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Abstract

Complete CF(¢,$)-grammar inspired by linguistic techniques can serve as a tool for studying the class of context-
free languages that are closed under complement. Such grammar generates a complementary pair of context-free
languages. Here, we introduce a restricted version of complete CF(¢,$)-grammars called PS-free pumping CF(¢,$)-
grammars, which satisfy restrictions that extend the conditions of the pumping lemma for regular languages.
PS-free pumping CF(¢,$)-grammars generate regular languages only. However, the conditions put on PS-free
pumping CF(¢,$)-grammars are sufficient but not necessary for regularity.

1. Introduction

Since Chomsky’s time, formal syntax for linguistics has been interested in the weak equivalence of
formal grammars (equivalence by recognizing the same languages), and rather more in some types of a
so-called strong equivalence. For lexicalized types of syntax, strong equivalence based on analysis by
reduction is suitable, see, e.g., [1]. Here we use some tools that are different from restarting automata,
see, e.g., [2], to develop new techniques for the study of analysis by reduction. This paper establishes
some properties of reduction analysis that characterize the regularity of complete CF(¢, $)-grammars.

In [3], a complete CF(¢,$)-grammar was introduced, as a generalization and enhancement of previously
introduced LR(¢,$)-grammars. Complete CF(¢,$)-grammars can serve as a tool to study the class of
context-free languages that are closed under complement. Recall that the class of context-free languages
is the only class from the Chomsky hierarchy that is not closed under complement. A complete CF(¢,$)-
grammar G is a context-free grammar with two parts that generate acceptance and rejection languages.
The acceptance and rejection languages are complementary.

Complete CF(¢,$)-grammars are used here to model correctness and error-preserving analysis by
(pumping) reductions on each word over its terminal alphabet. Analysis by reduction is a notion used
in linguistics; see, e.g. [1, 4]. It involves stepwise simplifying an input word (sentence, text, or discourse
in linguistic terms) by removing at most two continuous parts of the current word while preserving
its correctness and/or incorrectness. Each simplification step corresponds to removing portions of the
current word that can be "pumped” according to the pumping lemma for context-free languages [5],
and thus works only with terminals.

The paper [6] studied conditions that guarantee that a complete CF(¢,$)-grammar generates accep-
tance and rejection languages that are not regular. Here, we investigate conditions that guarantee the
regularity of the acceptance and rejection languages of a complete CF(¢,$)-grammar.

We introduce a PS-free pumping property of complete CF(¢,$)-grammars. PS-free pumping property
partially resembles the pumping lemma for regular languages by requiring that each long enough word
can be simplified inside a prefix or suffix of a limited size. Additionally, it involves the independence of
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reductions in the prefix and suffix of a word. We show that each PS-free pumping CF(¢,$)-grammar G
induces a language equivalence relation with finite index such that the acceptance language of G is one
of the equivalence classes. Then, by applying Myhill-Nerode theorem [5, Theorem 3.1], we get that
both acceptance and rejection languages of G are regular.

The next section defines the basic notions, introduces complete CF(¢,$)-grammars, and reviews their
known properties. Section 3 introduces PS-free pumping grammars and proves the main result of the
paper stating that each PS-free pumping grammar has regular acceptance and rejection languages.
Section 4 shows examples that PS-free pumping grammar need not be one-sided (informally, its pumping
reductions can remove only one segment of a word in one simplification step), and that a complete
grammar generating a regular language need not be PS-free pumping. The last section contains
conclusions and an outlook for future research.

2. Basic notions and results

An alphabet is an arbitrary finite set of elements called symbols. A word w over the alphabet ¥ is a
finite sequence of symbols from 3. The set of all words over the alphabet ¥ is denoted as =*. If u and v
are words, uv or u - v denotes their concatenation. By |w| we denote the length of the word, that is, the
number of symbols in w. The length of the empty word A is 0.

A context-free grammar is a system G = (N, 2, S, R), where N is an alphabet of nonterminals, ¥ is an
alphabet of input symbols called terminals (N n X = @), S € Nis an initial nonterminal, and R is a finite
subset of N x (N u X)*, R is called a set of rules and its elements are written in the form X — «, where
XeNanda e (NuX)”.

We say that a word u € (N u X)”* can be rewritten into a word v € (N u X)* according to context-
free grammar G = (N,3, S, R) if there exist words u;,uy, @ € (N u X)* and a nonterminal X € N
such that ¥ = u; Xuy, v = ujauy, and X — ais a rule from R. We write u = v. The reflexive and
transitive closure of the relation = is denoted as ="*. Then the language generated by the grammar G
isL(G)={weX" | S =" w}

Definition 1 (CF(¢,$)-grammars, [6]). Let N and X be two disjoint alphabets, ¢,$ ¢ (N v X) and
G = (N,2 u{¢,$}, S, R) be a context-free grammar generating a language of the form {¢} - L - {$}, where
L C 3%, and S does not occur in the right-hand side of any rule from R. We say that G is a CF(¢,$)-grammar.
The language L is the internal language of G, and it is denoted as Li,(G).

Closure properties of the class of context-free languages imply that for a CF(¢,$)-grammar G, both
languages L(G) and L;,(G) are context-free. The added right sentinel $ facilitates the recognition
of languages. For example, if L is a deterministic context-free language, it can be generated by an
LR(1)-grammar. But L - {$} and {¢} - L - {$} are both generated by simpler LR(0) grammars [7]. The
left sentinel ¢ is included in CF(¢,$)-grammars for compatibility with a version of restarting pumping
automata from [8]. The class Z;,(CF(¢, $)) of all internal languages of CF(¢,$)-grammars characterizes
the class CFL.

2.1. Pumping infixes and reductions

Definition 2 ([6]). Let G = (N,X u {¢,$}, S, R) be a CF(¢,$)-grammar, x, uy, v, up, y € X%, ujuy = A, A€ N,
and
S =" ¢xAy$ =7 exu Auyy$ =" exuvuyy$. (1)

We say that (¢x, uq, A, v, uy, ¥$) is a pumping infix, and ¢xu;vuy y$ ~>g ¢xvy$ is a pumping reduction by
G.

The infix and the reduction are two-side if both u; and uy are nonempty. They are right-side (left-side,
respectively) ifu; (u,, respectively) is empty.

The relation ~ is the reflexive and transitive closure of the pumping reduction relation ~¢.



Note that we have not omitted the sentinels in the pumping infix and pumping reduction.

If (¢x, uq, A, v, ug, y$) is a pumping infix by G, then all words of the form ¢xui1vu§y$, for all integers
i > 0, belong to L(G).

Let G = (N, 2 u {¢, $}, S, R) be a CF(¢,$)-grammar, ¢ be the number of nonterminals of G, and k be the
maximal length of the right-hand side of the rules from R, where the sentinels ¢, $ are not counted.
Let Tbe a derivation tree according to G. If T has more than k' leaves from ¥, a path exists from a leaf
to the root of T such that it contains at least ¢ + 1 nodes labeled with nonterminals. As G has only ¢
nonterminals, at least two nodes on the path are labeled with the same nonterminal A. In that case,
there is a pumping reduction, corresponding to this word. We say K = k! + 2 is the grammar number
of G.

Note that for each word from L(G) of length greater than Kg;, some pumping infix by G must
correspond. On the other hand, each word generated by G that is not pumped is at most of length K.
In the following, we will separate words that can be pumped from those that cannot.

Note that in the above derivation (1), the length of the words x, uy, v, uy, yis not limited.

A pumping reduction w ~»5 w’ corresponds to removing a segment between any nodes r; and r,
labeled with the same nonterminal A occurring on a path from the root of a derivation tree for w.

The following obvious propositions were proved in [3].

Proposition 1 (Pumping reductions are correctness preserving, [3]). Let G = (N,X u {¢, $}, S, R) be
a CF(t,$)-grammar. Let G generate a word wy, and wy, ..., w,, for some integer n > 1, be a sequence of
words such that w; ~>g w1, foralli =1,...,n — 1, be a sequence of pumping reductions, and there is no
W1 € 27 such that wy ~>G Wyyq.

Then w; € L(G), for alli = 1,...,n and |w,| < Kg.

Proposition 2 ([3]). Let G = (N,X u{¢, $}, S, R) be a CF(¢,$)-grammar, and G generates a word wy (that
is, w; € L(G)), and |w;| > Kg. Then there is a sequence of words wy, ..., w,, for some integern > 1 such
that, foralli=1,...,n— 1, w; ~g w11, w; € L(G), foralli =1, ...,n, and |w,| < K.

2.2. Complete CF(¢,$)-grammars

In contrast to previous definitions (e.g., [3]), the following definition of complete CF(¢,$)-grammar
requires that such a grammar to be reduced - it does not contain useless nonterminals (with a minor
exception).

Definition 3. Let G- = (N, 2 u {¢, $}, S, R) be a CF(¢,$)-grammar. Then G is called a complete CF(¢,$)-
grammar if

1. S — Su | Sg, where Sa, Sg € N, are the only rules in R containing the initial nonterminal S. No other
rule of G¢ contains S or Sy in its right-hand side.

2. The languages L(G4) and L(Gg) generated by the grammars Gy = (N,2 v {¢,$},S4, R) and
Gr = (N, X u {¢, $}, Sg, R), respectively, are disjoint and complementary with respect to {¢} - X* - {$}.
That is, L(G4) n L(Gg) = @ and L(G¢c) = L(G4) u L(Gg) = {¢}- 2 - {$}.

3. All nonterminals of G¢ can be derived from S, and from all nonterminals of G¢ (except for Sy and Sg)
there are derivations of terminal words.

We will denote the grammar as Gc = (G, Gg). In addition, we will call G4 and Gy the acceptance and
rejection grammar of the complete CF(¢,$)-grammar Gg, respectively.

The above definition implies that for each word of the form ¢w$, where w € ¥, there is some
derivation tree T according to G¢. The root of T has a single son labeled with one of the nonterminals
Sy and Sg. If it is Sy, the word from the leaves of the tree Tis from L(G,), otherwise it is from L(Gg).

For any terminal word w € {¢}- 2" - {$}, there can exist several derivation trees. However, if w € L(G,),
all have S, under their root. If w € L(Gg), they will have Sg under their root.

As L(Gp) = {¢} - Z* - {$} is an infinite language, there exist pumping reductions by G¢ ([6]).



The condition that both acceptance and rejection grammar of a complete CF(¢,$)-grammar are
context-free seems to be quite restrictive, but the class of deterministic context-free languages is closed
under complement. Hence, if G4 is a CF(¢,$)-grammar which is LR(0), then there exists a complete
CF(¢,$)-grammar Ge = (G4, Gg) which is LR (0) (see, e.g., [8]).

3. PS-Free pumping CF(¢,$)-grammars

In [6] it was shown that if an acceptance or rejection language of a complete CF(¢,$)-grammar G =
(G4, Gg) enables pumping where two nonempty segments can be pumped and some other requirements
are fulfilled, then the languages L(G,) and L(Gg) are not regular.

In the following, we will use conditions similar to those in the well-known pumping lemma for
regular languages.

Proposition 3 (See [9]). Let A be a nondeterministic finite-state acceptor with k states. Suppose { is in
L(A) and { = pé&v, where || > k and i, v are any (possibly empty) strings. It then follows that & can be
written in the form & = afy where 1 < |f| < k and where paf'yv is in L(A), for alli > 0.

Corollary 1. Let L be a regular language, then there exists a constant ¢ > 0 such that, for all words wy, wy
such that wiws is in L, [w| > ¢, wy is any (possibly empty) word, there exists a word w{ so that |wj| < |wy],
and wjw, isin L.

Proof: As wyw, € L, we can apply Proposition 3, where y = A, £ = wj, v = wy, and c is the number of
states of a finite-state automaton accepting the language L. Then we can take w] = ay and the statement
of Corollary 1 follows for i = 0. O

In other words, each long enough word from L can be shortened in its prefix of length at least c
into a shorter word from L. As the class of regular languages is closed under reversal, an analogous
statement also holds for suffixes of limited size. Nevertheless, it is known that Proposition 3 (and
therefore also Corollary 1) is not a sufficient condition for the regularity of a language. Below, we use
similar conditions for prefixes and suffixes together with further independence conditions of reductions
in the prefixes and suffixes.

Here, we introduce a restricted version of complete CF(¢,$)-grammar that guarantees that both L(G4)
and L(GgR) are regular.

Definition 4. Let G = (G4, Gg) be a complete CH(¢, $)-grammar and ¢ > 0 be a constant such that

(P) for each xs € L(Gc) such that |x| > c, there is x; such that xs ~g,. x;s, and

(S) for each xs € L(G¢) such that |s| > c, there is sy such that xs ~¢, x5;.

(C) For all words x, s, x" and s” such that xs € L(Ge), |x| > ¢, |s| > ¢, xs ~q. x's ~g. x's” implies
X8 G X8~ xS’

(D) For each xs’,x’s € L(Ge) such that |x| > ¢, [s| > ¢, xs" ~q. x's" and x’s ~g. x’s’ it holds
xs ~G,. x's and xs ~~g,, xs’.

We say that G¢ is a PS-free pumping CF¢, $)-grammar of width c.

The additional conditions (C) and (D) in Definition 4 add “independence” of reductions in prefix and
suffix. We will see that all these conditions together guarantee the regularity of the languages L(G4)
and L(Gg).

Recall that each pumping reduction by G¢ on xs € L(G,) is a pumping reduction by G4. Similarly, each
pumping reduction by Gg on xs € L(Gg) is a pumping reduction by Gg.

Definition 5 (Prefix-suffix reduction). Let G- = (G4, Gg) be a complete CR(¢, $)-grammar of width c.

« Let p be a pumping reduction of the form xs ~g,. xis, and |x| > c. We say that p is a prefix reduction
(P-reduction) by G¢ of width c. The word x is the prefix being reduced, and s is the (fixed) suffix of p.
Note that the length of the suffix s is not limited.



« Let p be a pumping reduction of the form xs ~»g,. xs1, and|s| > c. We say that p is a suffix reduction
(S-reduction) by G of width c. The word s is the suffix being reduced, and x is the (fixed) prefix of p.
« Let p be a pumping reduction of the form xs ~>¢_. x;51, and let p be either a P-reduction or an
S-reduction. We say that p is a PS-reduction by G¢ of width c. We write xs ~~ (G, ps) X151-
The relation WEGC’ ps) is the reflexive and transitive closure of the relation ~>(G,,ps)-

We also say that x, where |x| > 0, is a PS-prefix and that s, |s| > 0, is a PS-suffix.

Observation Let G- = (G4, Gg) be a PS-free pumping CF(¢, $)-grammar of width c¢. Then the following
assertions hold:

(al) For each xs € L(Gp) such that xs W?GC ps) X151 we have the following
xs € L(Ga) © x181 € L(Gn). That is, all PS-reductions are error- and correctness-preserving.
(a2) For each xs € L(G¢) there is a reduction xs WE<GC: ps) X151 such that |x;| < ¢, |5 < c

Condition (C) of Definition 4 of the free PS-pumping CF(¢, $)-grammar can be extended for reductions
of an arbitrary length.

Lemma 1. Let Go = (G4, Gg) be a PS-free pumping CF¢, $)-grammar of width c. Then, for all words x, s,
x" and s’ such that xs € L(Gp), |x| > ¢, |s| > ¢, xs WEC x’s WEC x"s" implies xs WEC xs’ wz;c x's’.

Proof: According to Definition 4, the statement holds for two-step pumping reductions. E.g., if in
the reduction xs WEC x’s WEC x’s’, the first part xs WEC x’s requires two steps: xs ~g. XS ~g, X's
and the second part only one step x’s ~g. x’s’, we have a three step reduction xs ~¢. x5 ~g,
x"s ~¢. x’s’ and we can apply condition (C) to the last two steps. We get the sequence of reductions
XS ~Go X18 G, 018" ~g. x's’. Next, we apply condition (C) to the first two reductions and get
XS ~G, x8" ~G. x18" G x's’. Hence, xs ~g, xs” ~( xs”

Using similar reduction reordering, we can prove the statement of the lemma by induction on the
number of steps in the series of reductions. O

Next, we introduce PS-prefixes and PS-suffixes with a limited size.

Basic PS-prefix and PS-suffix by G. of width c. Let G- = (G4, Gg) be a PS-free pumping CF(¢, $)-
grammar of width ¢, and xs be a word in L(Gp).

« If 0 < |x| < ¢, we say that x is a basic PS-prefix by G¢ of width c.
« If 0 < |s| < ¢, we say that sis a basic PS-suffix by G¢ of width c.

The set of all PS-prefixes for G- will be denoted as
Pref(Ge) ={x | x #A3se Cu{e,$})" : xsefc}- =" - {$}}.
The set of all basic PS-prefixes will be denoted as
BPref (G, c) = {{¢}-w | we X", and |w| < ¢}.
Similarly, the set of all basic PS-suffixes will be denoted as
BSuff (Ge,¢) = {w-{$} | w € £*, and |w| < c}.
In what follows, for a set X, 22(X) denotes the set of all its subsets.

Definition 6 (Prefix characteristic function). Let G- = (G4, Gg) be a PS-free pumping CK¢, $)-grammar
of width ¢ > 0.
A characteristic function of a PS-prefix x is the function

Ch(c) : Pref(Ge) x BSuff (G, c) = P(BPref (G, ¢))

that for each PS-prefix x and a basic suffix s, assigns the set of all basic PS-prefixes to which the prefix x
can be reduced, when we reduce the word xsy. Formally:

Ch(c)(x, sp) = {x, € BPref(Ge,c) | xsp W?GC,PS) XpSp}-



As the sets BPref (Ge, ¢) and BSuff (G, ¢) are finite, for a fixed c and x, there exist only finitely many
different functions Ch(c)(x, -).
For a PS-prefix x and s, € BSuff (G, ¢), the result Ch(c)(x, sp) is always a nonempty set, as either

¢ |x] < cand x € Ch(c)(x, sp), or
« |x| > ¢ and, according to Observation (a2) above, there exists a basic PS-prefix x;, such that
xSp WéGC ps) Xbsp and x, € Ch(c)(x, sp).

3.1. Equivalence of PS-prefixes and regularity of languages generated by PS-free
pumping grammars

Based on the characteristic functions of PS-prefixes, we will define an equivalence on PS-prefixes.

Definition 7. Let G- = (G4, Gg) be a PS-free CF(¢,$)-grammar of width ¢ > 0. We say that two PS-prefixes
x and z are equivalent, we write x = z, if for all s, € BSuff (G, ¢) it holds Ch(c)(x, sp) = Ch(c)(z, sp).

Lemma 2. Let Go = (Ga, Gg) be a PS-free CF(¢,$)-grammar of width ¢ > 0. The relation = on the set of
PS-prefixes by G is an equivalence relation of finite index.

Proof: It is easy to see that the relation = is reflexive, symmetric, and transitive, as the equality relation
= has all these properties.

The number of different characteristic functions is finite. Therefore, the number of equivalence
classes of = is finite. ]

The following lemma is the key property for showing that the acceptance and rejection languages of
a PS-free pumping grammar are regular.

Lemma 3. Let Go = (Ga,Gg) be a PS-free CF(t,$)-grammar of width ¢ > 0, and let x = y for some
PS-prefixes x, y by Ge. Then, for each PS-suffix s, xs € L(G4) < ys € L(Ga).

Proof: Let x and ybe two PS-prefixes by G¢ such that x = y, and let sbe a PS-suffix by G¢. Let us suppose
xs € L(G,). This means that xs W?GC: ps) XbS W?GC, ps) XbSh» for some basic PS-prefix x5, € BPref (G, ¢)
and a basic PS-suffix s, € BSuff (G, ¢).

Condition (C) of Definition 4 implies that xs;, WzGc, pS) ¥bSh- Then, according to Definition 7, x;, €
Ch(c)(x, sp) = Ch(c)(y, sp). This means that ys, waC ps) XbSb- Using condition (D) from the definition of
PS-free pumping grammar (Definition 4), we get ys WE(GC ps) XbS- The final step follows from the fact that
XpS WE‘GC ps) XS and ys WE(GC ps) Xb- The PS-reduction W?Gc ps) 18 error- and correctness-preserving,
all words xps, xp8p, Yy, and ys are in L(Gp).

The corresponding statement holds for L(Gg), which completes the proof that xs € L(G4) < ys €
L(Ga). O

Let R, denote the equivalence with respect to a language L defined in the following way: xR yif and
only if for all words z, xz € L & yz € L. According to Theorem 3.1 from [5], the language L is regular if
and only if R; has a finite index.

Lemma 4. Let Go = (G4, Gg) be a PS-free pumping CF(¢,$)-grammar of width ¢ > 0 and let Ry denote
the equivalence with respect to a language L = L(G,) defined in the following way: xRy y if and only if for
each word z, it holds that xz € L < yz € L. The relation Ry has a finite index.

Proof: Let us consider the relation R; where L = L(G4). As L(G4) C {¢}- =" - {$}, all words that are not
prefixes of words from {¢} - =* - {$} are R;-equivalent.

If L is an arbitrary language, all words in L do not need to be equivalent to R;. For example, there can
exist two words x,y € L such that xs € L and ys ¢ L. However, all words from L = L(G,4) C {¢}- 3* - {$}
end with a single symbol $. All words in L = L(G,) are equivalent and there are no words outside L
that can be equivalent to a word in L, because the only word that we can append to a word from L(Gy4)
to obtain a word from L(G,b) is the empty word A.



Further, we will show that all proper prefixes of words from {¢} - * - {$} belong to a finite number of
different equivalence classes with respect to R;.

For a contradiction, assume that the number of equivalence classes with respect to Ry is infinite.
Then, for each n > 1, there exist words x1, xy, ..., x, that are pairwise not equivalent.

If two words are proper prefixes of words from {¢} - * - {$}, then these words are PS-prefixes. If n
is greater than the number of equivalence classes with respect to =, then there exist two words x;, xj,
x; # xj, such that x; = x;. However, according to Lemma 3, the words x; and x; are Ry, equivalent — a
contradiction to the assumption that R; has an infinite index. O

Corollary 2. Let Go = (G4, GR) be a PS-free CF(¢,$)-grammar of width ¢ > 0. Then the languages L(G )
and L(Gg) are regular.

Proof: Lemma 4 implies that the relation R for L = L(G4) has a finite index, and according to Theorem
3.1 from [5], the language L(G,) is regular. As L(Gg) = {¢} - 2" - {$} \ L(G,), the regularity of the
language L(Gg) follows from the closure properties of regular languages. O

Corollary 3. Let Go = (G4, Gg) be a complete CK(¢, $)-grammar, and L(G ) be a non-regular language.
Then G is not a PS-free pumping CF(¢, $)-grammar.

Lemma 5. For each regular language L, C 3*, where 3. does not contain sentinels ¢,$ there is a CF(¢,$)-
grammar Go, = (Ga,, Gr,) such that {¢} - L, - {$} = L(Ga,), and G¢, is a complete PS-free pumping
CF(t,$)-grammar.

Proof: A context-free grammar is a right-linear grammar if each of its rules has at most one nonterminal
symbol; the nonterminal appears on the right end of the rule. It is well known that for each regular
language L there is a right-linear (that is, regular) grammar G in the Chomsky normal form such that
L(G) = L. Additionally, each rule of grammar G will have at most two symbols on the right-hand
side. During each derivation according to G, the sentential form contains at most one nonterminal,
and a nonterminal must be repeated in any sequence of derivation steps longer than the number of
nonterminals of G.

Let L, be a regular language. Then, its complement L, is also a regular language. Let G4 and Gy be
right-linear grammars in Chomsky normal form such that L(G,) = L, and L(Gg) = L,.

It is easy to transform both the grammars G4 and Gy into the right-linear grammars G, , and Gg,
such that L(G4 ;) = {¢} - L(G,) - {$} and L(Gg,) = {¢} - L(Gg) - {$}, respectively.

Let ¢ be the number of nonterminals of G¢,. It is easy to see that G, = (G4, Gg,) is a complete
PS-free pumping CF(¢,$)-grammar of width ¢ + 1. O

The next theorem says that the internal languages of acceptance languages of complete PS-free
pumping CF(¢, $)-grammars characterize the class of regular languages.

Theorem 1. A language L is a regular language if and only if there exists a complete PS-free pumping
CF(¢,$)-grammar Gc = (G4, GR), such that L = Liy,,(Gy).

Proof: The theorem is a consequence of Corollary 2 and Lemma 5.

4. Comparing PS-free and one-side pumping CF(¢,$)-grammars

This section relates PS-free pumping grammars with one-side pumping complete CF(¢,$)-grammars
studied in [3] (for their definition see below). Using sample complete CF(¢,$)-grammars, we show that
the notions of one-side or PS-free pumping represent different restrictions of complete CF(¢,$)-grammars
that both restrict them to generate only regular languages.



Let (x,uq, A, v, up, y) be a pumping infix by a CF(¢,$)-grammar G. The pumping infix is a core pumping
infix if there is a derivation tree T by G that corresponds to the derivation

S =" ¢xAy$ =" txu; Auyy$ =" exuvuyy$ (2)

such that the path between the root r; of the subtree corresponding to the derivation of u; Au, from A
in (2) to the root r, of the subtree corresponding to the derivation of v (but without r,) does not contain
two distinct nodes labeled with the same nonterminal.

One-side/Two-side pumping CF(¢,$)-grammars. Let G be a CF(¢,$)-grammar. We say that G
is a left-side pumping CF(¢,$)-grammar if all its core pumping infixes are left-side pumping infixes
(Definition 2). Similarly, we say that G is a right-side pumping CF(¢,$)-grammar if all its core pumping
infixes are right-side pumping infixes. We say that G is a one-side pumping CF(¢,$)-grammar if it is
either left-side or right-side pumping CF(¢,$)-grammar. Finally, we say that G is a two-side pumping
CF(¢,$)-grammar if any of its core pumping infixes is a two-side pumping infix.

The paper [3] showed that one-side pumping complete CF(¢,$)-grammars characterize the class of
regular languages.

Proposition 4 ([3]). Let G- = (Ga, Gg) be a complete one-side pumping CF(¢,$)-grammar. Then, both
L(Gp) and Li,(G ) are regular languages.

On the other hand, the next example shows that a PS-free pumping CF(¢,$)-grammar need not be
one-side pumping,.

Example 1. Let Gél) = ({S,S4, Sg, B, C},{a, b, ¢, $}, S, R) be a complete CF(¢,$)-grammar with the following
set of rules:

S = SalSg

Sqa o ¢A$ | eBS$ | &S,
A — aAb|ab,

B — aB|bB|alb.

The grammar G((:l) is a complete CF(¢,$)-grammar Gg) = (G(l), Gg)), where Ggl) has starting symbol
Sa, Gl(zl) has starting symbol Sg, and obviously, L(Gél)) = L(Gl(ql)) ={¢}-{a,b}* - {$}, and L(GR) = @.

As (¢aa,a, A, ab,b,bb$) is a two-side core pumping infix by Gl(ql), the word w = ¢taaaabbbb$ is in L(GI(AI)).
However, the word w can also be derived using rules ofGS) that do not contain the nonterminal A, and all
corresponding pumping infixes are one-side pumping infixes.

Hence, Gg) = (G(l),GI(;)) is a PS-free pumping CF(¢,$)-grammar of width 10 that is not a one-side
pumping grammar.

Actually, we could omit all the rules that include A from the grammar, and we would obtain a PS-free
pumping grammar that generates the same language as the original grammar and is left-side pumping.

The next corollary is a consequence of Example 1.

Corollary 4. There is a PS-free pumping complete CK(¢, $)-grammar whose acceptance language is regular
and which is not a one-side pumping CF(¢,$)-grammar.

The next sample complete CF(¢,$)-grammar generates a regular language, but it is not PS-free
pumping grammar.

Example 2. Let us consider a complete CF(¢,$)-grammar Géz) = (G(Z), Gg)) generating the acceptance

language {¢a"™®™$ | n + m > 0}.



Let Géz) use the following rules:

S —> SA|SR

Sa — ¢AS$|¢ADS | ¢B$ | ¢DBS$ | ¢D$
A — adAla

B — bB|b

D — aDb|ab

SR — ¢C$

C — AC|CB|CA|BC|ba

The complete CF(¢,$)-grammar Géz) is not a PS-free pumping CF(¢t,$)-grammar, as strings of the form

¢a"b"$, forn > 0, do not allow pumping reductions in the suffix of b’s only by Géz). All derivations ofof)
that use nonterminal B derive words with more b-s than a-s. A similar assertion holds for a’s. Hence, all
words of the form ¢a"b"$ are generated using nonterminal D, which induces a two-side pumping infixes
and the condition (P) of Definition 4 is not satisfied. This means that Géz) is not a PS-free pumping CF(t,$)-
grammar. The grammar is not one-side pumping grammar either, as, e.g., (¢,a, D,ab, b, $) is a two-side

pumping infix by Géz).

The next corollary follows from the previous example.

Corollary 5. There is a complete CF¢, $)-grammar Géz) = (G(z), Géz)) which is not a PS-free pumping

CF(¢,$) grammar such that both L(GI(L‘Z)) and L(Gl(zz)) are regular languages.

The previous example motivates further work. We should study more deeply the conditions for the
separation of regular and non-regular complete CF(¢,$)-grammars.

5. Conclusion and future work

In this paper, we were looking for possibly maximally relaxed constraints based on pumping reductions
for a complete CF(¢, $)-grammar, which ensure that the grammar generates regular acceptance and
rejection languages. Our approach can be seen as extending the pumping lemma for regular languages.

We have succeeded in the sense that PS-free pumping CF(¢,$)-grammars generate regular languages
only. However, the conditions for PS-free pumping grammars are sufficient but not necessary to limit the
generated languages to the class of regular languages. The obvious open problem is finding conditions
necessary and sufficient to limit the power of complete CF(¢,$)-grammar to regular languages.

The way to achieve that could start with comparing constraints for non-regularity (from [6]) and for
regularity (from this paper) of complete CF(¢, $)-grammars in a uniform way.

Until now, we have not studied the computability and decidability questions connected with complete
CF(¢, $)-grammars. New insight could be obtained by comparing the differences between the grammar
complexity of complete CF(¢, $)-grammars and the complexity of their languages.
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