CEUR-WS.org/Vol-4092/paperl5.pdf

CEUR
E Workshop
Proceedings

published 2025-11-13

LR Parsing of Permutation Phrases
Jana Kosti¢ova?

Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, Bratislava, Slovakia

Abstract

This paper presents an efficient method for LR parsing of permutation phrases. In practical cases, the proposed
algorithm constructs an LR(0) automaton that requires significantly fewer states to process a permutation phrase
compared to the standard construction. For most real-world grammars, the number of states required to process
a permutation phrase of length n is typically reduced from Q(n!) to O(2"), resulting in a much more compact
parsing table. The state reduction increases with longer permutation phrases and a higher number of permutation
phrases within the right-hand side of a rule. We demonstrate the effectiveness of this method through its
application to parsing a JSON document.

Keywords

permutation phrase, LR parsing, state complexity, unordered content, JSON

1. Introduction

Several of today’s languages allow for constructs consisting of unordered content, meaning that any
permutation of child-subconstructs is allowed. Examples of such languages include Java, Haskell, XML,
and JSON (JavaScript Object Notation) [1, 2]. JSON, an extremely popular tree format for data storage
and transmission, is perhaps the most prominent example, as JSON objects always consist of zero or
more unordered members. The structure of JSON data can be constrained by a schema, most commonly
using JSON Schema [3]. A large part of such schema can be expressed using a context-free grammar
(CFG) [4].

EBNF notation for CFGs requires all permutation options to be enumerated on the right-hand side of
the rule that results in n! grammar rules. For example, an unordered content over the symbols A, B, C'
yields 3! = 6 rules:

S — ABC|ACB|BAC|BCA|CAB|CBA

Cameron, in his work [5], proposed a shorthand notation for expressing unordered content, called a
permutation phrase:

X = (AlBlC)

Using this notation does not affect the expressiveness of CFGs, nor does it change the language generated
by the grammar. However, it makes the language specification significantly more concise and easier to
understand. Consequently, it is desirable to adapt common parsing algorithms to accept permutation
phrases in the input grammar and to process them more efficiently than the original algorithms, which
handled n! rules.

The main contribution of this paper is a modification to LR parsing algorithms that enables efficient
parsing of permutation phrases. The running time remains unaffected, and in practical cases, the
number of states in the LR(0) / LR(1) automaton, as well as the size of the resulting parsing table, are
significantly reduced compared to the original algorithm. This state reduction is achieved by changing
the semantics of LR(0) items: instead of tracking the exact sequence of symbols already seen and
expected, we only track the set of symbols seen and expected for permutation phrases. In the standard
algorithm, the number of states for processing a permutation phrase of length n is computed as the
sum of all k-permutations of n, 0 < k£ < n. In the modified algorithm we only need to compute all
k-combinations of n, 0 < k < n.

ITAT’25: Information Technologies — Aplications and Theory, September 26-30, 2025, Telgart, Slovakia
& kosticova@dcs.fmph.uniba.sk (J. Kosti¢ova)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:kosticova@dcs.fmph.uniba.sk
https://creativecommons.org/licenses/by/4.0/deed.en

Related work. To the best of our knowledge, ours it the first approach to efficient LR parsing of
permutation phrases. There are few works that extend top-down parsing methods for this purpose: In
[5], a modification to the LL parser is presented that keeps the O(n) running time. In [6], a way how
to extend a parser combinator library is proposed. An XML parser presented in [7] uses a two-stack
pushdown automaton to parse XML documents against an LL(1) grammar with permutation phrases.

Algorithms for minimizing deterministic finite automata (DFA) [8, 9, 10] could be used to reduce
the states of LR(0) automaton. However they cannot be applied directly since minimizing an LR(0)
automaton is different from minimizing a general DFA - the content of the states must be taken into
account to ensure proper shift/reduce actions. In addition, an extra step in the generation of the parsing
table would be needed.

2. LR parsing

This section provides a brief informal overview of parsing, with a particular emphasis on LR parsing.
We assume the reader is familiar with the concepts of context-free grammars and finite automata. We
follow [11], where a formal treatment of these concepts can also be found.

By parsing, we mean recognizing the structure of a computer program or an instance of another type
of language under consideration. This structure is typically described by a CFG, as CFGs can capture
most of the syntactical constructs of common programming languages. During parsing, the goals are to
decide the membership problem (i.e., whether a given string belongs to the language generated by the
given CFG) and to construct the derivation, often represented as a derivation tree.

There exists a general algorithm for membership problem: the Cocke-Younger-Kasami (CYK) algo-
rithm. However it has a time complexity of O(n?) and is therefore not convenient for real-world use
cases.

Two methods are commonly used to achieve parsing in linear time: LL parsing and LR parsing. LL
parsing is based on top-down approach meaning that it constructs the derivation tree from the root to
the leaves. In contrast, LR parsing uses a bottom-up approach, constructing the derivation tree from
the leaves to the root.

Both methods work only for restricted subsets of CFGs. These are referred to as LL(k) grammars and
LR(k) grammars, respectively, where k denotes the length of lookahead - the number of symbols the
parser examines ahead in the input string. The class of LR(k) grammars is a superset of the class of
LL(k) grammars. This means that LR parsers are in general more powerful than LL parsers, and many
widely used compilers and compiler generators are based on the LR parsing or one of its variants.

In this work, we will focus in more detail on LR parsing. As mentioned earlier, the derivation tree is
constructed bottom-up; specifically, a right-most derivation in reverse is produced. The algorithm reads
the input string and attempts to match the right-hand side (RHS) of a CFG rule. If such an RHS is found,
it is reduced to the nonterminal on the left-hand side (LHS) of the corresponding rule. In this way, the
algorithm derives the second-to-last sentential form of the right-most derivation. It then repeats this
process using the new sentential form as input. The algorithm succeeds when the entire input string is
reduced to the start symbol of the grammar. Failure is reported if no valid reduction can be made, or if a
conflict arises — that is, either multiple reductions are possible at a given point (reduce/reduce conflict),
or the parser cannot decide whether to reduce or to read the next input symbol (shift/reduce conflict).

The simplest of the LR-based parsers, called the SLR parser, is based on a finite state machine known
as the LR(0) automaton. This automaton can be constructed automatically for a given CFG, hardcoding
the CFG’s rules into its states, and it handles exactly the logic described above. The states of an LR(0)
automaton consist of LR(0) items, which are CFG rules with a dot inserted somewhere in their right-hand
side (RHS). The dot divides the RHS into two parts — each possibly empty. In all LR parsing algorithms,
the dot serves as a marker: the portion before the dot represents what part of the rule has already been
recognized in the input, while the portion after the dot indicates what is yet to be recognized.

To achieve a deterministic LR(0) automaton, its states are defined as sets of LR(0) items - i.e., multiple
rules may be in progress simultaneously. A reduction is performed when the automaton reaches a state

that contains an LR(0) item with the dot at the end, meaning the RHS of the corresponding rule has
been fully recognized. Otherwise, the next symbol is read from the input string — this is known as the
shift action.

3. Permutation phrases in context-free grammars

In this section we introduce necessary definitions related to extending context free grammars with
permutation phrases. We follow the concept of permutation phrases that has been described informally
in [5]. Without loss of generality, we assume that the CFG under consideration does not contain
unreachable or non-generating nonterminals.

The RHS of a CFG rule is a sequence of grammar symbols called a simple phrase. Let us consider
. to be an alphabet of both terminals and nonterminals of a CFG, then we refer to the set of simple
phrases over ¥ as II5(X), i.e., IT4(X) = X*.

A permutation phrase over a set of non-empty simple phrases {01, 09, ...,0,} is denoted by

{orlloall - llon),

where n > 0. We consider a permutation phrase to be only a specific notation for a set of non-empty
elements, with its semantics explicitly defined by the expand function. Let 7 be the permutation phrase
over the set {4, B, C'}, then expand() returns all concatenated permutation options:

m= (Al B[C) then

expand(n) = {ABC, ACB, BAC,BCA,CAB,CBA}.

We denote the set of all permutation phrases over simple phrases from II;(X) by IL,(X). We use the
following notations for permutation phrases in the rest of this paper:

| - size,

« 7 U7 - union,

« m \ 7’ - subtraction,

« 0 € m - membership,

o {m,m} - a partition of 7 into two subsets.

The permutation phrases containing the same elements are considered equal.

Permutation phrases can be integrated into the RHSs of CFG rules as a shorthand notation for
unordered content. Then each rule with a permutation phrase replaces n! enumerated rules. Let be of
the form

r: X —>Y{A|B|CD).

Then we refer to the set of equivalent enumerated rules as expand(r):

expand(r) ={ X —-YABCD,X - YACDB,X — YBACD,
X - YBCODA,X — YCDAB,X — YCDBA }

Definition 1. Let X be an alphabet. The set I1(X) of grammatical phrases with intergated permutation
phrases over 3 and the expand function capturing their semantics are defined as follows:

1. o € II4(X) then

. o eIl(X),
« expand(o) = {0},
2. mell,(3), 7= (o1]| oz2] ... | on),n >0 then
. mell(X),
o expand(rm) = {04,04y ... 04, | (i1,...,in) € Perm(n)'},

'The set of all permutations of {1,...,n}.

3. wi,wy € II(X) then
e WiWg € H(Z),
. expand(wiws) = expand(w) expand(ws)’.
Now we can define CFG with permutation phrases and its expanded grammar:
Definition 2. A context-free grammar with permutation phrases (CFGP) is a 4-tuple G = (N, T, P, S)

where N is a set of nonterminals, T' is a set of terminals, S' is the initial nonterminal, and P is a finite set
of ruless P C N x II(N UT). The expanded grammar of G is a CFG G, = (N, T, P,, S) such that

P, = U expand(r),
reP
where expand(X — w) = {X — w|w € expand(w)}.
Note that each CFG G is also a CFGP and in that case G, = G. We refer to the rules of CFGP

that contain permutation phrases as permutation rules and we use the shorthand notation II(G) for
II(N UT). In the rest of this paper, we consider the following grammars (unless stated otherwise):

« G=(N,T,P,S) is a CFGP,
« Go = (N,T,P.,YS) is the expanded CFG for G.

In what follows, we restrict our attention to permutation phrases that consist of symbols only. Possible
approaches to overcome this limitation are discussed in Section 10.

4. LR(0) items of permutation rules

In this section we modify the definition of LR(0) items (shortly items) to cover also permutation rules.
We first define the set of item phrases, i.e., the possible RHSs of the items. To distinguish which level of
a given RHS is currently being recognized — whether the top level or a nested permutation phrase — we
use dots annotated with superscripts (1) and (2), respectively.

Definition 3. Given an alphabet ¥ and w € 11(X), the set I P(w) of item phrases of w is defined as
follows:

1. w € II4(X) is a simple phrase then
IP(w) = {o1-W oy | o109 = w},
2. w € I1,(X) is a permutation phrase then
IP(w) = { Wz 7MWYy {m @ ny|{m,m} is a partition of 7},
3. W= wiwa, wi,wy € II(X) is a concatenation of phrases then
IP(w) = {wjwz|w) € IP(w1)}U{wiwh|w) € IP(w2)}.
Definition 4. Letr € P be of the form: X — w. The set of LR(0) items of , denoted by I(r), is defined by
I(r) ={[X =]| € IP(w)}.

We extended the definition with the items of permutation rules. An item of the form [X — 7 -(2) 7y],
where {71, o} is a partition of some permutation phrase , indicates that the elements of 71 have
already been seen in some order, while the elements in 75 are expected to be seen in some order. It
means that the items for permutation phrases do not care about the exact order of the elements. The dot
is marked by the superscript (2) meaning that the content of a permutation phrase is begin processed.
On the other hand, the dot marked by the superscript (1) represents processing the RHS outside the
permutation phrases and it has the same semantics as the dot in the original LR(0) items.

The items containing a permutation phrase are referred to as permutation items. We define the set of
all items for a given CFGP as the union of items of its rules:

Definition 5. The set of items for grammar G is defined by I(G) = J,cp I(r).

The concatenation of sets expand(w1) and expand(ws).

5. Modified algorithm for generating LR(0) automaton

We first define the head function which, for a given phrase w of G, returns the set of grammar symbols
that appear at the beginning of its expansions.

Definition 6. The function head : TI(G) — 2VYT) is defined by

« w = ¢ then head(w) = 0,
« w=Yuw, whereY € (NUT), then head(w) = {Y'},
cw=(|| on) & then head(w) = {head(o1), head(os), . .., head(ay,)}.

Leti € I(G) be an item of the form [X — o -U) 3], j € {1,2}, then head function fori is defined by:

head(i) = head(p).

For a given item ¢ and a grammar symbol Y, the partial function step returns the item that results
from the movement of the dot within the item ¢ on symbol Y. The function is defined only if such
movement is possible, i.e., Y € head(i).

Definition 7. Leti € I(G) such thatY € head(i). Then the partial function step : I(G) x (NUT) —
I(QG) is defined as follows’:

1. Matching the first level (a concatenation of phrases):
i=[X —w -Wowy,0 € NUTUIL,(G) then

a) ifd =Y
step(i,Y) = [X — w1V - wy]

b) if6 € I,(G),Y € 6:

step(i,Y) = [X = wi [(V)@ (0)\ {¥})]w)]

2. Matching the second level (the content of a permutation phrase):

1= [X — W1WQ],7T1,7T2 € Hp(G) then

a) ifmy = (Y):
step(i,Y) = [X — wi(m U{Y}) O wy

) if‘ﬂ'Q‘ >2andY € my:

step(i,Y) = [X = wi [(m U{Y}) @ (m2\ {¥'})] w2]

Example 1. Let us consider an item with the dot at the beginning of its RHS, indicating that the corre-
sponding rule is just starting to be recognized:

io=[X = -WA(B| C) DI.

stepY for step(i,Y) = j, we get the following sequence of successive application

Using the notation i —
of the step function:
ig —tPA (X — AW (B|C) D]
=P [X > A(C)-® (B)D]
=B [X - A (B C) - D]
[

—sterD (X A (B|CY) D-W]

Note that the step function preserves the rule being recognized, meaning that both the original item
and the resulting item belong to the set of items I(r) for the same rule r.

*For better understanding, the processing of the content of a permutation phrase is marked by a box.

Proposition 1. Letr € P andi € I(r) then (step(i,Y) = j) = j € I(r).

Actually, the superscripts of the dot help to preserve the rule being processed as shown in the
following example.

Example 2. If we do not mark the dot to determine the level being processed, then the item
i=[X = {AlB)-{C|D)]
can originate from two different rules r1,rs and step(i, D) can result in two different options j1, ja:

ri: X = (ABMCID), ji: [X—=(AIB)(C)-{D)]
re: X = (A[B[CID), j2: [X—=(AlIBIC)-{D)]

Marking the dot ini by the superscript (1) indicates that the top level is being processed - that corresponds to
the rule r1 and the resulting item j1. Marking the dot by the superscript (2) indicates that the permutation
phrase is being processed - that corresponds to the rule ro and the resulting item ja.

We modify the standard algorithm for generating LR(0) automaton [11] as follows:

SetOfItems PERM_CLOSURE(]) {
J=1;
repeat
for (each item [A — a - (] in J such that i € {1,2})
for (each nonterminal B € head(f))
for (each production B — v of G)
if ([B — -M9] not in J)
add [B — -Mq] to J;

until no more items are added to J on one round;
return J;

}

Set0fItems PERM_GOTO(I,Y) {
J =10;
for (each item [X — a-® 3] of I such that Y € head(f) and i € {1,2})
add step([X — a-® [],Y) to J;
return PERM_CLOSURE(.J);

}

The algorithm uses the generic functions head and step defined above, which can be applied to any
phrase, including those with integrated permutation phrases. The algorithm for constructing LR(0)
parsing table with shift/reduce actions remains unchanged. We define LR(0) automaton for CFGP G as
follows:

Definition 8. Let G’ = (N', T, P', S’) be the augmented grammar of G such that N' = N U {S’} and
P'= PU{S" — S}. Then the LR(0) automaton for G isa DFA A = (X, Q, 0, Iy, F') such that

e X=NUT, Iy = {8 — -Mg]},
« Q and § are constructed by PERM_GOTO function, they are extended by an error state () and transitions
from/to this error state in a standard way to make A complete.

Example 3. Let us consider processing a CFG rule
X = (Al BIC).

The corresponding part of the LR(0) automaton has 8 states and the transitions among these states are
depicted in Figure 1. The LR(0) automaton for the extended grammar would have 16 states, as it allows only
exact sequences before the dot. Namely, states I, I and I7 would be duplicated for the different prefixes,
and the single state I would be split into 6 separate rules, corresponding to the 6 permutations.

I: Ig:
B
A X «wds ., «<BljC> 7| X - <AJIB> . <C>
A 4 g
Il: B—> [3: c I6: | .4 IB:
X — . <A/IB]]C> X = ». <AflC>»> X—= <BIjC>»> . <A>» X— <A[/B/[C>.
& B B
| 4 I:
X—= <C>»>. <A[/B> X = <Cf/A>». »

Figure 1: Processing of a permutation phrase

For simplicity, we assumed a single item per state in the example above. In general, there may be
multiple items within a state, and some of them may even interfere with the permutation items depicted.
Such a situation is discussed later in Section 6.

In addition to the grammars G, G defined before, we consider the following definitions in the rest
of this paper (unless stated otherwise):

« A= (%,Q,96, Iy, F) is the complete LR(0) automaton for the grammar G allowing permutation
rules constructed by our modified algorithm,

o Ac = (%, Q¢, bc, Ipe, Fe) is the complete LR(0) automaton for the extended grammar G, con-
structed by the standard algorithm [11].

6. Map function

In this section, we define an 1:N mapping between the states of A and A.. We later use this mapping to
prove the correctness of our modified algorithm for constructing the LR(0) automaton, as well as to
carry out a complexity analysis.

We first introduce some supplementary concepts. In the LR(0) automaton, there is a close relationship
between the input strings leading to a state I (called input paths) and before-the-dot parts of the items
within I. To make the set of inputs paths for such a state I finite, we consider only those whose lengths
are limited by the longest before-the-dot part among the items in 1.

Definition 9. Let I € Q and max = maz{|a||[X — a- 8] € I}. Then the function paths : Q — 2=
returns input paths for I and is defined by:

paths(I) = {w|0 < |w| < maz and there exists I' € Q such that (I',w) % (I,¢)}.

Note that paths(I) is empty only for the initial state Iy and if w is in paths(I) then also all suffixes
of w (except the empty word) are in paths(I). For the LR(0) automaton of a grammar with permutation
rules, the following proposition captures the relation between paths(I) and the before-the-dot parts of
items in I.

Proposition 2. Let I € Q and i € I be an item of the form i : [X — « - [3]. Then
paths(I)/|a € expand(a)
where paths(I) /|4 is a set of all suffixes of paths(I) of length |c|.
Note that if the grammar has no permutation rules, the equality holds:
paths(I)/|o = expand(a) = {a}.

This means that any viable prefix leading to I has the before-the-dot part « as its exact suffix of length
|| and no other strings appear as suffixes of that length.

If permutation items are present, they may interfere with other items in such a way that some states
are “split”. Such a situation is depicted in Figure 2: there are two states, I5 and Ig, both containing the

I: Is:
X— «A» . <BJfC> B—>{ X «A[[B> . <C>» E—3
Y A.BE Y Yo AB.E \ i
A
I;: < ¢
1 I:!' [6
X — <A[IBl/C> By = A—>
Vs ABE X B> <> |~ X— <Af[B>.<C>»>| C Ly
c p X <AJIBJC> .
\ Iy B I:
X «C . <AlfB> [N X— <BjC> . <A> .
A

| 5

X— &Cl/A> .

Figure 2: An example of rule interference

item i = [X — (A || B)) - {C))]. The splitting is caused by an interfering item [Y" — AB - E]. Let us
recall that in Figure 1, where the same rule is being processed but no interferences were assumed, there
was only a single state containing ¢, namely I5.

The PERM_GOTO function automatically handles rule interferences and generates as many states for A
as are actually needed. The more interferences occur, the more states of A are generated, which results
in a lower state reduction between A and A..

We say that a CFGP rule is independent when its items do not interfere with other items within
the same state. Thus, independency is defined based on the equality between the sets paths(l)/|q|
and expand(«) for each rule item that appears in some I €). This concept is not required for the
definition of the mapping function, but it will be used later in the complexity analysis.

Definition 10. Let I € () andi € I be an item of the formi : [X — «-3]. Then the item i is independent
in I if and only if paths(I)/|o| = expand(c).

Definition 11. Letr € P, r is independent if and only if for each i € I1(r) and I € Q:
© € I implies i is independent in I.

Now we can proceed with the definition of the map function itself. Intuitively, this 1:N mapping
translates a state I of A (the LR(0) automaton for the CFGP) into a set of states of A, (the LR(0)
automaton for the expanded grammar) in such a way that each item containing a permutation phrase
before the dot induces a separate state in A, for each expansion of this permutation phrase. However,
dependent rules must also be taken into account, as in such cases, some states in A may already be split
(fully or partially). Both situations are depicted in Figure 3.

We first define a function mapsiete With two arguments: for an input state I € () and an input string
w, it returns a state I, € @, which handles the processing of the input paths of paths(I) that are
suffixes of w. The value of map(I, w) is undefined if no suffix of w is in paths(I).

We use two auxilliary partial functions map,irqse and mapiten, that map phrases and items of G' to
phrases and items of G, respectively, with respect to w.

Definition 12. The partial function mappprase : IL(G) x X* — II(G.) is defined by:
Mapphrase(c, w) = o/ € (N UT)* whered' € expand() and o is a suffix of w.
The partial function mapisen : 1(G) x ¥* — 21(Ge) js defined by:
mapieem([X — o+ B, w) = {[X = o' - 8] € I(Ge) | o/ = mapphrase(ct; w), B € expand(B)}. (1)
The function Mapgare : Q X S — Q. is defined by:

« I =0 thenmap(I,w) = 0 for any w € X* (error state),
« I # 0 and w # wywy such that we € paths(I) then map(I,w) = 0,

_ABC
= X— ABC.E T .
o ABC | X— «A//B//C>. E @;}> X— ABC.E
1

; P A X ABC.E
. X— ACB.E
X—<<A//Bl{C>. E i
— X—> ACB. E

7
(>3
A CBA.E N
- ARERS Ct0 | X <<AJBICo . E <ee
Y CBA
® X— CBA.E

a) b)

Figure 3: The mapping of a) an independent rule b) a dependent rule

« I # 0 and w = wyws such that wy € paths(I) then map(I, w) = J;c; mapizem (i, w).

Building on the preceding stepwise definitions, we now introduce the final map function. It maps a
state I of A to the set of the A, states that handle the processing of the paths in paths(I) as shown in
Figure 3. Note that only the before-the-dot parts induce multiple states in A.. The after-the-dot parts
containing permutation items are always expanded within the same state of A, allowing recognition of
any of the permutation options while processing the rest of the input (see (1)).

Definition 13. The function map : Q — 2%¢ is defined by:

map(l) = U map(I,w).

we
paths(I)

7. Correctness

Now we prove the key statements to show that A is correct: the states reached by A and A, on the same
input can be related by the map function and additionally, A and A, return the same parser action.
Note that both A and A, perform m computation steps to process an input of length m since they are
deterministic and complete.

Lemma 1. Letw € ¥* and (I, w) l—ljfl (J,€), (Ipe, w) l-';ﬁ' (Je,€). Then J. = map(J, w).

Proof. We give a proof by induction on |w|. The base case |w| = 0 trivially holds. Let us assume the
statement holds for n = k and let us have the following computations on the input |w| = k + 1, where
w=wY,Yex:
(Io,w'Y) X (I,Y) Fa (J,e) and @
(TIoe, w'Y) Fh o (L,Y) Fa, (Jee).

€

Then it also holds:
(In,w') F5 (I,€) and (Ioe,w') F4_ (I, €).

Based on the induction hypothesis I. = map(I, w). We need to prove J. = map(J,w'Y"). It is sufficient
to prove that mapping holds for kernel items* - kernel(J.) = map(kernel(J),w'Y’) - as that implies
that the mapping holds for non-kernel items as well and thus J, = map(J, w'Y").

We define the subsets Iy C I, I,y C I, that participate in the computation step of A and A., respectively,
on the symbol Y

Iy = {iel,Y € head(i)}, 3)
Iy = {ic€l.,Y € head(i.)}.

*Kernel items are those that do not have the dot at the beginning of the RHS. The items with a dot at the beginning of RHS
are non-kernel items.

i ‘ 3 kernel(])
(X 2@ Bl |- {ilX > aenBl] ‘

map(i, w’) map(j, w'Y)
/ step ¥
Ly [t [X > YB/] X a P | el
I [X - . YBS] jezi [X = & Y.B5"])
jont [X 2" VB, —— jent [X — ' V.81
+ other items 7, where .
Y & head(i.)

& =map(a,w"), YB,/, ..,YB, € expand(is,)B) < o'Y=map(auy)wY),{B,) ...B,}= expand(B)
J \ J

Y
=3

Y
=3
{Lors Loze o2 Lo} © map(@ w) UerrJezs oo Jon} = map(, w'Y)

(

Figure 4: The items participating in the last computation step of A and A, (on the symbol Y)) and their mutual
relationships

Based on the definition of § and d, functions it holds

MILY) = oIy Y)=1 W
5.(1,Y) = be(ley,Y) = Je.

If Iy = (), then J = J, = () and the statement clearly holds. Assume Iy # (). The situation is depicted
in Figure 4. We use the following shorthand notations:

* Q(4y) to refer to the phrase resulting from adding Y to the end of a:

- If a = wm where 7 is a permutation phrase then a1y = w(7m U {Y'}).
- Ifa=wA where A € N UT then a;y) = wAY.

* (+v)B to refer to the phrase resulting from adding Y to the beginning of 3:

- If B = mw where 7 is a permutation phrase then (118 = (7 U {Y })w.
- If 3 = Aw where A € N UT then (,y) =Y Aw.

It is easy to see that

Je € map(kernel(J),w'Y) 3j € kernel(J) : je € map(j,w'Y) =
Ji € Iy : step(i,Y) = j =
i, € Ly :i. € map(i,w'), step(ie,Y) = jo =

Je € kernel(J,),

R

Je € kernel(J.) Tie € Loy : step(ie,Y) = je =

Ji € Iy : map(i,w') = i =

3j € J:j=step(i,Y), map(j,w'Y) = j. =
Je € map(kernel(J),w'Y).

P44

Theorem 1. Letw € X* andY € X and (o, w) 5 (J,€), (loe, w) F5y_ (Je,€). Then
action(J,Y') = action(J,Y) or J = J. = ().

Proof. Based on Lemma 1 we get J. = map(J,w). Then it holds J =) < J. = (). Let assume
J, Je # (). Based on the definition of map function, an item j € J has a transition on Y if and only if
at least one of the items j. € map(j, w) has a transition on Y. That implies

(shift) € action(J,Y) <= (shift) € action(J.,Y).

At the same time, an item j € .J is of the form [X — a-(1)] if and only if map(j, w) = {j.} and j. is of
the form [X — o] where 0 = map(a, w). This means

(reduce X —) € action(J,Y) <= (reduce X — o) € action(J.,Y ') where o € expand(«).

O]

8. State complexity

In this section, we analyze the difference between the number of states needed to process a permutation
phrase in A and to process all corresponding permutation options in A.. We also discuss the differences
in processing simple phrases in permutation rules. The greatest state reduction is achieved when a rule
is independent, meaning that processing permutation phrases on the rule’s RHS does not interfere with
other rules or other parts of the same rule.

Definition 14. Letr € P be a rule of the formr : X — w. Let Iy € Q be a state of A that contains
item [X — NeY w]. Then the set of states processing the rule 7 in A starting from Iy is defined by

S (r, Iy) = UJ,:J:'O I (r, Iy) where
1. jo(?", I[)) = {Io},
2. I(r,Io) ={I|I=056("Y) where
« I' € F_1(r, 1) and there existsi € I' N I(r) of the form [X — w; (9) wa|
where j € {1,2}, |w1| =k — 1 andY € head(w2)}.

Note that the set .7 (r, I) contains all states reached from Iy by processing the first k& symbols of w
and the set | J]_, #(r, I) contains all states needed to process the subphrase of w between the i-th
and the j-th symbol. If we replace P, A, 0 with P., A., ., respectively, we get similar definition for the
extended LR(0) automaton A..

Theorem 2. Letr € P be an independent rule of the form:
X = 007101 - .. O 1T Oim

where each o; € 114(G) is a simple phrase and each 7; € I1,(G) is a permutation phrase. Then the
processing of o;/m; in A/A. requires the following number of states:

A/m; - at most 217l states (€ O(27l)), A./m; - at leastMZLl’"l P(|m;|, k) states (€ Q(|m;|!)),
A/o; : at most |o;| states, Ac/o; : at least M|o;| states.

|7 !

where M = H;;ll |7;|! is the multiplication factor and P(|m;|, k) = Tmi=my is the number of all
k-permutations of ;.

Proof. Let us denote the part of the RHS of rule r before m; by w; and the part after it as wo; i.e,,
r=X — wimiwsa.

Processing of ; in A starts in a state I € %}, 41(r, Io) for some Iy meaning that the part of the
rule before 7; is processed between the states Iy and I. The state I contains the item of the form
[X — w1 - mws). Then A passes the states that contain the following items:

[X — wim (2 mows|, {71, T2} is a partition of 7;, and [X — wim; @) wa] (5)

where 7 can be any of the k-combinations of 7; for 0 < k < |m;|. When we count all options for (5),
we get the number of the states needed for processing 7; in r starting from Ij:

|ws [+]m;] |73
U A do) | =D C(mil k) =2m - 1. (6)
k=|w1|+1 k=1

Let Iy, € map(Iy), and let A, be in a state I, such that (loe, w1) F4, (I, €) for some wy € expand(wy).
Based on the definition of the map function and Lemma 1, I, contains all items of the form:

[X — w; - ows| where o € expand(m;) and wa € expand(ws).
While processing the phrase o, A, passes states that contain items of the form
[X — w107 - o2ws] where 0109 € expand(m;), 01 # €, wa € expand(ws) (7)

where o1 can be any of the k-permutations of 7; for 0 < k < |m;|. When we count all the options for
wi, 01 and o2, we get the number of states needed for processing all expansions of 7; starting from the
states of map(I):

lwi|+|o] |il |il n
U U At | =M pnl =0y g @
Te k=|wi|+1 k=1 k=1 """ ’

where 7. € Q. ranges over rules of the form X — wiowy with wy € expand(w:), o € expand(m;),
and we € expand(ws). The multiplication factor M represents the distinct choices of w; and equals
the product of the numbers of permutation options for the permutation phrases in wy:

i—1
M =] Im
j=1

Note that wy does not affect M, since it is the part of the rule that is processed later.
The statements for a simple phrase ¢; can be proved similarly. In this case the processing proceeds in
the same way both in A and A.; however, the multiplication factor is again be applied for A.. O

We analyzed the state reduction for independent rules at the local (rule) level. With dependent rules,
some states of A are split and in the worst case, the number of the states of A equals to the number
of the states of A.. It cannot be lower, as a state of A can be split into at most as many states as is
the number of its input paths and that is exactly the number of A, states. However, the real-world
grammars typically contain no or just very few rule interferences.

At the global (grammar) level, more types of rule interferences may appear. For example, if two
permutation phrases of different rules are processed in parallel (i.e., the same sequence of states of A
is used), the corresponding reduction applies only once. On the other hand, if permutation phrases
of different rules are processed one by one, the global multiplication factor — similar to the local one
mentioned in Theorem 2 - applies as well.

8.1. JSON Example

We provide an example of JSON schema in the form of CFGP grammar and demonstrate the state
reduction achieved by our modified algorithms. Consider the following CFGP grammar G that define
the content of the complex objects and arrays (the rules are numbered):

catalog — catalogltem (1),
| catalogltem catalog (2)
catalogltem — (id||name || addresses)) (3)
addresses — address (4)
| address addresses (5)
address — (addressId | home || street ||no || city|| code)) (6)

The right-hand sides of the rules 3 and 6 consist of a permutation phrases of length 3 and 6, respectively.
It is easy to see that both rules are independent. When we construct the LR(0) automaton A for G and
A, for the expanded grammar of GG, we obtain the following number of states needed for processing

the permutation rules® - note that the state reduction increases rapidly as the length of the permutation
phrase grows:

A/rule 3: at most 23 = 8, A./rule 3: at least 22:0 (?)Ei'k), =16,

Alrule 6: at most 26 = 64, A./rule 6: at least 22:0 (627!/%)! = 1975.

9. Construction of SLR / canonical LR/ LALR parsing tables

We describe the modification to the standard algorithms for constructing SLR / canonical LR / LALR
parsing tables [11] so that they can process CFGPs. Two functions are needed - F'/RST and FOLLOW
and we extend them to handle permutation rules:

Extension of the F'1RST function:

e w={({o1]o2] ... on)) then FIRST (w) = Uogign FIRST(o;),

. W= wwy,wi,wy € II(G) then
- ife € FIRST (wy) then FIRST (w) = FIRST (w1) U FIRST (w2),
- ife ¢ FIRST (wy) then FIRST (w) = FIRST (w1).

Extension of the FOLLOW function: Let r : X — wymws be arule of G. If Y € 7 then

« foreachY' €, Y’ #Y,add FIRST(Y')\ {¢} to FOLLOW(Y),
. add FIRST(ws) \ {¢} to FOLLOW (Y),
« ifwy =core € FIRST (w2) thenadd FOLLOW (X) to FOLLOW (Y').

We get LR(1) items by adding lookahead to the LR(0) items. The body of the repeat loop in the closure
function for LR(1) items is modified as follows®:

for (each item [A — o) B,a] in J such that i € {1,2})
for (each nonterminal B € head([))
for (each production B — v of G)
for (each symbol b in FIRST(_p)Ba)
if ([B — -®~v,b] not in J)
add [B — -WMv,b] to J;

Assume A and A, are LR(1) automata for G and G, respectively, constructed using the PERM_CLOSURE
function above. The map function for an LR(1) item and an input string w maps the LR(0) part of the
item in the same way as for LR(0) items and does not manipulate the lookahead part. Let I be a state
of A. Each of the mapped states I. contains all expansions of the phrases that appear after the dots
in I. When constructing parsing table for canonical LR parser, the states of A are split based on the
lookahead only if the mapped states of A, are also split, preserving the state reduction rate. Similarly,
when merging states for an LALR parser, the state reduction rate remain unaffected.

10. Conclusion and future work

We presented a modification of LR parsing algorithms that, in practical cases, generates significantly
smaller parsing tables. For independent rules, the number of states needed for processing a permutation
phrase 7 of size n in LR(0) automaton is reduced from Q(n!) to O(2"). The reduction in the number of
states increases with the size of 7 as well as its placement within the right-hand side of a rule. The more
permutation phrases appear before , the higher the reduction. In addition to providing a more efficient

*We also included the item having the dot at the beginning.
We use the notation (_ /3 to denote the phrase obtained by removing B from the beginning of 3.

approach for processing permutation phrases in existing languages, we hope that the findings of this
work will also assist language designers in making informed decisions about incorporating permutation
phrases into their specifications.

Our algorithm does not support nested simple phrases and optional elements within a permutation
phrase. For nested phrases, another level of processing needs to be introduced and the step function
must be extended to handle that level. It is required that, within a permutation phrase, one nested
simple phrase is not a prefix of another to avoid conflicts. Optional elements require the modification of
the head function and they cannot conflict with the set of symbols that can follow given permutation
phrase. In both cases the limitations could be possibly avoided by parallel processing of more items.
It would be beneficial to extend the algorithm to handle nested simple phrases and optional elements
without limitations. Another possible direction for future work is to explore in detail the relationship
between the number and type of rule interferences and the resulting reduction in states, as well as to
analyze the global state reduction at the grammar level.

Declaration on Generative Al

During the preparation of this work, the author used ChatGPT-4 to check grammar, spelling, and
improve sentence clarity. After using this tool, the author reviewed and edited the content as needed
and takes full responsibility for the publication’s content.

References

[1] ECMA-404 The JSON data interchange syntax, 2nd Edition, ECMA, 2017. https://
ecma-international.org/\publications-and-standards/standards/\ecma-404/.

[2] The JavaScript Object Notation (JSON) Data Interchange Format, Internet Engineering Task Force
(IETF), 2017. https://datatracker.ietf.org/doc/html/\rfc8259.

[3] B.Hutton, C. Bormann, G. Normington, H. Andrews, JSON Schema: A Media Type for Describing
JSON Documents, https://json-schema.org/draft/2020-12/json-schema-core, 2020. Internet-Draft,
work in progress.

[4] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation (3rd ed.), Pearson, 2013.

[5] R.D.Cameron, Extending context-free grammars with permutation phrases, ACM Lett. Program.
Lang. Syst. 2 (1993) 85-94.

[6] A.L Baars, A. Loh, S. D. Swierstra, Parsing permutation phrases,]. Funct. Program. 14 (2004)
635-646.

[7] W. Zhang, R. Engelen, High-Performance XML Parsing and Validation with Permutation Phrase
Grammar Parsers, 2008, pp. 286—294.

(8] J. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in: Z. Kohavi, A. Paz
(Eds.), Theory of Machines and Computations, Academic Press, 1971, pp. 189-196.

[9] J. Brzozowski, Canonical regular expressions and minimal state graphs for definite events, Proc.
Symposium of Mathematical Theory of Automata 12 (1962) 529-561.

[10] E.F. Moore, Gedanken-Experiments on Sequential Machines, in: C. Shannon, J. McCarthy (Eds.),
Automata Studies, Princeton University Press, Princeton, NJ, 1956, pp. 129-153.

[11] A. V. Aho, S. Ravi, J. D. Ullman, Compilers: Principles, Techniques, and Tools (1st ed.), Addison-
Wesley, 1986.

https://ecma-international.org/\ publications-and-standards/standards/\ ecma-404/
https://ecma-international.org/\ publications-and-standards/standards/\ ecma-404/
https://datatracker.ietf.org/doc/html/\rfc8259
https://json-schema.org/draft/2020-12/json-schema-core

	1 Introduction
	2 LR parsing
	3 Permutation phrases in context-free grammars
	4 LR(0) items of permutation rules
	5 Modified algorithm for generating LR(0) automaton
	6 Map function
	7 Correctness
	8 State complexity
	8.1 JSON Example

	9 Construction of SLR / canonical LR / LALR parsing tables
	10 Conclusion and future work

