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Abstract
Complete CF(¢,$)-grammar inspired by linguistic techniques can serve as a tool for studying the class of context-
free languages that are closed under complement. Such grammar generates a complementary pair of context-free
languages. Here, we introduce a restricted version of complete CF(¢,$)-grammars called PS-free pumping CF(¢,$)-
grammars, which satisfy restrictions that extend the conditions of the pumping lemma for regular languages.
PS-free pumping CF(¢,$)-grammars generate regular languages only. However, the conditions put on PS-free
pumping CF(¢,$)-grammars are sufficient but not necessary for regularity.

1. Introduction

Since Chomsky’s time, formal syntax for linguistics has been interested in the weak equivalence of
formal grammars (equivalence by recognizing the same languages), and rather more in some types of a
so-called strong equivalence. For lexicalized types of syntax, strong equivalence based on analysis by
reduction is suitable, see, e.g., [1]. Here we use some tools that are different from restarting automata,
see, e.g., [2], to develop new techniques for the study of analysis by reduction. This paper establishes
some properties of reduction analysis that characterize the regularity of complete CF( |c, $)-grammars.

In [3], a complete CF( |c,$)-grammarwas introduced, as a generalization and enhancement of previously
introduced LR( |c,$)-grammars. Complete CF( |c,$)-grammars can serve as a tool to study the class of
context-free languages that are closed under complement. Recall that the class of context-free languages
is the only class from the Chomsky hierarchy that is not closed under complement. A complete CF( |c,$)-
grammar 𝐺𝐶 is a context-free grammar with two parts that generate acceptance and rejection languages.
The acceptance and rejection languages are complementary.

Complete CF( |c,$)-grammars are used here to model correctness and error-preserving analysis by
(pumping) reductions on each word over its terminal alphabet. Analysis by reduction is a notion used
in linguistics; see, e.g. [1, 4]. It involves stepwise simplifying an input word (sentence, text, or discourse
in linguistic terms) by removing at most two continuous parts of the current word while preserving
its correctness and/or incorrectness. Each simplification step corresponds to removing portions of the
current word that can be ”pumped” according to the pumping lemma for context-free languages [5],
and thus works only with terminals.
The paper [6] studied conditions that guarantee that a complete CF( |c,$)-grammar generates accep-

tance and rejection languages that are not regular. Here, we investigate conditions that guarantee the
regularity of the acceptance and rejection languages of a complete CF( |c,$)-grammar.

We introduce a PS-free pumping property of complete CF( |c,$)-grammars. PS-free pumping property
partially resembles the pumping lemma for regular languages by requiring that each long enough word
can be simplified inside a prefix or suffix of a limited size. Additionally, it involves the independence of
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reductions in the prefix and suffix of a word. We show that each PS-free pumping CF( |c,$)-grammar 𝐺
induces a language equivalence relation with finite index such that the acceptance language of 𝐺 is one
of the equivalence classes. Then, by applying Myhill-Nerode theorem [5, Theorem 3.1], we get that
both acceptance and rejection languages of 𝐺 are regular.

The next section defines the basic notions, introduces complete CF( |c,$)-grammars, and reviews their
known properties. Section 3 introduces PS-free pumping grammars and proves the main result of the
paper stating that each PS-free pumping grammar has regular acceptance and rejection languages.
Section 4 shows examples that PS-free pumping grammar need not be one-sided (informally, its pumping
reductions can remove only one segment of a word in one simplification step), and that a complete
grammar generating a regular language need not be PS-free pumping. The last section contains
conclusions and an outlook for future research.

2. Basic notions and results

An alphabet is an arbitrary finite set of elements called symbols. A word 𝑤 over the alphabet Σ is a
finite sequence of symbols from Σ. The set of all words over the alphabet Σ is denoted as Σ∗. If 𝑢 and 𝑣
are words, 𝑢𝑣 or 𝑢 ⋅ 𝑣 denotes their concatenation. By |𝑤 | we denote the length of the word, that is, the
number of symbols in 𝑤. The length of the empty word 𝜆 is 0.

A context-free grammar is a system 𝐺 = (𝑁 , Σ, 𝑆, 𝑅), where 𝑁 is an alphabet of nonterminals, Σ is an
alphabet of input symbols called terminals (𝑁 ∩ Σ = ∅), 𝑆 ∈ 𝑁 is an initial nonterminal, and 𝑅 is a finite
subset of 𝑁 × (𝑁 ∪ Σ)∗, 𝑅 is called a set of rules and its elements are written in the form 𝑋 → 𝛼, where
𝑋 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ Σ)∗.
We say that a word 𝑢 ∈ (𝑁 ∪ Σ)∗ can be rewritten into a word 𝑣 ∈ (𝑁 ∪ Σ)∗ according to context-

free grammar 𝐺 = (𝑁 , Σ, 𝑆, 𝑅) if there exist words 𝑢1, 𝑢2, 𝛼 ∈ (𝑁 ∪ Σ)∗ and a nonterminal 𝑋 ∈ 𝑁
such that 𝑢 = 𝑢1𝑋𝑢2, 𝑣 = 𝑢1𝛼𝑢2, and 𝑋 → 𝛼 is a rule from 𝑅. We write 𝑢 ⇒ 𝑣. The reflexive and
transitive closure of the relation ⇒ is denoted as ⇒∗. Then the language generated by the grammar 𝐺
is 𝐿(𝐺) = {𝑤 ∈ Σ∗ ∣ 𝑆 ⇒∗ 𝑤}.

Definition 1 (CF( |c,$)-grammars, [6]). Let 𝑁 and Σ be two disjoint alphabets, |c, $ ∉ (𝑁 ∪ Σ) and
𝐺 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be a context-free grammar generating a language of the form { |c} ⋅ 𝐿 ⋅ {$}, where
𝐿 ⊆ Σ∗, and 𝑆 does not occur in the right-hand side of any rule from 𝑅. We say that 𝐺 is a CF( |c,$)-grammar.
The language 𝐿 is the internal language of 𝐺, and it is denoted as 𝐿in(𝐺).

Closure properties of the class of context-free languages imply that for a CF( |c,$)-grammar 𝐺, both
languages 𝐿(𝐺) and 𝐿in(𝐺) are context-free. The added right sentinel $ facilitates the recognition
of languages. For example, if 𝐿 is a deterministic context-free language, it can be generated by an
LR(1)-grammar. But 𝐿 ⋅ {$} and { |c} ⋅ 𝐿 ⋅ {$} are both generated by simpler LR(0) grammars [7]. The
left sentinel |c is included in CF( |c,$)-grammars for compatibility with a version of restarting pumping
automata from [8]. The class ℒ𝑖𝑛(𝐶𝐹( |c, $)) of all internal languages of CF( |c,$)-grammars characterizes
the class CFL.

2.1. Pumping infixes and reductions

Definition 2 ([6]). Let 𝐺 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be a CF( |c,$)-grammar, 𝑥, 𝑢1, 𝑣, 𝑢2, 𝑦 ∈ Σ∗, 𝑢1𝑢2 ≠ 𝜆, 𝐴 ∈ 𝑁,
and

𝑆 ⇒∗ |c𝑥𝐴𝑦$ ⇒∗ |c𝑥𝑢1𝐴𝑢2𝑦$ ⇒∗ |c𝑥𝑢1𝑣𝑢2𝑦$. (1)

We say that ( |c𝑥, 𝑢1, 𝐴, 𝑣 , 𝑢2, 𝑦$) is a pumping infix, and |c𝑥𝑢1𝑣𝑢2𝑦$ 𝐺 |c𝑥𝑣𝑦$ is a pumping reduction by
𝐺.

The infix and the reduction are two-side if both 𝑢1 and 𝑢2 are nonempty. They are right-side ( left-side,
respectively) if 𝑢1 (𝑢2, respectively) is empty.
The relation ∗

𝐺 is the reflexive and transitive closure of the pumping reduction relation 𝐺.



Note that we have not omitted the sentinels in the pumping infix and pumping reduction.
If ( |c𝑥, 𝑢1, 𝐴, 𝑣 , 𝑢2, 𝑦$) is a pumping infix by 𝐺, then all words of the form |c𝑥𝑢𝑖1𝑣𝑢𝑖2𝑦$, for all integers

𝑖 ≥ 0, belong to 𝐿(𝐺).
Let 𝐺 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be a CF( |c,$)-grammar, 𝑡 be the number of nonterminals of 𝐺, and 𝑘 be the

maximal length of the right-hand side of the rules from 𝑅, where the sentinels |c, $ are not counted.
Let 𝑇 be a derivation tree according to 𝐺. If 𝑇 has more than 𝑘𝑡 leaves from Σ, a path exists from a leaf
to the root of 𝑇 such that it contains at least 𝑡 + 1 nodes labeled with nonterminals. As 𝐺 has only 𝑡
nonterminals, at least two nodes on the path are labeled with the same nonterminal 𝐴. In that case,
there is a pumping reduction, corresponding to this word. We say 𝐾𝐺 = 𝑘𝑡 + 2 is the grammar number
of 𝐺.
Note that for each word from 𝐿(𝐺) of length greater than 𝐾𝐺, some pumping infix by 𝐺 must

correspond. On the other hand, each word generated by 𝐺 that is not pumped is at most of length 𝐾𝐺.
In the following, we will separate words that can be pumped from those that cannot.
Note that in the above derivation (1), the length of the words 𝑥, 𝑢1, 𝑣, 𝑢2, 𝑦 is not limited.
A pumping reduction 𝑤  𝐺 𝑤 ′ corresponds to removing a segment between any nodes 𝑟1 and 𝑟2

labeled with the same nonterminal 𝐴 occurring on a path from the root of a derivation tree for 𝑤.
The following obvious propositions were proved in [3].

Proposition 1 (Pumping reductions are correctness preserving, [3]). Let 𝐺 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be
a CF( |c,$)-grammar. Let 𝐺 generate a word 𝑤1, and 𝑤1, … , 𝑤𝑛, for some integer 𝑛 ≥ 1, be a sequence of
words such that 𝑤𝑖  𝐺 𝑤𝑖+1, for all 𝑖 = 1, … , 𝑛 − 1, be a sequence of pumping reductions, and there is no
𝑤𝑛+1 ∈ Σ∗ such that 𝑤𝑛  𝐺 𝑤𝑛+1.
Then 𝑤𝑖 ∈ 𝐿(𝐺), for all 𝑖 = 1, … , 𝑛 and |𝑤𝑛| ≤ 𝐾𝐺.

Proposition 2 ([3]). Let 𝐺 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be a CF( |c,$)-grammar, and 𝐺 generates a word 𝑤1 (that
is, 𝑤1 ∈ 𝐿(𝐺)), and |𝑤1| > 𝐾𝐺. Then there is a sequence of words 𝑤1, … , 𝑤𝑛, for some integer 𝑛 ≥ 1 such
that, for all 𝑖 = 1, … , 𝑛 − 1, 𝑤𝑖  𝐺 𝑤𝑖+1, 𝑤𝑖 ∈ 𝐿(𝐺), for all 𝑖 = 1, … , 𝑛, and |𝑤𝑛| ≤ 𝐾𝐺.

2.2. Complete CF(¢,$)-grammars

In contrast to previous definitions (e.g., [3]), the following definition of complete CF( |c,$)-grammar
requires that such a grammar to be reduced – it does not contain useless nonterminals (with a minor
exception).

Definition 3. Let 𝐺𝐶 = (𝑁 , Σ ∪ { |c, $}, 𝑆, 𝑅) be a CF( |c,$)-grammar. Then 𝐺𝐶 is called a complete CF( |c,$)-
grammar if

1. 𝑆 → 𝑆𝐴 ∣ 𝑆𝑅, where 𝑆𝐴, 𝑆𝑅 ∈ 𝑁, are the only rules in 𝑅 containing the initial nonterminal 𝑆. No other
rule of 𝐺𝐶 contains 𝑆𝐴 or 𝑆𝑅 in its right-hand side.

2. The languages 𝐿(𝐺𝐴) and 𝐿(𝐺𝑅) generated by the grammars 𝐺𝐴 = (𝑁 , Σ ∪ { |c, $}, 𝑆𝐴, 𝑅) and
𝐺𝑅 = (𝑁 , Σ ∪ { |c, $}, 𝑆𝑅, 𝑅), respectively, are disjoint and complementary with respect to { |c} ⋅ Σ∗ ⋅ {$}.
That is, 𝐿(𝐺𝐴) ∩ 𝐿(𝐺𝑅) = ∅ and 𝐿(𝐺𝐶) = 𝐿(𝐺𝐴) ∪ 𝐿(𝐺𝑅) = { |c} ⋅ Σ∗ ⋅ {$}.

3. All nonterminals of 𝐺𝐶 can be derived from 𝑆, and from all nonterminals of 𝐺𝐶 (except for 𝑆𝐴 and 𝑆𝑅)
there are derivations of terminal words.

We will denote the grammar as 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅). In addition, we will call 𝐺𝐴 and 𝐺𝑅 the acceptance and
rejection grammar of the complete CF( |c,$)-grammar 𝐺𝐶, respectively.

The above definition implies that for each word of the form |c𝑤$, where 𝑤 ∈ Σ∗, there is some
derivation tree 𝑇 according to 𝐺𝐶. The root of 𝑇 has a single son labeled with one of the nonterminals
𝑆𝐴 and 𝑆𝑅. If it is 𝑆𝐴, the word from the leaves of the tree 𝑇 is from 𝐿(𝐺𝐴), otherwise it is from 𝐿(𝐺𝑅).

For any terminal word 𝑤 ∈ { |c} ⋅ Σ∗ ⋅ {$}, there can exist several derivation trees. However, if 𝑤 ∈ 𝐿(𝐺𝐴),
all have 𝑆𝐴 under their root. If 𝑤 ∈ 𝐿(𝐺𝑅), they will have 𝑆𝑅 under their root.
As 𝐿(𝐺𝐶) = { |c} ⋅ Σ∗ ⋅ {$} is an infinite language, there exist pumping reductions by 𝐺𝐶 ([6]).



The condition that both acceptance and rejection grammar of a complete CF( |c,$)-grammar are
context-free seems to be quite restrictive, but the class of deterministic context-free languages is closed
under complement. Hence, if 𝐺𝐴 is a CF( |c,$)-grammar which is LR(0), then there exists a complete
CF( |c,$)-grammar 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) which is LR (0) (see, e.g., [8]).

3. PS-Free pumping CF(¢,$)-grammars

In [6] it was shown that if an acceptance or rejection language of a complete CF( |c,$)-grammar 𝐺𝐶 =
(𝐺𝐴, 𝐺𝑅) enables pumping where two nonempty segments can be pumped and some other requirements
are fulfilled, then the languages 𝐿(𝐺𝐴) and 𝐿(𝐺𝑅) are not regular.
In the following, we will use conditions similar to those in the well-known pumping lemma for

regular languages.

Proposition 3 (See [9]). Let 𝐴 be a nondeterministic finite-state acceptor with 𝑘 states. Suppose 𝜁 is in
𝐿(𝐴) and 𝜁 = 𝜇𝜉 𝜈, where |𝜉 | ≥ 𝑘 and 𝜇, 𝜈 are any (possibly empty) strings. It then follows that 𝜉 can be
written in the form 𝜉 = 𝛼𝛽𝛾 where 1 ≤ |𝛽| ≤ 𝑘 and where 𝜇𝛼𝛽 𝑖𝛾 𝜈 is in 𝐿(𝐴), for all 𝑖 ≥ 0.

Corollary 1. Let 𝐿 be a regular language, then there exists a constant 𝑐 > 0 such that, for all words 𝑤1, 𝑤2
such that 𝑤1𝑤2 is in 𝐿, |𝑤1| > 𝑐, 𝑤2 is any (possibly empty) word, there exists a word 𝑤 ′

1 so that |𝑤 ′
1 | < |𝑤1|,

and 𝑤 ′
1𝑤2 is in 𝐿.

Proof: As 𝑤1𝑤2 ∈ 𝐿, we can apply Proposition 3, where 𝜇 = 𝜆, 𝜉 = 𝑤1, 𝜈 = 𝑤2, and 𝑐 is the number of
states of a finite-state automaton accepting the language 𝐿. Then we can take 𝑤 ′

1 = 𝛼𝛾 and the statement
of Corollary 1 follows for 𝑖 = 0.

In other words, each long enough word from 𝐿 can be shortened in its prefix of length at least 𝑐
into a shorter word from 𝐿. As the class of regular languages is closed under reversal, an analogous
statement also holds for suffixes of limited size. Nevertheless, it is known that Proposition 3 (and
therefore also Corollary 1) is not a sufficient condition for the regularity of a language. Below, we use
similar conditions for prefixes and suffixes together with further independence conditions of reductions
in the prefixes and suffixes.

Here, we introduce a restricted version of complete CF( |c,$)-grammar that guarantees that both 𝐿(𝐺𝐴)
and 𝐿(𝐺𝑅) are regular.

Definition 4. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a complete CF( |c, $)-grammar and 𝑐 > 0 be a constant such that

(P) for each 𝑥𝑠 ∈ 𝐿(𝐺𝐶) such that |𝑥 | > 𝑐, there is 𝑥1 such that 𝑥𝑠 𝐺𝐶 𝑥1𝑠, and
(S) for each 𝑥𝑠 ∈ 𝐿(𝐺𝐶) such that |𝑠| > 𝑐, there is 𝑠1 such that 𝑥𝑠 𝐺𝐶 𝑥𝑠1.
(C) For all words 𝑥, 𝑠, 𝑥′ and 𝑠′ such that 𝑥𝑠 ∈ 𝐿(𝐺𝐶), |𝑥 | > 𝑐, |𝑠| > 𝑐, 𝑥𝑠  𝐺𝐶 𝑥′𝑠  𝐺𝐶 𝑥′𝑠′ implies

𝑥𝑠 𝐺𝐶 𝑥𝑠
′  𝐺𝐶 𝑥

′𝑠′.
(D) For each 𝑥𝑠′, 𝑥′𝑠 ∈ 𝐿(𝐺𝐶) such that |𝑥 | > 𝑐, |𝑠| > 𝑐, 𝑥𝑠′  𝐺𝐶 𝑥′𝑠′ and 𝑥′𝑠  𝐺𝐶 𝑥′𝑠′ it holds

𝑥𝑠 𝐺𝐶 𝑥
′𝑠 and 𝑥𝑠 𝐺𝐶 𝑥𝑠

′.

We say that 𝐺𝐶 is a PS-free pumping CF( |c, $)-grammar of width 𝑐.

The additional conditions (C) and (D) in Definition 4 add “independence” of reductions in prefix and
suffix. We will see that all these conditions together guarantee the regularity of the languages 𝐿(𝐺𝐴)
and 𝐿(𝐺𝑅).
Recall that each pumping reduction by 𝐺𝐶 on 𝑥𝑠 ∈ 𝐿(𝐺𝐴) is a pumping reduction by 𝐺𝐴. Similarly, each
pumping reduction by 𝐺𝐶 on 𝑥𝑠 ∈ 𝐿(𝐺𝑅) is a pumping reduction by 𝐺𝑅.

Definition 5 (Prefix-suffix reduction). Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a complete CF( |c, $)-grammar of width 𝑐.

• Let 𝜌 be a pumping reduction of the form 𝑥𝑠 𝐺𝐶 𝑥1𝑠, and |𝑥 | > 𝑐. We say that 𝜌 is a prefix reduction
(P-reduction) by 𝐺𝐶 of width 𝑐. The word 𝑥 is the prefix being reduced, and 𝑠 is the (fixed) suffix of 𝜌.
Note that the length of the suffix 𝑠 is not limited.



• Let 𝜌 be a pumping reduction of the form 𝑥𝑠 𝐺𝐶 𝑥𝑠1, and |𝑠| > 𝑐. We say that 𝜌 is a suffix reduction
(S-reduction) by 𝐺𝐶 of width 𝑐. The word 𝑠 is the suffix being reduced, and 𝑥 is the (fixed) prefix of 𝜌.

• Let 𝜌 be a pumping reduction of the form 𝑥𝑠  𝐺𝐶 𝑥1𝑠1, and let 𝜌 be either a P-reduction or an
S-reduction. We say that 𝜌 is a PS-reduction by 𝐺𝐶 of width 𝑐. We write 𝑥𝑠 (𝐺𝐶,𝑃𝑆) 𝑥1𝑠1.
The relation ∗

(𝐺𝐶,𝑃𝑆)
is the reflexive and transitive closure of the relation (𝐺𝐶,𝑃𝑆).

We also say that 𝑥, where |𝑥 | > 0, is a PS-prefix and that 𝑠, |𝑠| > 0, is a PS-suffix.

Observation Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free pumping CF( |c, $)-grammar of width 𝑐. Then the following
assertions hold:

(a1) For each 𝑥𝑠 ∈ 𝐿(𝐺𝐶) such that 𝑥𝑠  ∗
(𝐺𝐶,𝑃𝑆)

𝑥1𝑠1 we have the following
𝑥𝑠 ∈ 𝐿(𝐺𝐴) ⇔ 𝑥1𝑠1 ∈ 𝐿(𝐺𝐴). That is, all PS-reductions are error- and correctness-preserving.

(a2) For each 𝑥𝑠 ∈ 𝐿(𝐺𝐶) there is a reduction 𝑥𝑠 ∗
(𝐺𝐶,𝑃𝑆)

𝑥1𝑠1 such that |𝑥1| ≤ 𝑐, |𝑠1| ≤ 𝑐.

Condition (C) of Definition 4 of the free PS-pumping CF( |c, $)-grammar can be extended for reductions
of an arbitrary length.

Lemma 1. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free pumping CF( |c, $)-grammar of width 𝑐. Then, for all words 𝑥, 𝑠,
𝑥′ and 𝑠′ such that 𝑥𝑠 ∈ 𝐿(𝐺𝐶), |𝑥 | > 𝑐, |𝑠| > 𝑐, 𝑥𝑠 ∗

𝐺𝐶
𝑥′𝑠 ∗

𝐺𝐶
𝑥′𝑠′ implies 𝑥𝑠 ∗

𝐺𝐶
𝑥𝑠′  ∗

𝐺𝐶
𝑥′𝑠′.

Proof: According to Definition 4, the statement holds for two-step pumping reductions. E.g., if in
the reduction 𝑥𝑠 ∗

𝐺𝐶
𝑥′𝑠 ∗

𝐺𝐶
𝑥′𝑠′, the first part 𝑥𝑠 ∗

𝐺𝐶
𝑥′𝑠 requires two steps: 𝑥𝑠 𝐺𝐶 𝑥1𝑠 𝐺𝐶 𝑥

′𝑠
and the second part only one step 𝑥′𝑠  𝐺𝐶 𝑥′𝑠′, we have a three step reduction 𝑥𝑠  𝐺𝐶 𝑥1𝑠  𝐺𝐶
𝑥′𝑠 𝐺𝐶 𝑥

′𝑠′ and we can apply condition (C) to the last two steps. We get the sequence of reductions
𝑥𝑠  𝐺𝐶 𝑥1𝑠  𝐺𝐶 𝑥1𝑠′  𝐺𝐶 𝑥′𝑠′. Next, we apply condition (C) to the first two reductions and get
𝑥𝑠 𝐺𝐶 𝑥𝑠

′  𝐺𝐶 𝑥1𝑠
′  𝐺𝐶 𝑥

′𝑠′. Hence, 𝑥𝑠 ∗
𝐺𝐶

𝑥𝑠′  ∗
𝐺𝐶

𝑥𝑠′.
Using similar reduction reordering, we can prove the statement of the lemma by induction on the

number of steps in the series of reductions.

Next, we introduce PS-prefixes and PS-suffixes with a limited size.

Basic PS-prefix and PS-suffix by 𝐺𝐶 of width 𝑐. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free pumping CF( |c, $)-
grammar of width 𝑐, and 𝑥𝑠 be a word in 𝐿(𝐺𝐶).

• If 0 < |𝑥| ≤ 𝑐, we say that 𝑥 is a basic PS-prefix by 𝐺𝐶 of width 𝑐.
• If 0 < |𝑠| ≤ 𝑐, we say that 𝑠 is a basic PS-suffix by 𝐺𝐶 of width 𝑐.

The set of all PS-prefixes for 𝐺𝐶 will be denoted as

𝑃𝑟𝑒𝑓 (𝐺𝐶) = {𝑥 ∣ 𝑥 ≠ 𝜆, ∃𝑠 ∈ (Σ ∪ { |c, $})∗ ∶ 𝑥𝑠 ∈ { |c} ⋅ Σ∗ ⋅ {$}}.

The set of all basic PS-prefixes will be denoted as

BPref (𝐺𝐶, 𝑐) = {{ |c} ⋅ 𝑤 ∣ 𝑤 ∈ Σ∗, and |𝑤 | < 𝑐} .

Similarly, the set of all basic PS-suffixes will be denoted as

BSuff (𝐺𝐶, 𝑐) = {𝑤 ⋅ {$} ∣ 𝑤 ∈ Σ∗, and |𝑤 | < 𝑐}.

In what follows, for a set 𝑋, 𝒫 (𝑋) denotes the set of all its subsets.

Definition 6 (Prefix characteristic function). Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free pumping CF( |c, $)-grammar
of width 𝑐 > 0.
A characteristic function of a PS-prefix 𝑥 is the function

𝐶ℎ(𝑐) ∶ 𝑃𝑟𝑒𝑓 (𝐺𝐶) × BSuff (𝐺𝐶, 𝑐) → 𝒫 (BPref (𝐺𝐶, 𝑐))

that for each PS-prefix 𝑥 and a basic suffix 𝑠𝑏 assigns the set of all basic PS-prefixes to which the prefix 𝑥
can be reduced, when we reduce the word 𝑥𝑠𝑏. Formally:

𝐶ℎ(𝑐)(𝑥, 𝑠𝑏) = {𝑥𝑏 ∈ BPref (𝐺𝐶, 𝑐) ∣ 𝑥𝑠𝑏  ∗
(𝐺𝐶,𝑃𝑆)

𝑥𝑏𝑠𝑏}.



As the sets BPref (𝐺𝐶, 𝑐) and BSuff (𝐺𝐶, 𝑐) are finite, for a fixed 𝑐 and 𝑥, there exist only finitely many
different functions 𝐶ℎ(𝑐)(𝑥, ⋅).
For a PS-prefix 𝑥 and 𝑠𝑏 ∈ BSuff (𝐺𝐶, 𝑐), the result 𝐶ℎ(𝑐)(𝑥, 𝑠𝑏) is always a nonempty set, as either

• |𝑥 | ≤ 𝑐 and 𝑥 ∈ 𝐶ℎ(𝑐)(𝑥, 𝑠𝑏), or
• |𝑥 | > 𝑐 and, according to Observation (a2) above, there exists a basic PS-prefix 𝑥𝑏 such that
𝑥𝑠𝑏  ∗

(𝐺𝐶,𝑃𝑆)
𝑥𝑏𝑠𝑏 and 𝑥𝑏 ∈ 𝐶ℎ(𝑐)(𝑥, 𝑠𝑏).

3.1. Equivalence of PS-prefixes and regularity of languages generated by PS-free
pumping grammars

Based on the characteristic functions of PS-prefixes, we will define an equivalence on PS-prefixes.

Definition 7. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free CF( |c,$)-grammar of width 𝑐 > 0. We say that two PS-prefixes
𝑥 and 𝑧 are equivalent, we write 𝑥 ≅ 𝑧, if for all 𝑠𝑏 ∈ BSuff (𝐺𝐶, 𝑐) it holds 𝐶ℎ(𝑐)(𝑥, 𝑠𝑏) = 𝐶ℎ(𝑐)(𝑧, 𝑠𝑏).

Lemma 2. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free CF( |c,$)-grammar of width 𝑐 > 0. The relation ≅ on the set of
PS-prefixes by 𝐺𝐶 is an equivalence relation of finite index.

Proof: It is easy to see that the relation ≅ is reflexive, symmetric, and transitive, as the equality relation
= has all these properties.
The number of different characteristic functions is finite. Therefore, the number of equivalence

classes of ≅ is finite.

The following lemma is the key property for showing that the acceptance and rejection languages of
a PS-free pumping grammar are regular.

Lemma 3. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free CF( |c,$)-grammar of width 𝑐 > 0, and let 𝑥 ≅ 𝑦 for some
PS-prefixes 𝑥, 𝑦 by 𝐺𝐶. Then, for each PS-suffix 𝑠, 𝑥𝑠 ∈ 𝐿(𝐺𝐴) ⇔ 𝑦𝑠 ∈ 𝐿(𝐺𝐴).

Proof: Let 𝑥 and 𝑦 be two PS-prefixes by 𝐺𝐶 such that 𝑥 ≅ 𝑦, and let 𝑠 be a PS-suffix by 𝐺𝐶. Let us suppose
𝑥𝑠 ∈ 𝐿(𝐺𝐴). This means that 𝑥𝑠  ∗

(𝐺𝐶,𝑃𝑆)
𝑥𝑏𝑠  ∗

(𝐺𝐶,𝑃𝑆)
𝑥𝑏𝑠𝑏, for some basic PS-prefix 𝑥𝑏 ∈ BPref (𝐺𝐶, 𝑐)

and a basic PS-suffix 𝑠𝑏 ∈ BSuff (𝐺𝐶, 𝑐).
Condition (C) of Definition 4 implies that 𝑥𝑠𝑏  ∗

(𝐺𝐶,𝑃𝑆)
𝑥𝑏𝑠𝑏. Then, according to Definition 7, 𝑥𝑏 ∈

𝐶ℎ(𝑐)(𝑥, 𝑠𝑏) = 𝐶ℎ(𝑐)(𝑦 , 𝑠𝑏). This means that 𝑦𝑠𝑏  ∗
(𝐺𝐶,𝑃𝑆)

𝑥𝑏𝑠𝑏. Using condition (D) from the definition of
PS-free pumping grammar (Definition 4), we get 𝑦𝑠 ∗

(𝐺𝐶,𝑃𝑆)
𝑥𝑏𝑠. The final step follows from the fact that

𝑥𝑏𝑠 ∗
(𝐺𝐶,𝑃𝑆)

𝑥𝑏𝑠𝑏 and 𝑦𝑠𝑏  ∗
(𝐺𝐶,𝑃𝑆)

𝑥𝑏𝑠𝑏. The PS-reduction ∗
(𝐺𝐶,𝑃𝑆)

is error- and correctness-preserving,
all words 𝑥𝑏𝑠, 𝑥𝑏𝑠𝑏, 𝑦𝑠𝑏, and 𝑦𝑠 are in 𝐿(𝐺𝐴).
The corresponding statement holds for 𝐿(𝐺𝑅), which completes the proof that 𝑥𝑠 ∈ 𝐿(𝐺𝐴) ⇔ 𝑦𝑠 ∈

𝐿(𝐺𝐴).

Let 𝑅𝐿 denote the equivalence with respect to a language 𝐿 defined in the following way: 𝑥𝑅𝐿𝑦 if and
only if for all words 𝑧, 𝑥𝑧 ∈ 𝐿 ⇔ 𝑦𝑧 ∈ 𝐿. According to Theorem 3.1 from [5], the language 𝐿 is regular if
and only if 𝑅𝐿 has a finite index.

Lemma 4. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free pumping CF( |c,$)-grammar of width 𝑐 > 0 and let 𝑅𝐿 denote
the equivalence with respect to a language 𝐿 = 𝐿(𝐺𝐴) defined in the following way: 𝑥𝑅𝐿𝑦 if and only if for
each word 𝑧, it holds that 𝑥𝑧 ∈ 𝐿 ⇔ 𝑦𝑧 ∈ 𝐿. The relation 𝑅𝐿 has a finite index.

Proof: Let us consider the relation 𝑅𝐿 where 𝐿 = 𝐿(𝐺𝐴). As 𝐿(𝐺𝐴) ⊆ { |c} ⋅ Σ∗ ⋅ {$}, all words that are not
prefixes of words from { |c} ⋅ Σ∗ ⋅ {$} are 𝑅𝐿-equivalent.

If 𝐿̂ is an arbitrary language, all words in 𝐿̂ do not need to be equivalent to 𝑅𝐿̂. For example, there can
exist two words 𝑥, 𝑦 ∈ 𝐿̂ such that 𝑥𝑠 ∈ 𝐿̂ and 𝑦𝑠 ∉ 𝐿̂. However, all words from 𝐿 = 𝐿(𝐺𝐴) ⊆ { |c} ⋅ Σ∗ ⋅ {$}
end with a single symbol $. All words in 𝐿 = 𝐿(𝐺𝐴) are equivalent and there are no words outside 𝐿
that can be equivalent to a word in 𝐿, because the only word that we can append to a word from 𝐿(𝐺𝐴)
to obtain a word from 𝐿(𝐺𝐴) is the empty word 𝜆.



Further, we will show that all proper prefixes of words from { |c} ⋅ Σ∗ ⋅ {$} belong to a finite number of
different equivalence classes with respect to 𝑅𝐿.
For a contradiction, assume that the number of equivalence classes with respect to 𝑅𝐿 is infinite.

Then, for each 𝑛 ≥ 1, there exist words 𝑥1, 𝑥2, … , 𝑥𝑛 that are pairwise not equivalent.
If two words are proper prefixes of words from { |c} ⋅ Σ∗ ⋅ {$}, then these words are PS-prefixes. If 𝑛

is greater than the number of equivalence classes with respect to ≅, then there exist two words 𝑥𝑖, 𝑥𝑗,
𝑥𝑖 ≠ 𝑥𝑗, such that 𝑥𝑖 ≅ 𝑥𝑗. However, according to Lemma 3, the words 𝑥𝑖 and 𝑥𝑗 are 𝑅𝐿 equivalent – a
contradiction to the assumption that 𝑅𝐿 has an infinite index.

Corollary 2. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a PS-free CF( |c,$)-grammar of width 𝑐 > 0. Then the languages 𝐿(𝐺𝐴)
and 𝐿(𝐺𝑅) are regular.

Proof: Lemma 4 implies that the relation 𝑅𝐿 for 𝐿 = 𝐿(𝐺𝐴) has a finite index, and according to Theorem
3.1 from [5], the language 𝐿(𝐺𝐴) is regular. As 𝐿(𝐺𝑅) = { |c} ⋅ Σ∗ ⋅ {$} −𝐿(𝐺𝐴), the regularity of the
language 𝐿(𝐺𝑅) follows from the closure properties of regular languages.

Corollary 3. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a complete CF( |c, $)-grammar, and 𝐿(𝐺𝐴) be a non-regular language.
Then 𝐺𝐶 is not a PS-free pumping CF( |c, $)-grammar.

Lemma 5. For each regular language 𝐿𝑟 ⊆ Σ∗, where Σ does not contain sentinels |c, $ there is a CF( |c,$)-
grammar 𝐺𝐶,𝑟 = (𝐺𝐴,𝑟, 𝐺𝑅,𝑟) such that { |c} ⋅ 𝐿𝑟 ⋅ {$} = 𝐿(𝐺𝐴,𝑟), and 𝐺𝐶,𝑟 is a complete PS-free pumping
CF( |c,$)-grammar.

Proof: A context-free grammar is a right-linear grammar if each of its rules has at most one nonterminal
symbol; the nonterminal appears on the right end of the rule. It is well known that for each regular
language 𝐿 there is a right-linear (that is, regular) grammar 𝐺 in the Chomsky normal form such that
𝐿(𝐺) = 𝐿. Additionally, each rule of grammar 𝐺 will have at most two symbols on the right-hand
side. During each derivation according to 𝐺, the sentential form contains at most one nonterminal,
and a nonterminal must be repeated in any sequence of derivation steps longer than the number of
nonterminals of 𝐺.
Let 𝐿𝑟 be a regular language. Then, its complement ̄𝐿𝑟 is also a regular language. Let 𝐺𝐴 and 𝐺𝑅 be

right-linear grammars in Chomsky normal form such that 𝐿(𝐺𝐴) = 𝐿𝑟 and 𝐿(𝐺𝑅) = ̄𝐿𝑟.
It is easy to transform both the grammars 𝐺𝐴 and 𝐺𝑅 into the right-linear grammars 𝐺𝐴,𝑟 and 𝐺𝑅,𝑟

such that 𝐿(𝐺𝐴,𝑟) = { |c} ⋅ 𝐿(𝐺𝐴) ⋅ {$} and 𝐿(𝐺𝑅,𝑟) = { |c} ⋅ 𝐿(𝐺𝑅) ⋅ {$}, respectively.
Let 𝑐 be the number of nonterminals of 𝐺𝐶,𝑟. It is easy to see that 𝐺𝐶,𝑟 = (𝐺𝐴,𝑟, 𝐺𝑅,𝑟) is a complete

PS-free pumping CF( |c,$)-grammar of width 𝑐 + 1.

The next theorem says that the internal languages of acceptance languages of complete PS-free
pumping CF( |c, $)-grammars characterize the class of regular languages.

Theorem 1. A language 𝐿 is a regular language if and only if there exists a complete PS-free pumping
CF( |c,$)-grammar 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅), such that 𝐿 = 𝐿𝑖𝑛(𝐺𝐴).

Proof: The theorem is a consequence of Corollary 2 and Lemma 5.

4. Comparing PS-free and one-side pumping CF(¢,$)-grammars

This section relates PS-free pumping grammars with one-side pumping complete CF(¢,$)-grammars
studied in [3] (for their definition see below). Using sample complete CF(¢,$)-grammars, we show that
the notions of one-side or PS-free pumping represent different restrictions of complete CF( |c,$)-grammars
that both restrict them to generate only regular languages.



Let (𝑥, 𝑢1, 𝐴, 𝑣 , 𝑢2, 𝑦) be a pumping infix by a CF( |c,$)-grammar 𝐺. The pumping infix is a core pumping
infix if there is a derivation tree 𝑇 by 𝐺 that corresponds to the derivation

𝑆 ⇒∗ |c𝑥𝐴𝑦$ ⇒∗ |c𝑥𝑢1𝐴𝑢2𝑦$ ⇒∗ |c𝑥𝑢1𝑣𝑢2𝑦$ (2)

such that the path between the root 𝑟1 of the subtree corresponding to the derivation of 𝑢1𝐴𝑢2 from 𝐴
in (2) to the root 𝑟2 of the subtree corresponding to the derivation of 𝑣 (but without 𝑟2) does not contain
two distinct nodes labeled with the same nonterminal.
One-side/Two-side pumping CF( |c,$)-grammars. Let 𝐺 be a CF( |c,$)-grammar. We say that 𝐺

is a left-side pumping CF( |c,$)-grammar if all its core pumping infixes are left-side pumping infixes
(Definition 2). Similarly, we say that 𝐺 is a right-side pumping CF( |c,$)-grammar if all its core pumping
infixes are right-side pumping infixes. We say that 𝐺 is a one-side pumping CF( |c,$)-grammar if it is
either left-side or right-side pumping CF( |c,$)-grammar. Finally, we say that 𝐺 is a two-side pumping
CF( |c,$)-grammar if any of its core pumping infixes is a two-side pumping infix.
The paper [3] showed that one-side pumping complete CF(¢,$)-grammars characterize the class of

regular languages.

Proposition 4 ([3]). Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a complete one-side pumping CF(¢,$)-grammar. Then, both
𝐿(𝐺𝐴) and 𝐿in(𝐺𝐴) are regular languages.

On the other hand, the next example shows that a PS-free pumping CF(¢,$)-grammar need not be
one-side pumping.

Example 1. Let 𝐺(1)
𝐶 = ({𝑆, 𝑆𝐴, 𝑆𝑅, 𝐵, 𝐶}, {𝑎, 𝑏, |c, $}, 𝑆, 𝑅) be a complete CF( |c,$)-grammar with the following

set of rules:
𝑆 → 𝑆𝐴 ∣ 𝑆𝑅,
𝑆𝐴 → |c𝐴$ ∣ |c𝐵$ ∣ |c$,
𝐴 → 𝑎𝐴𝑏 ∣ 𝑎𝑏,
𝐵 → 𝑎𝐵 ∣ 𝑏𝐵 ∣ 𝑎 ∣ 𝑏.

The grammar 𝐺(1)
𝐶 is a complete CF(¢,$)-grammar 𝐺(1)

𝐶 = (𝐺(1)
𝐴 , 𝐺(1)

𝑅 ), where 𝐺(1)
𝐴 has starting symbol

𝑆𝐴, 𝐺
(1)
𝑅 has starting symbol 𝑆𝑅, and obviously, 𝐿(𝐺

(1)
𝐶 ) = 𝐿(𝐺(1)

𝐴 ) = { |c} ⋅ {𝑎, 𝑏}∗ ⋅ {$}, and 𝐿(𝐺𝑅) = ∅.
As ( |c𝑎𝑎, 𝑎, 𝐴, 𝑎𝑏, 𝑏, 𝑏𝑏$) is a two-side core pumping infix by 𝐺(1)

𝐴 , the word 𝑤 = |c𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏$ is in 𝐿(𝐺(1)
𝐴 ).

However, the word 𝑤 can also be derived using rules of 𝐺(1)
𝐴 that do not contain the nonterminal 𝐴, and all

corresponding pumping infixes are one-side pumping infixes.
Hence, 𝐺(1)

𝐶 = (𝐺(1)
𝐴 , 𝐺(1)

𝑅 ) is a PS-free pumping CF( |c,$)-grammar of width 10 that is not a one-side
pumping grammar.
Actually, we could omit all the rules that include 𝐴 from the grammar, and we would obtain a PS-free

pumping grammar that generates the same language as the original grammar and is left-side pumping.

The next corollary is a consequence of Example 1.

Corollary 4. There is a PS-free pumping complete CF( |c, $)-grammar whose acceptance language is regular
and which is not a one-side pumping CF( |c,$)-grammar.

The next sample complete CF( |c,$)-grammar generates a regular language, but it is not PS-free
pumping grammar.

Example 2. Let us consider a complete CF( |c,$)-grammar 𝐺(2)
𝐶 = (𝐺(2)

𝐴 , 𝐺(2)
𝑅 ) generating the acceptance

language { |c𝑎𝑛𝑏𝑚$ ∣ 𝑛 + 𝑚 > 0}.



Let 𝐺(2)
𝐶 use the following rules:

𝑆 → 𝑆𝐴 ∣ 𝑆𝑅
𝑆𝐴 → |c𝐴$ ∣ |c𝐴𝐷$ ∣ |c𝐵$ ∣ |c𝐷𝐵$ ∣ |c𝐷$
𝐴 → 𝑎𝐴 ∣ 𝑎
𝐵 → 𝑏𝐵 ∣ 𝑏
𝐷 → 𝑎𝐷𝑏 ∣ 𝑎𝑏
𝑆𝑅 → |c𝐶$
𝐶 → 𝐴𝐶 ∣ 𝐶𝐵 ∣ 𝐶𝐴 ∣ 𝐵𝐶 ∣ 𝑏𝑎

The complete CF( |c,$)-grammar 𝐺(2)
𝐶 is not a PS-free pumping CF( |c,$)-grammar, as strings of the form

|c𝑎𝑛𝑏𝑛$, for 𝑛 > 0, do not allow pumping reductions in the suffix of 𝑏’s only by 𝐺(2)
𝐶 . All derivations of 𝐺(2)

𝐴
that use nonterminal 𝐵 derive words with more 𝑏-s than 𝑎-s. A similar assertion holds for 𝑎’s. Hence, all
words of the form |c𝑎𝑛𝑏𝑛$ are generated using nonterminal 𝐷, which induces a two-side pumping infixes
and the condition (P) of Definition 4 is not satisfied. This means that 𝐺(2)

𝐶 is not a PS-free pumping CF( |c,$)-
grammar. The grammar is not one-side pumping grammar either, as, e.g., ( |c, 𝑎, 𝐷, 𝑎𝑏, 𝑏, $) is a two-side
pumping infix by 𝐺(2)

𝐶 .

The next corollary follows from the previous example.

Corollary 5. There is a complete CF( |c, $)-grammar 𝐺(2)
𝐶 = (𝐺(2)

𝐴 , 𝐺(2)
𝑅 ) which is not a PS-free pumping

CF( |c,$) grammar such that both 𝐿(𝐺(2)
𝐴 ) and 𝐿(𝐺(2)

𝑅 ) are regular languages.

The previous example motivates further work. We should study more deeply the conditions for the
separation of regular and non-regular complete CF( |c,$)-grammars.

5. Conclusion and future work

In this paper, we were looking for possibly maximally relaxed constraints based on pumping reductions
for a complete CF( |c, $)-grammar, which ensure that the grammar generates regular acceptance and
rejection languages. Our approach can be seen as extending the pumping lemma for regular languages.

We have succeeded in the sense that PS-free pumping CF( |c,$)-grammars generate regular languages
only. However, the conditions for PS-free pumping grammars are sufficient but not necessary to limit the
generated languages to the class of regular languages. The obvious open problem is finding conditions
necessary and sufficient to limit the power of complete CF( |c,$)-grammar to regular languages.

The way to achieve that could start with comparing constraints for non-regularity (from [6]) and for
regularity (from this paper) of complete CF( |c, $)-grammars in a uniform way.

Until now, we have not studied the computability and decidability questions connected with complete
CF( |c, $)-grammars. New insight could be obtained by comparing the differences between the grammar
complexity of complete CF( |c, $)-grammars and the complexity of their languages.
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