𝐽,𝑤′𝑌 ).
We define the subsets 𝐼𝑌 ⊆ 𝐼 , 𝐼𝑒𝑌 ⊆ 𝐼𝑒 that participate in the computation step of𝐴 and𝐴𝑒, respectively,
on the symbol 𝑌 :

𝐼𝑌 = {𝑖 ∈ 𝐼, 𝑌 ∈ ℎ𝑒𝑎𝑑(𝑖)},
𝐼𝑒𝑌 = {𝑖𝑒 ∈ 𝐼𝑒, 𝑌 ∈ ℎ𝑒𝑎𝑑(𝑖𝑒)}.

(3)

4Kernel items are those that do not have the dot at the beginning of the RHS. The items with a dot at the beginning of RHS
are non-kernel items.



Figure 4: The items participating in the last computation step of 𝐴 and 𝐴𝑒 (on the symbol 𝑌 ) and their mutual
relationships

Based on the definition of 𝛿 and 𝛿𝑒 functions it holds

𝛿(𝐼, 𝑌 ) = 𝛿(𝐼𝑌 , 𝑌 ) = 𝐽,
𝛿𝑒(𝐼𝑒, 𝑌 ) = 𝛿𝑒(𝐼𝑒𝑌 , 𝑌 ) = 𝐽𝑒.

(4)

If 𝐼𝑌 = ∅, then 𝐽 = 𝐽𝑒 = ∅ and the statement clearly holds. Assume 𝐼𝑌 ̸= ∅. The situation is depicted
in Figure 4. We use the following shorthand notations:

• 𝛼(+𝑌 ) to refer to the phrase resulting from adding 𝑌 to the end of 𝛼:

– If 𝛼 = 𝜔𝜋 where 𝜋 is a permutation phrase then 𝛼(+𝑌 ) = 𝜔(𝜋 ∪ {𝑌 }).
– If 𝛼 = 𝜔𝐴 where 𝐴 ∈ 𝑁 ∪ 𝑇 then 𝛼(+𝑌 ) = 𝜔𝐴𝑌 .

• (+𝑌 )𝛽 to refer to the phrase resulting from adding 𝑌 to the beginning of 𝛽:

– If 𝛽 = 𝜋𝜔 where 𝜋 is a permutation phrase then (+𝑌 )𝛽 = (𝜋 ∪ {𝑌 })𝜔.
– If 𝛽 = 𝐴𝜔 where 𝐴 ∈ 𝑁 ∪ 𝑇 then (+𝑌 )𝛽 = 𝑌 𝐴𝜔.

It is easy to see that

𝑗𝑒 ∈ 𝑚𝑎𝑝(𝑘𝑒𝑟𝑛𝑒𝑙(𝐽), 𝑤′𝑌 ) ⇒ ∃𝑗 ∈ 𝑘𝑒𝑟𝑛𝑒𝑙(𝐽) : 𝑗𝑒 ∈ 𝑚𝑎𝑝(𝑗, 𝑤′𝑌 ) ⇒
⇒ ∃𝑖 ∈ 𝐼𝑌 : 𝑠𝑡𝑒𝑝(𝑖, 𝑌 ) = 𝑗 ⇒
⇒ ∃𝑖𝑒 ∈ 𝐼𝑒𝑌 : 𝑖𝑒 ∈ 𝑚𝑎𝑝(𝑖, 𝑤′), 𝑠𝑡𝑒𝑝(𝑖𝑒, 𝑌 ) = 𝑗𝑒 ⇒
⇒ 𝑗𝑒 ∈ 𝑘𝑒𝑟𝑛𝑒𝑙(𝐽𝑒),

𝑗𝑒 ∈ 𝑘𝑒𝑟𝑛𝑒𝑙(𝐽𝑒) ⇒ ∃𝑖𝑒 ∈ 𝐼𝑒𝑌 : 𝑠𝑡𝑒𝑝(𝑖𝑒, 𝑌 ) = 𝑗𝑒 ⇒
⇒ ∃𝑖 ∈ 𝐼𝑌 : 𝑚𝑎𝑝(𝑖, 𝑤′) = 𝑖𝑒 ⇒
⇒ ∃𝑗 ∈ 𝐽 : 𝑗 = 𝑠𝑡𝑒𝑝(𝑖, 𝑌 ),𝑚𝑎𝑝(𝑗, 𝑤′𝑌 ) = 𝑗𝑒 ⇒
⇒ 𝑗𝑒 ∈ 𝑚𝑎𝑝(𝑘𝑒𝑟𝑛𝑒𝑙(𝐽), 𝑤′𝑌 ).

Theorem 1. Let 𝑤 ∈ Σ* and 𝑌 ∈ Σ and (𝐼0, 𝑤) ⊢*
𝐴 (𝐽, 𝜀), (𝐼0𝑒, 𝑤) ⊢*

𝐴𝑒
(𝐽𝑒, 𝜀). Then

𝑎𝑐𝑡𝑖𝑜𝑛(𝐽, 𝑌 ) = 𝑎𝑐𝑡𝑖𝑜𝑛(𝐽𝑒, 𝑌 ) or 𝐽 = 𝐽𝑒 = ∅.

Proof. Based on Lemma 1 we get 𝐽𝑒 = 𝑚𝑎𝑝(𝐽,𝑤). Then it holds 𝐽 = ∅ ⇔ 𝐽𝑒 = ∅. Let assume
𝐽, 𝐽𝑒 ̸= ∅. Based on the definition of 𝑚𝑎𝑝 function, an item 𝑗 ∈ 𝐽 has a transition on 𝑌 if and only if
at least one of the items 𝑗𝑒 ∈ 𝑚𝑎𝑝(𝑗, 𝑤) has a transition on 𝑌 . That implies

(𝑠ℎ𝑖𝑓𝑡) ∈ 𝑎𝑐𝑡𝑖𝑜𝑛(𝐽, 𝑌 ) ⇐⇒ (𝑠ℎ𝑖𝑓𝑡) ∈ 𝑎𝑐𝑡𝑖𝑜𝑛(𝐽𝑒, 𝑌 ).



At the same time, an item 𝑗 ∈ 𝐽 is of the form [𝑋 → 𝛼·(1)] if and only if 𝑚𝑎𝑝(𝑗, 𝑤) = {𝑗𝑒} and 𝑗𝑒 is of
the form [𝑋 → 𝜎·] where 𝜎 = 𝑚𝑎𝑝(𝛼,𝑤). This means

(𝑟𝑒𝑑𝑢𝑐𝑒𝑋 → 𝛼) ∈ 𝑎𝑐𝑡𝑖𝑜𝑛(𝐽, 𝑌 ) ⇐⇒ (𝑟𝑒𝑑𝑢𝑐𝑒𝑋 → 𝜎) ∈ 𝑎𝑐𝑡𝑖𝑜𝑛(𝐽𝑒, 𝑌 ) where 𝜎 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝛼).

8. State complexity

In this section, we analyze the difference between the number of states needed to process a permutation
phrase in 𝐴 and to process all corresponding permutation options in 𝐴𝑒. We also discuss the differences
in processing simple phrases in permutation rules. The greatest state reduction is achieved when a rule
is independent, meaning that processing permutation phrases on the rule’s RHS does not interfere with
other rules or other parts of the same rule.

Definition 14. Let 𝑟 ∈ 𝑃 be a rule of the form 𝑟 : 𝑋 → 𝜔. Let 𝐼0 ∈ 𝑄 be a state of 𝐴 that contains
item [𝑋 → ·(1) 𝜔]. Then the set of states processing the rule 𝑟 in 𝐴 starting from 𝐼0 is defined by
I (𝑟, 𝐼0) =

⋃︀|𝜔|
𝑘=0 I𝑘(𝑟, 𝐼0) where

1. I0(𝑟, 𝐼0) = {𝐼0},
2. I𝑘(𝑟, 𝐼0) = {𝐼 | 𝐼 = 𝛿(𝐼 ′, 𝑌 ) where

• 𝐼 ′ ∈ I𝑘−1(𝑟, 𝐼0) and there exists 𝑖 ∈ 𝐼 ′ ∩ 𝐼(𝑟) of the form [𝑋 → 𝜔1 ·(𝑗) 𝜔2]
where 𝑗 ∈ {1, 2}, |𝜔1| = 𝑘 − 1 and 𝑌 ∈ ℎ𝑒𝑎𝑑(𝜔2)}.

Note that the set I𝑘(𝑟, 𝐼0) contains all states reached from 𝐼0 by processing the first 𝑘 symbols of 𝜔
and the set

⋃︀𝑗
𝑘=𝑖 I𝑘(𝑟, 𝐼0) contains all states needed to process the subphrase of 𝜔 between the 𝑖-th

and the 𝑗-th symbol. If we replace 𝑃,𝐴, 𝛿 with 𝑃𝑒, 𝐴𝑒, 𝛿𝑒, respectively, we get similar definition for the
extended LR(0) automaton 𝐴𝑒.

Theorem 2. Let 𝑟 ∈ 𝑃 be an independent rule of the form:

𝑋 → 𝜎0𝜋1𝜎1 . . . 𝜎𝑚−1𝜋𝑚𝜎𝑚

where each 𝜎𝑖 ∈ Π𝑠(𝐺) is a simple phrase and each 𝜋𝑖 ∈ Π𝑝(𝐺) is a permutation phrase. Then the
processing of 𝜎𝑖/𝜋𝑖 in 𝐴/𝐴𝑒 requires the following number of states:

𝐴/𝜋𝑖 : at most 2|𝜋𝑖| states (∈ 𝑂(2|𝜋𝑖|)), 𝐴𝑒/𝜋𝑖 : at least 𝑀
∑︀|𝜋𝑖|

𝑘=1 𝑃 (|𝜋𝑖|, 𝑘) states (∈ Ω(|𝜋𝑖|!)),
𝐴/𝜎𝑖 : at most |𝜎𝑖| states, 𝐴𝑒/𝜎𝑖 : at least 𝑀 |𝜎𝑖| states.

where 𝑀 =
∏︀𝑖−1

𝑗=1 |𝜋𝑗 |! is the multiplication factor and 𝑃 (|𝜋𝑖|, 𝑘) = |𝜋𝑖|!
(|𝜋𝑖|−𝑘)! is the number of all

𝑘-permutations of 𝜋𝑖.

Proof. Let us denote the part of the RHS of rule 𝑟 before 𝜋𝑖 by 𝜔1 and the part after it as 𝜔2; i.e.,
𝑟 = 𝑋 → 𝜔1𝜋𝑖𝜔2.

Processing of 𝜋𝑖 in 𝐴 starts in a state 𝐼 ∈ I|𝜔1|+1(𝑟, 𝐼0) for some 𝐼0 meaning that the part of the
rule before 𝜋𝑖 is processed between the states 𝐼0 and 𝐼 . The state 𝐼 contains the item of the form
[𝑋 → 𝜔1 ·(1) 𝜋𝑖𝜔2]. Then 𝐴 passes the states that contain the following items:

[𝑋 → 𝜔1𝜋1 ·(2) 𝜋2𝜔2], {𝜋1, 𝜋2} is a partition of 𝜋𝑖, and [𝑋 → 𝜔1𝜋𝑖 ·(1) 𝜔2] (5)

where 𝜋1 can be any of the 𝑘-combinations of 𝜋𝑖 for 0 < 𝑘 < |𝜋𝑖|. When we count all options for (5),
we get the number of the states needed for processing 𝜋𝑖 in 𝑟 starting from 𝐼0:⃒⃒⃒⃒

⃒⃒ |𝜔1|+|𝜋𝑖|⋃︁
𝑘=|𝜔1|+1

I𝑘(𝑟, 𝐼0)

⃒⃒⃒⃒
⃒⃒ = |𝜋𝑖|∑︁

𝑘=1

𝐶(|𝜋𝑖|, 𝑘) = 2|𝜋𝑖| − 1. (6)



Let 𝐼0𝑒 ∈ 𝑚𝑎𝑝(𝐼0), and let 𝐴𝑒 be in a state 𝐼𝑒 such that (𝐼0𝑒, 𝑤1) ⊢𝐴𝑒 (𝐼𝑒, 𝜀) for some 𝑤1 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔1).
Based on the definition of the 𝑚𝑎𝑝 function and Lemma 1, 𝐼𝑒 contains all items of the form:

[𝑋 → 𝑤1 · 𝜎𝑤2] where 𝜎 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜋𝑖) and 𝑤2 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔2).

While processing the phrase 𝜎, 𝐴𝑒 passes states that contain items of the form

[𝑋 → 𝑤1𝜎1 · 𝜎2𝑤2] where 𝜎1𝜎2 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜋𝑖), 𝜎1 ̸= 𝜀, 𝑤2 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔2) (7)

where 𝜎1 can be any of the 𝑘-permutations of 𝜋𝑖 for 0 < 𝑘 ≤ |𝜋𝑖|. When we count all the options for
𝑤1, 𝜎1 and 𝜎2, we get the number of states needed for processing all expansions of 𝜋𝑖 starting from the
states of 𝑚𝑎𝑝(𝐼):⃒⃒⃒⃒

⃒⃒ ⋃︁
𝑟𝑒

|𝑤1|+|𝜎|⋃︁
𝑘=|𝑤1|+1

I𝑘(𝑟𝑒, 𝐼0𝑒)

⃒⃒⃒⃒
⃒⃒ = 𝑀

|𝜋𝑖|∑︁
𝑘=1

𝑃 (|𝜋𝑖|, 𝑘) = 𝑀

|𝜋𝑖|∑︁
𝑘=1

|𝜋𝑖|!
(|𝜋𝑖| − 𝑘)!

≥ 𝑀 |𝜋𝑖|! (8)

where 𝑟𝑒 ∈ 𝑄𝑒 ranges over rules of the form 𝑋 → 𝑤1𝜎𝑤2 with 𝑤1 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔1), 𝜎 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜋𝑖),
and 𝑤2 ∈ 𝑒𝑥𝑝𝑎𝑛𝑑(𝜔2). The multiplication factor 𝑀 represents the distinct choices of 𝑤1 and equals
the product of the numbers of permutation options for the permutation phrases in 𝜔1:

𝑀 =
𝑖−1∏︁
𝑗=1

|𝜋𝑗 |!.

Note that 𝑤2 does not affect 𝑀 , since it is the part of the rule that is processed later.
The statements for a simple phrase 𝜎𝑖 can be proved similarly. In this case the processing proceeds in

the same way both in 𝐴 and 𝐴𝑒; however, the multiplication factor is again be applied for 𝐴𝑒.

We analyzed the state reduction for independent rules at the local (rule) level. With dependent rules,
some states of 𝐴 are split and in the worst case, the number of the states of 𝐴 equals to the number
of the states of 𝐴𝑒. It cannot be lower, as a state of 𝐴 can be split into at most as many states as is
the number of its input paths and that is exactly the number of 𝐴𝑒 states. However, the real-world
grammars typically contain no or just very few rule interferences.

At the global (grammar) level, more types of rule interferences may appear. For example, if two
permutation phrases of different rules are processed in parallel (i.e., the same sequence of states of 𝐴
is used), the corresponding reduction applies only once. On the other hand, if permutation phrases
of different rules are processed one by one, the global multiplication factor – similar to the local one
mentioned in Theorem 2 – applies as well.

8.1. JSON Example

We provide an example of JSON schema in the form of CFGP grammar and demonstrate the state
reduction achieved by our modified algorithms. Consider the following CFGP grammar 𝐺 that define
the content of the complex objects and arrays (the rules are numbered):

𝑐𝑎𝑡𝑎𝑙𝑜𝑔 → 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝐼𝑡𝑒𝑚 (1),
| 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝐼𝑡𝑒𝑚 𝑐𝑎𝑡𝑎𝑙𝑜𝑔 (2)

𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝐼𝑡𝑒𝑚 → ⟨⟨ id ‖ name ‖ 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 ⟩⟩ (3)
𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 → 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 (4)

| 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 (5)
𝑎𝑑𝑑𝑟𝑒𝑠𝑠 → ⟨⟨ addressId ‖ home ‖ street ‖ no ‖ city ‖ code ⟩⟩ (6)

The right-hand sides of the rules 3 and 6 consist of a permutation phrases of length 3 and 6, respectively.
It is easy to see that both rules are independent. When we construct the LR(0) automaton 𝐴 for 𝐺 and
𝐴𝑒 for the expanded grammar of 𝐺𝑒, we obtain the following number of states needed for processing



the permutation rules5 - note that the state reduction increases rapidly as the length of the permutation
phrase grows:

𝐴/rule 3: at most 23 = 8, 𝐴𝑒/rule 3: at least
∑︀3

𝑘=0
3!

(3−𝑘)! = 16,

𝐴/rule 6: at most 26 = 64, 𝐴𝑒/rule 6: at least
∑︀6

𝑘=0
6!

(6−𝑘)! = 1975.

9. Construction of SLR / canonical LR / LALR parsing tables

We describe the modification to the standard algorithms for constructing SLR / canonical LR / LALR
parsing tables [11] so that they can process CFGPs. Two functions are needed - 𝐹𝐼𝑅𝑆𝑇 and 𝐹𝑂𝐿𝐿𝑂𝑊
and we extend them to handle permutation rules:

Extension of the 𝐹𝐼𝑅𝑆𝑇 function:

• 𝜔 = ⟨⟨𝜎1 ‖𝜎2 ‖ . . . ‖𝜎𝑛 ⟩⟩ then 𝐹𝐼𝑅𝑆𝑇 (𝜔) =
⋃︀

0≤𝑖≤𝑛 𝐹𝐼𝑅𝑆𝑇 (𝜎𝑖),
• 𝜔 = 𝜔1𝜔2, 𝜔1, 𝜔2 ∈ Π(𝐺) then

– if 𝜀 ∈ 𝐹𝐼𝑅𝑆𝑇 (𝜔1) then 𝐹𝐼𝑅𝑆𝑇 (𝜔) = 𝐹𝐼𝑅𝑆𝑇 (𝜔1) ∪ 𝐹𝐼𝑅𝑆𝑇 (𝜔2),
– if 𝜀 /∈ 𝐹𝐼𝑅𝑆𝑇 (𝜔1) then 𝐹𝐼𝑅𝑆𝑇 (𝜔) = 𝐹𝐼𝑅𝑆𝑇 (𝜔1).

Extension of the FOLLOW function: Let 𝑟 : 𝑋 → 𝜔1𝜋𝜔2 be a rule of 𝐺. If 𝑌 ∈ 𝜋 then

• for each 𝑌 ′ ∈ 𝜋, 𝑌 ′ ̸= 𝑌 , add 𝐹𝐼𝑅𝑆𝑇 (𝑌 ′) ∖ {𝜀} to 𝐹𝑂𝐿𝐿𝑂𝑊 (𝑌 ) ,
• add 𝐹𝐼𝑅𝑆𝑇 (𝜔2) ∖ {𝜀} to 𝐹𝑂𝐿𝐿𝑂𝑊 (𝑌 ),
• if 𝜔2 = 𝜀 or 𝜀 ∈ 𝐹𝐼𝑅𝑆𝑇 (𝜔2) then add 𝐹𝑂𝐿𝐿𝑂𝑊 (𝑋) to 𝐹𝑂𝐿𝐿𝑂𝑊 (𝑌 ).

We get LR(1) items by adding lookahead to the LR(0) items. The body of the repeat loop in the closure
function for LR(1) items is modified as follows6:

for (each item [𝐴 → 𝛼 ·(𝑖) 𝛽, 𝑎] in 𝐽 such that 𝑖 ∈ {1, 2})
for (each nonterminal 𝐵 ∈ ℎ𝑒𝑎𝑑(𝛽))

for (each production 𝐵 → 𝛾 of 𝐺)
for (each symbol 𝑏 in 𝐹𝐼𝑅𝑆𝑇 ((−𝐵)𝛽𝑎)

if ([𝐵 → ·(1)𝛾, 𝑏] not in 𝐽)
add [𝐵 → ·(1)𝛾, 𝑏] to 𝐽;

Assume 𝐴 and 𝐴𝑒 are LR(1) automata for 𝐺 and 𝐺𝑒, respectively, constructed using the PERM_CLOSURE

function above. The 𝑚𝑎𝑝 function for an LR(1) item and an input string 𝑤 maps the LR(0) part of the
item in the same way as for LR(0) items and does not manipulate the lookahead part. Let 𝐼 be a state
of 𝐴. Each of the mapped states 𝐼𝑒 contains all expansions of the phrases that appear after the dots
in 𝐼 . When constructing parsing table for canonical LR parser, the states of 𝐴 are split based on the
lookahead only if the mapped states of 𝐴𝑒 are also split, preserving the state reduction rate. Similarly,
when merging states for an LALR parser, the state reduction rate remain unaffected.

10. Conclusion and future work

We presented a modification of LR parsing algorithms that, in practical cases, generates significantly
smaller parsing tables. For independent rules, the number of states needed for processing a permutation
phrase 𝜋 of size 𝑛 in LR(0) automaton is reduced from Ω(𝑛!) to 𝑂(2𝑛). The reduction in the number of
states increases with the size of 𝜋 as well as its placement within the right-hand side of a rule. The more
permutation phrases appear before 𝜋, the higher the reduction. In addition to providing a more efficient

5We also included the item having the dot at the beginning.
6We use the notation (−𝐵)𝛽 to denote the phrase obtained by removing 𝐵 from the beginning of 𝛽.



approach for processing permutation phrases in existing languages, we hope that the findings of this
work will also assist language designers in making informed decisions about incorporating permutation
phrases into their specifications.

Our algorithm does not support nested simple phrases and optional elements within a permutation
phrase. For nested phrases, another level of processing needs to be introduced and the 𝑠𝑡𝑒𝑝 function
must be extended to handle that level. It is required that, within a permutation phrase, one nested
simple phrase is not a prefix of another to avoid conflicts. Optional elements require the modification of
the ℎ𝑒𝑎𝑑 function and they cannot conflict with the set of symbols that can follow given permutation
phrase. In both cases the limitations could be possibly avoided by parallel processing of more items.
It would be beneficial to extend the algorithm to handle nested simple phrases and optional elements
without limitations. Another possible direction for future work is to explore in detail the relationship
between the number and type of rule interferences and the resulting reduction in states, as well as to
analyze the global state reduction at the grammar level.

Declaration on Generative AI

During the preparation of this work, the author used ChatGPT-4 to check grammar, spelling, and
improve sentence clarity. After using this tool, the author reviewed and edited the content as needed
and takes full responsibility for the publication’s content.
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