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Abstract
This paper deals with global optimization and focuses on the Self-Organizing Migrating Algorithm (SOMA). Three
new versions of SOMA are proposed, where the first two introduce different mechanisms to maintain population
diversity and the third combines both approaches. The algorithms were tested on the CEC2014 benchmark set at
two levels of dimension, 𝐷𝑖𝑚 = 10 and 𝐷𝑖𝑚 = 30. The results of the experiments suggest that two of the proposed
modifications can improve the performance of the original SOMA-T3 variant in many cases.
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1. Introduction

In real life, many problems require finding the best (optimal) solution, which often means minimizing a
mathematical function. This process is called optimization. Instead of searching for a maximum, we
can focus on finding a minimum, since maximizing a function 𝑓 is equivalent to minimizing −𝑓. The
goal is to find a point in the search space with dimension 𝐷𝑖𝑚 (a set of all possible solutions that an
optimization algorithm should explore; defined by the type and range of variables, sometimes including
some constraints), where the function has its lowest value. Sometimes, it is hard or even impossible
to solve the problem exactly, especially when the function is complex or has many local extremes. In
such cases, stochastic (random-based) algorithms can be used to find a good enough solution. These
methods are not exact, but they can provide a useful estimate at a lower cost. However, according to
the No Free Lunch Theorem, no single optimization algorithm works best for all problems. [12] That is
why researchers continue to develop new optimization methods.

Building on our previous work two years ago, where we combined the Grey Wolf Optimizer (GWO)
and jSO algorithms and observed promising improvements over their standalone variants [1], we now
extend this line of research by exploring a different population-based metaheuristic. In this study, we
focus on the Self-Organizing Migrating Algorithm (SOMA), which offers a distinct search mechanism
and has shown potential to solve complex optimization problems. [2]

Among the various SOMA variants (see [13] for example), its SOMA-T3A variant has shown particu-
larly strong and consistent performance in demanding benchmark settings. In particular, it achieved
a shared third place (alongside HyDE-DF) out of 36 algorithms in the IEEE 𝐶𝐸𝐶2019 100-Digit Chal-
lenge, confirming its robustness in solving high-dimensional optimization problems. [10] Unlike T3A,
the modified T3B version restructures the evaluation step to occur after all selected individuals have
moved, allowing efficient parallel execution and making it better suited for computationally expensive
real-world problems. [7]
In the following chapters, we focus on SOMA-T3 and its three variants proposed by us, which

introduce different mechanisms to maintain population diversity. These variants will be tested on 10-
and 30-dimensional problems using the 𝐶𝐸𝐶2014 benchmark set, and the results will be analyzed. Based
on these tests, we draw conclusions regarding the performance of the modified versions.
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2. SOMA Algorithm

SOMA (Self-organizing Migrating Algorithm) was introduced in 2000 by Zelinka and Lampinen [3].
The algorithm can be viewed as a model inspired by the cooperative hunting behavior of animal packs.

It works with a population of points from the search space. At the beginning of the run, the algorithm
generates a random initial population and evaluates the objective (optimized) function in each of them.
Then it works in cycles, so-called migrations. After each migration, the algorithm checks whether the
stopping condition is met. When done, it returns the best solution found.
In each migration, each point travels towards the best point of the population which is named the

leader. The point can also skip the leader. The length of the path depends on the parameters of the
algorithm. Each point visits several places (positions) on its way to the leader. We can say that the
point jumps on the line (its path). The best position of such visited places is the new possible position
of this jumping point. The member of the population is moved to this new possible position if it is
better than the original position of the member (in the sense of optimized function value). A migration
includes such jumping and eventual moving for each member of population except the best point of
population – the leader.

The movement of a member to the leader need not be straight. It can move only in some dimensions.
There is a parameter which calls 𝑃𝑅𝑇, this is a number between 0 and 1, more precisely the number
of the interval [0, 1]. 𝑃𝑅𝑇 determines the probability that the movement of a point to the leader is
done in a dimension. Before computing new possible positions for a population member, a 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 is
computed. It consists of 𝐷𝑖𝑚 elements, each element can be from the set {0, 1}. The relevant member is
moved only in dimension(s) where 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 has the value 1 in the corresponding position(s). Firstly, a
vector of random numbers (from a uniform distribution) is generated. Then, where the vector has lower
value than 𝑃𝑅𝑇, the 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 has number 1 at the corresponding place, at other places there are zeros.

The population member 𝑥 jumps onto the line determined by its position, the leader position, and
𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 from its position to the leader position in steps. The 𝑆𝑇𝐸𝑃 is the algorithm parameter, a
number in the interval (0, 1), and the length of each jump of the point is 𝑆𝑇𝐸𝑃 × (𝐿𝑒𝑎𝑑𝑒𝑟 − 𝑥). As already
written, the movement is done only in some dimensions (according to 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟). The recommended
value of 𝑆𝑇𝐸𝑃 is 0.11 or 0.33.

The next parameter of the algorithm is called 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ. It determines the maximal length of the
entire path from a population member to the leader. The maximum length is 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ × (𝐿𝑒𝑎𝑑𝑒𝑟 − 𝑥).
The recommended value of 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ ranges from 1.1 to 3.

Let us now look at how the new position is calculated in more detail. First, new positions are
calculated for all members of the population during a migration. Then each point is moved in a single
step to a better position (only in the dimensions selected by 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟), so that all points move together.

The last parameter is the size of the population 𝑁𝑃, which is recommended to be set to 10, when the
dimension of the solved problem is less than 100, otherwise it is recommended to have a population of
20 − 50 members.
The duration of the algorithm run is determined by the number of migrations or by the number of

evaluations of the optimized function. [3]

2.1. Migration Strategies

The authors of the algorithm proposed several different migration strategies. The one described in the
previous paragraphs is called AllToOne. The other specification of the migration strategies is as follows:
[3]

• AllToOneRand : The leader is selected at random rather than based on the optimized function
value here, introducing an element of stochasticity.

• AllToOneAdaptive: In this migration strategy, the point is moved immediately after finding its
better position (not at the end of the whole migration as in AllToOne migration). So for other
members, the new position of the point can already be the leader if it is better than the previous
leader.



• AllToAll: Each point migrates to all other members of the population. The point is then moved to
the best position of all its migration paths if the position is better than its original position. This
strategy is computationally demanding.

• AllToAllAdaptive: Similar strategy to AllToAll, but each individual immediately moves to a better
position found during its migration path and then migrates to the next point of the population
from its new position, instead of waiting (with moving) to find the best position of all its migration
paths.

3. SOMA-T3 Algorithm

The SOMA-T3 algorithm is a very efficient modification of Self-organizing Migrating Algorithm. The
algorithm is described in detail in Algorithm (1). The changes from the original SOMA algorithm follow
(the authors’ implementation in Python [10] was very helpful in identifying them precisely).

It uses dynamic setting of parameters 𝑃𝑅𝑇 and 𝑆𝑇𝐸𝑃. Both are set separately for each individual of
the population, the 𝑃𝑅𝑇 according to equation (1) and 𝑆𝑇𝐸𝑃 according to equation (2). One can see that
𝑃𝑅𝑇 is small at the beginning of an algorithm run and it is almost 0.95 at the end of the algorithm run.
In contrast, 𝑆𝑇𝐸𝑃 decreases as the algorithm runs.

𝑃𝑅𝑇 = 0.05 + 0.90 × (𝐹𝐸𝑠/𝑀𝑎𝑥𝐹𝐸𝑠), (1)

𝑆𝑇𝐸𝑃 = 0.15 − 0.08 × (𝐹𝐸𝑠/𝑀𝑎𝑥𝐹𝐸𝑠). (2)

Such a dynamic setting of the parameters results in the modification of only a few dimensions at the
beginning of the run, and the jumps along the aforementioned line are relatively large due to a high
𝑆𝑇𝐸𝑃, which supports a broad exploration. Later in the run, 𝑃𝑅𝑇 increases and 𝑆𝑇𝐸𝑃 decreases, so more
dimensions are updated, but jumps are smaller. This helps the algorithm smoothly shift from exploring
the search space to fine-tuning the best found solutions.

The algorithm does not use the parameter 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ. It uses the parameter 𝑆𝑇𝐸𝑃 with the original
meaning together with a parameter 𝑁𝑗𝑢𝑚𝑝. The number 𝑁𝑗𝑢𝑚𝑝 indicates how many positions on the
path from the original position of point towards the leader position (in some coordinates; with step
𝑆𝑇𝐸𝑃 × (𝐿𝑒𝑎𝑑𝑒𝑟 −𝑥), where 𝑥 is the position of the currently migrated point of population) the algorithm
explores.
The SOMA-T3 algorithm also does not use only one population of points to solve an optimization

problem. It uses a relatively large population, but it migrates only a part of this population, in each
cycle the part is different. It has a population 𝑁𝑃 of 𝑛𝑝 points. For each migration, it randomly chooses
the population 𝑀 of 𝑚 members from 𝑁𝑃. And finally, only the best 𝑛 members of 𝑀 make the final
population 𝑁 and migrate. Also, leader is not one of them. In this algorithm, 𝑘 members are randomly
selected from 𝑁𝑃 to form the population 𝐾 of possible leaders. It is done separately for each migrant.
The best point of 𝐾 is the 𝐿𝑒𝑎𝑑𝑒𝑟.

4. Three Modifications of SOMA-T3

We studied the SOMA-T3 algorithm and the goal was to improve its efficiency. Our first modification
lies in the following. We wanted to empower the exploration of the algorithm, but also to have a very
similar algorithm to the SOMA-T3 at the end of the search. We decided to add a tool that allows us to
extend the length of the whole path the point surmounts from its original position when it migrates at
the beginning of the algorithm and to cut this path at the end of the run. Originally we proposed the
number equal to 𝜋 × (1 − 𝐹𝐸𝑠/𝑀𝑎𝑥𝐹𝐸𝑠), it decreased from the beginning to the end of the algorithm run.
But such a number without any randomness may, of course, make a behavior which is not suitable for
all solved problems. So, we multiply this by the random number 𝑟𝑎𝑛𝑑() between 0 and 1 and get the
final 𝑔 from the equality (3).

g = 𝜋 × rand() × (1 − 𝐹𝐸𝑠
𝑀𝑎𝑥𝐹𝐸𝑠

) , (3)



Algorithm 1 Pseudocode of the SOMA-T3 Algorithm
1: Initialize problem dimension 𝐷𝑖𝑚, population 𝑁𝑃 of 𝑛𝑝 size (here 𝑛𝑝 = 100), maximum number

of function evaluations 𝑀𝑎𝑥𝐹𝐸𝑠, domain (search space 𝑥𝑗 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] for each dimension 𝑗 ∈
{1, … , 𝐷𝑖𝑚}) and parameters 𝑚, 𝑛, 𝑘, where:

1. 𝑚 represents the number of individuals selected randomly from population 𝑁𝑃; 𝑚 individuals
make population 𝑀; (here 𝑚 = 10),

2. 𝑛 indicates the number of individuals selected from the 𝑀 population according to optimized
function value to make population 𝑁 for migration; (here 𝑛 = 5),

3. 𝑘 is the number of individuals randomly chosen from the population 𝑁𝑃 to serve as potential
leaders during migration; (here 𝑘 = 15).

2: Initialize 𝑁𝑗𝑢𝑚𝑝 which is the number of positions of a migrant on its path towards leader, here
𝑁𝑗𝑢𝑚𝑝 = 45.

3: Evaluate optimized function in all members of 𝑁𝑃 population; 𝐹𝐸𝑠 = 𝑛𝑝 ; the best member of 𝑁𝑃 is
solution of the problem

4: while 𝐹𝐸𝑠 <= 𝑀𝑎𝑥𝐹𝐸𝑠 do
5: 𝑛𝑒𝑤𝑃𝑜𝑝 = ∅
6: 𝑀 ← random selection (with uniform distribution)

of 𝑚 migrant candidates from 𝑁𝑃
7: 𝑁 ← 𝑛 best migrants from 𝑀

according to optimized function value
8: for each 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 from 𝑁 do
9: 𝐾 ← random selection (with uniform

distribution) of 𝑘 leader candidates from 𝑁𝑃
10: 𝐿𝑒𝑎𝑑𝑒𝑟 ← best from 𝐾

according to optimized function value
11: if 𝐿𝑒𝑎𝑑𝑒𝑟 == 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 then
12: 𝐿𝑒𝑎𝑑𝑒𝑟 ← second best from 𝐾

according to optimized function value
13: Compute 𝑃𝑅𝑇 according to (1)
14: Compute 𝑆𝑇𝐸𝑃 according to (2)
15: Compute 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟
16: Compute all 𝑁𝑗𝑢𝑚𝑝 positions of 𝑀𝑖𝑔𝑟𝑎𝑛𝑡

on the path towards 𝐿𝑒𝑎𝑑𝑒𝑟 using
𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟

17: Check each coordinate 𝑥𝑗 of each new position
if it is in search space, if not, set the 𝑥𝑗
to the new random position in search space

18: Store all 𝑁𝑗𝑢𝑚𝑝 new positions of
the 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 into 𝑛𝑒𝑤𝑃𝑜𝑝

19: Evaluate optimized function for all members
of 𝑛𝑒𝑤𝑃𝑜𝑝

20: 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 𝑛 × 𝑁𝑗𝑢𝑚𝑝
21: for each 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 in 𝑁 do
22: Choose the best position for 𝑀𝑖𝑔𝑟𝑎𝑛𝑡

from its new positions in 𝑛𝑒𝑤𝑃𝑜𝑝
23: if the best position of 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 is better than

the 𝑀𝑖𝑔𝑟𝑎𝑛𝑡 then
24: The migration is accepted and

the new individual is included in the 𝑁𝑃
instead of the 𝑀𝑖𝑔𝑟𝑎𝑛𝑡.

25: if just included point is better than
the best one of 𝑁𝑃 then

26: Correct the solution of the solved
problem



Then, when the new 𝑁𝑗𝑢𝑚𝑝 positions of a migrant are computed, the vector, which was originally
added to the migrant in SOMA-T3 to get the new positions, see equality (4), is multiplied by 𝑔, see
equality (5).

Mig𝑗 = Mig + (Lea −Mig) × j × STEP × PRTVec, (4)

Mig𝑗 = Mig + (Lea −Mig) × j × STEP × PRTVec × g . (5)

In both equations, (4) and (5), 𝑗 is each member of set {1, 2, … , 𝑁𝑗𝑢𝑚𝑝}.
The algorithm SOMA-T3 with just described tool implemented in, we call SOMA-T3-RL (RL means

something like random length).
Our second modification of the SOMA-T3 algorithm deals with another possibility of maintaining

population diversity. In the original algorithm, the authors guarantee a sufficient degree of diversity of
the population by working with only a part of the population in each migration. Our approach lies in a
smaller population and refreshment of some points when the search process stagnates.

We proposed changing randomly selected points of 𝑛𝑝 points (but not several best) of the population
to a random position in the search space when the solution of the problem does not evolve in several
last consecutive migrations. In this case, when the diversity of population is provided in this way, it is
possible to work with a smaller population. And it is also suitable because of saving optimized function
evaluations with regard to their depletion for members which position is changed, when it is needed.

So, we reduced the population size to less than about two-thirds and introduced three new parameters,
𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒𝑠, 𝑟𝑒𝑓𝑟𝑒𝑠ℎ, 𝑛𝑜𝑟𝑒𝑏𝑒𝑠𝑡. We are storing the last two solutions (of solved problem; the solution - the
best point of population in a time) in each time and detecting if the last solution is or is not equal to
the penultimate one. If they are equal for more than 𝑛𝑜𝑡𝑐ℎ𝑎𝑛𝑔𝑒 times, we change the position of 𝑟𝑒𝑓𝑟𝑒𝑠ℎ
randomly selected points of the population, but not the 𝑛𝑜𝑟𝑒𝑏𝑒𝑠𝑡 best points. This modification of the
SOMA-T3 algorithm we call SOMA-T3-DIV in the following.

The third modification, called SOMA-T3-RL-DIV, merges the approaches from the first two variants
into a single algorithm. It incorporates the random path length mechanism of SOMA-T3-RL, which
adjusts the migration distance during the run, and the population refresh strategy of SOMA-T3-DIV,
which replaces selected individuals when stagnation is detected. This combination allows the algorithm
to use both strategies at the same time and potentially benefit from their joint effect.

5. Experiments

We tested four algorithms: the original SOMA-T3 algorithm and three of its modified versions described
above, SOMA-T3-RL and SOMA-T3-DIV, and also the combination of both modified variants SOMA-T3-
RL-DIV. In this initial stage of our experiments, we adopted the same parameter settings as used in
SOMA-T3 to ensure a consistent baseline for comparison. For SOMA-T3-DIV and SOMA-T3-RL-DIV, we
reduced the population size to less than about two thirds. This reduction is feasible because population
diversity is maintained by randomly changing the positions of selected points while keeping the best
points unchanged. As a result, with the same number of function evaluations, the search can be in
some sense longer and can obtain better result.
The evaluation is carried out on the CEC2014 benchmark set [9], which consists of 30 functions

designed for competition for single-objective optimization algorithms with real parameters. These
functions include a mix of unimodal (𝐹1 − 𝐹3), simple multimodal (𝐹4 − 𝐹16), hybrid (𝐹17 − 𝐹22), and
composition (𝐹23 − 𝐹30) types and offer varying levels of difficulty and complexity.
Each algorithm was run 51 times for each configuration, with 𝑀𝑎𝑥𝐹𝐸𝑠 = 𝐷𝑖𝑚 × 104. In total, this

resulted in 4×2×30×51 runs (count of algorithms × count of dimensions × count of functions × count of
runs), that is, 12, 240 runs overall. The count of runs for a combination (algorithm, dimension, function)
was chosen according to [9], and the dimensions 10 and 30 are also prescribed in it – in the future, we
plan to test dimensions 50 and 100 as well.



All functions share the same search space, [−100, 100], for every dimension. The global minimum
values range from 100 to 3000: 𝐹1 has a minimum of 100, 𝐹2 of 200, 𝐹3 of 300, and so on, up to 𝐹30
with a minimum of 3000. This makes to compute the difference between an algorithm’s solution and
the true minimum straightforward. Therefore, in the results below, we report only this difference.

All four algorithms tested have several parameters. Some of these parameters are set the same across
all algorithms: 𝑚, 𝑛, 𝑘, and 𝑁𝑗𝑢𝑚𝑝, with values 𝑚 = 10, 𝑛 = 5, 𝑘 = 15, and 𝑁𝑗𝑢𝑚𝑝 = 45, following the
original SOMA-T3 settings. Other parameters, such as 𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒𝑠, 𝑟𝑒𝑓𝑟𝑒𝑠ℎ, and 𝑛𝑜𝑟𝑒𝑏𝑒𝑠𝑡, are specific only
to SOMA-T3-DIV and SOMA-T3-RL-DIV. The parameter 𝑛𝑝 differs for some of the algorithms tested.
The specific settings of the last mentioned parameters are listed in Table 1. In this table, SOMA-T3-RL,
SOMA-T3-DIV, and SOMA-T3-RL-DIV are marked as RL, DIV, and RL-DIV, respectively.

Table 1
Parameters of tested algorithms with different setting

Alg. 𝑛𝑝 𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑛𝑜𝑟𝑒𝑏𝑒𝑠𝑡

SOMA-T3 100 - - -
RL 100 - - -
DIV 30 10 5 2
RL-DIV 30 10 5 2

The testing was done on a MacBook Pro 14” with an Apple M3 Pro chip (12-core CPU, 18-core GPU)
and 36GB of RAM. As a basis, we used the SOMA_T3A-python implementation (version 2), available on
GitHub [10], modified to support the CEC2014 benchmark functions – together with Python version
3.13.2, NumPy version 2.3.1, and the Opfunu [11] library (with CEC2014 functions) version 1.0.4.

As a basis, we used a Python implementation of the algorithm sourced from GitHub [10], which we
extended with the modifications described above.
In summary, we tested the three modified versions of the algorithm – by running each of them 51

times for the 30 CEC2014 benchmark functions, using the implementation provided by the opfunu
library (version=”1.0.4”). [11] The same procedure was applied to the original unmodified algorithm,
SOMA-T3. Moreover, all of these experiments were performed for both dimensions 𝐷𝑖𝑚 = 10 and
𝐷𝑖𝑚 = 30, always using the parameters described above.

6. Results

This section provides a detailed presentation and interpretation of the results obtained in our experiments
performed on the 30 CEC2014 benchmark functions in dimensions 10 and 30. All results obtained were
corrected as prescribed in [9]. If the result was less than 10−8, it was substituted by 0.
Some statistics calculated from the results of our experiments are printed in Tables 2, 3, 4, 5. In

these tables, SOMA-T3-RL, SOMA-T3-DIV, and SOMA-T3-RL-DIV are also marked as RL, DIV, and
RL-DIV, respectively. Tables 2, 3 summarize the comparison of each proposed algorithm (SOMA-T3-RL,
SOMA-T3-DIV, SOMA-T3-RL-DIV) with the original algorithm SOMA-T3 in dimension 𝐷𝑖𝑚 = 10.
Tables 4, 5 show the summary of the same comparison in dimension 𝐷𝑖𝑚 = 30. For each combination of
dimension, function, and algorithm, we computed the minimum and median of the 51 results obtained.
All minimums are shown in Tables 2 and 4. All medians are shown in Tables 3 and 5.

In these four tables, better statistics are underlined. We always compare a statistic (minimum, median)
of a SOMA-T3 modification (SOMA-T3-RL, SOMA-T3-DIV, SOMA-T3-RL-DIV) with the relevant statistic
of the original SOMA-T3 algorithm. That is the reason why the underlined numbers appear only in the
last three columns. The last line in each of these four tables summarizes the count of wins and count of
losses for each of the algorithms (SOMA-T3-RL, SOMA-T3-DIV, SOMA-T3-RL-DIV) when comparing
the statistic in the dimension.
When we look at Table 2 (the numbers in the table are minimums in dimension 𝐷𝑖𝑚 = 10), we can

see that the SOMA-T3-DIV and SOMA-T3-RL-DIV algorithms have more wins (20, 21) than losses (7, 6).



On the other hand, the algorithm SOMA-T3-RL has a diverse situation in comparison with SOMA-T3
in this dimension. The count of wins is 7 and the count of losses is 22. When we discuss the medians
in dimension 𝐷𝑖𝑚 = 10 (see Table 3), the results of the comparisons are very similar. SOMA-T3-DIV
and SOMA-T3-RL-DIV have more wins than losses, while the opposite is true for SOMA-T3-RL. When
comparing the minimums (see Table 4) and medians (see Table 5) of the results in dimension 𝐷𝑖𝑚 = 30,
the counts of wins and losses for the algorithms tested differ only slightly. They are very similar to the
results in the tables for dimension 𝐷𝑖𝑚 = 10.

Table 2
Minimums of results for 𝐷𝑖𝑚 = 10 for all tested algorithms

F SOMA-T3 RL DIV RL-DIV

1 1.771E-01 5.919E-01 4.161E-04 8.684E-03
2 0.000E+00 7.219E-06 0.000E+00 0.000E+00
3 0.000E+00 1.196E-08 0.000E+00 0.000E+00
4 2.203E-05 4.976E-03 0.000E+00 2.225E-07
5 1.498E-03 5.116E-04 0.000E+00 5.536E-07
6 1.436E-04 2.042E-03 9.846E-05 1.611E-04
7 0.000E+00 7.399E-03 7.396E-03 1.478E-02
8 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 1.990E+00 1.990E+00 1.990E+00 1.990E+00
10 2.060E-06 7.327E-03 0.000E+00 0.000E+00
11 6.830E+00 6.455E+00 3.747E-01 3.123E-01
12 6.986E-02 9.539E-02 6.773E-03 1.161E-02
13 2.453E-02 4.390E-02 1.012E-02 9.201E-03
14 3.972E-02 2.581E-02 3.304E-02 1.558E-02
15 3.379E-01 4.810E-01 1.733E-01 3.075E-01
16 7.031E-01 9.036E-01 7.466E-01 3.447E-01
17 1.037E+01 1.401E+01 1.422E+00 2.086E+00
18 1.901E-01 1.322E-01 7.834E-02 1.030E-01
19 1.141E+00 1.469E+00 1.133E+00 1.002E+00
20 9.232E-01 8.936E-01 1.806E-01 6.714E-01
21 4.888E-01 7.019E-01 5.236E-02 3.558E-01
22 4.872E-01 8.545E-01 1.187E-01 1.440E-01
23 1.276E-05 2.000E+02 2.000E+02 0.000E+00
24 1.059E+02 1.000E+02 1.000E+02 1.000E+02
25 1.331E+02 1.359E+02 1.360E+02 1.333E+02
26 1.000E+02 1.000E+02 1.000E+02 1.000E+02
27 1.838E+00 1.906E+00 1.919E+00 1.458E+00
28 3.568E+02 3.568E+02 3.568E+02 3.568E+02
29 4.500E+06 4.500E+06 4.500E+06 4.500E+06
30 1.896E+03 1.834E+03 1.786E+03 2.059E+03

#w/#l 7/22 20/7 21/6

Without additional statistics, we can conclude that the proposed modifications SOMA-T3-DIV (which
use a tool for preserving population diversity that differs from the one used by the original algorithm)
and SOMA-T3-RL-DIV (an algorithm in which we implemented both proposed tools) of the SOMA-T3
algorithm are sufficiently effective. SOMA-T3-RL does not appear to be as effective as expected. Here
we can observe the difference in the improvement of effectiveness when randomness is restricted to a
single direction, and when it is not restricted and diversity is supported by points across the whole
search space.
In order to know the true difference in the effectivity of the original algorithm and the proposed

algorithms, we computed 180 Wilcoxon rank-sum statistical tests. All statistical tests were performed at
the significance level set at 0.05. The results of the statistical tests performed are shown in Table 6. In this
table, RL indicates SOMA-T3-RL, DIV is SOMA-T3-DIV, and the label RL-DIV means SOMA-T3-RL-DIV.



Table 3
Medians of results for 𝐷𝑖𝑚 = 10 for all tested algorithms

F SOMA-T3 RL DIV RL-DIV

1 9.700E+01 1.968E+02 3.654E+00 4.353E+01
2 2.200E-07 9.630E-05 0.000E+00 0.000E+00
3 0.000E+00 8.722E-07 0.000E+00 0.000E+00
4 1.175E-02 2.288E-01 1.260E-07 3.380E-03
5 2.012E+01 2.013E+01 2.000E+01 2.002E+01
6 7.553E-03 1.820E-02 4.000E-02 3.766E-02
7 3.938E-02 3.202E-02 4.678E-02 5.419E-02
8 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 3.980E+00 3.981E+00 3.980E+00 3.980E+00
10 2.501E-01 2.499E-01 2.498E-01 1.874E-01
11 1.453E+02 1.418E+02 1.336E+02 4.169E+01
12 2.930E-01 2.811E-01 7.726E-02 9.263E-02
13 8.169E-02 8.451E-02 7.422E-02 5.381E-02
14 1.506E-01 1.336E-01 8.669E-02 7.171E-02
15 7.434E-01 7.658E-01 7.113E-01 7.008E-01
16 1.843E+00 1.568E+00 1.648E+00 1.617E+00
17 4.216E+01 8.920E+01 4.572E+01 6.517E+01
18 1.573E+00 1.476E+00 1.445E+00 1.349E+00
19 2.118E+00 2.173E+00 1.838E+00 1.730E+00
20 3.795E+00 5.264E+00 1.718E+00 2.650E+00
21 2.276E+00 3.954E+00 8.603E-01 9.803E-01
22 2.150E+01 2.156E+01 2.024E+01 2.016E+01
23 2.422E+02 2.422E+02 2.422E+02 2.368E+02
24 1.104E+02 1.089E+02 1.101E+02 1.093E+02
25 1.430E+02 1.428E+02 1.421E+02 1.415E+02
26 1.001E+02 1.001E+02 1.001E+02 1.001E+02
27 3.823E+00 3.301E+00 5.789E+00 3.009E+02
28 3.601E+02 3.601E+02 3.694E+02 3.717E+02
29 4.500E+06 4.500E+06 4.500E+06 4.500E+06
30 3.728E+03 4.678E+03 3.260E+03 4.480E+03

#w/#l 10/18 22/5 21/7

When + appears in the table, it means that the respective modified algorithm is statistically better than
the original, − means that the original algorithm works statistically better than the modified one, and ≈
means that both algorithms compared work with the statistically same effectivity.
When we compare the original algorithm SOMA-T3 and SOMA-T3-RL in dimension 𝐷𝑖𝑚 = 10, we

found that only for the 2 functions tested the results of SOMA-T3-RL are statistically better than the
results of SOMA-T3, and simultaneously the results of SOMA-T3-RL are statistically worse than the
results of SOMA-T3 for 10 functions of the benchmark set. So, the conclusion should be that SOMA-T3
is better than SOMA-T3-RL in 𝐷𝑖𝑚 = 10. In dimension 𝐷𝑖𝑚 = 30, the situation is very similar. SOMA-T3
is statistically better than SOMA-T3-RL 13 times and SOMA-T3-RL is statistically better than SOMA-T3
6 times. The following conclusion should be drawn. The SOMA-T3 algorithm is more effective than the
SOMA-T3-RL algorithm also in dimension 𝐷𝑖𝑚 = 30.
When we look at the columns for the comparison of SOMA-T3 and SOMA-T3-DIV, we can see that

the numbers at the bottom of the columns are different. In dimension 𝐷𝑖𝑚 = 10, the SOMA-T3-DIV
algorithm is better than the SOMA-T3 algorithm for 12 functions. On the other hand, the SOMA-T3
algorithm is more effective than the SOMA-T3-DIV algorithm for only 5 functions from the benchmark
set. A similar situation appears for dimension 𝐷𝑖𝑚 = 30. SOMA-T3-DIV is better than SOMA-T3 for
16 functions and SOMA-T3 wins only on the 6 functions tested. Looking at the last two columns of
the table, we can conclude that the combined use of both proposed tools does not yield significantly



Table 4
Minimums of results for 𝐷𝑖𝑚 = 30 for all tested algorithms

F SOMA-T3 RL DIV RL-DIV

1 5.513E+04 2.890E+05 4.782E+03 5.241E+04
2 0.000E+00 7.834E-08 0.000E+00 0.000E+00
3 0.000E+00 2.329E-07 0.000E+00 0.000E+00
4 1.494E-02 3.728E-02 5.070E-04 2.717E-02
5 2.042E+01 2.048E+01 2.000E+01 2.006E+01
6 4.811E+00 6.309E+00 4.512E+00 4.728E+00
7 0.000E+00 0.000E+00 0.000E+00 0.000E+00
8 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 1.691E+01 1.293E+01 1.791E+01 2.089E+01
10 1.367E+00 1.391E+00 2.498E-01 1.666E-01
11 1.753E+03 2.439E+03 8.942E+02 1.521E+03
12 5.261E-01 5.175E-01 1.321E-01 1.068E-01
13 1.094E-01 8.745E-02 9.848E-02 7.590E-02
14 2.148E-01 1.304E-01 1.668E-01 1.192E-01
15 1.762E+00 2.751E+00 1.726E+00 2.412E+00
16 9.661E+00 9.880E+00 9.282E+00 8.131E+00
17 1.217E+04 1.533E+04 6.493E+03 9.419E+03
18 2.228E+04 2.724E+04 2.720E+04 2.683E+04
19 1.205E+01 1.978E+01 1.021E+01 1.479E+01
20 6.490E+03 1.336E+04 2.575E+03 6.404E+03
21 4.140E+03 7.075E+03 1.642E+03 2.522E+03
22 4.256E+01 5.676E+01 2.175E+01 2.757E+01
23 2.228E+02 2.228E+02 2.228E+02 2.228E+02
24 2.187E+02 2.153E+02 2.037E+02 2.131E+02
25 2.050E+02 2.054E+02 2.040E+02 2.041E+02
26 1.001E+02 1.001E+02 1.001E+02 1.001E+02
27 4.004E+02 4.010E+02 4.004E+02 4.006E+02
28 7.743E+02 8.190E+02 8.041E+02 7.972E+02
29 4.083E+03 4.278E+03 3.177E+03 3.366E+03
30 1.927E+04 1.696E+04 9.061E+03 1.181E+04

#w/#l 6/21 21/4 18/7

different results compared to the implementation of only the DIV mechanism. The SOMA-T3-RL-DIV
wins 17 times in dimension 𝐷𝑖𝑚 = 10 and 12 times in dimension 𝐷𝑖𝑚 = 30. On the other hand, the last
comparison looks as follows. SOMA-T3 wins 4 times and 6 times in dimension 𝐷𝑖𝑚 = 10 and 𝐷𝑖𝑚 = 30,
respectively.
When we summarize the comparison of SOMA-T3 and SOMA-T3-RL, the part of functions where

SOMA-T3-RL is statistically better than the original algorithm is equal to or less than 20 % in each
tested dimension. However, when we think about the two other comparisons – SOMA-T3-DIV and
also SOMA-T3-RL-DIV, we find that SOMA-T3-DIV and SOMA-T3-RL-DIV are more effective than
the original SOMA-T3 algorithm for more than half of the functions in a given tested dimension:
SOMA-T3-DIV in 𝐷𝑖𝑚 = 30 and SOMA-T3-RL-DIV in 𝐷𝑖𝑚 = 10. In the other dimension, they are both
better than SOMA-T3 in more than 33 % of the tested functions. Overall in both dimensions together,
SOMA-T3-DIV and also SOMA-T3-RL-DIV are worse than the original SOMA-T3 algorithm only in
about 16 % of the benchmark optimization problems. The results of these two algorithms are of similar
or better effectivity than the original SOMA-T3 in the rest of the benchmark problems, that is, in more
than 80 % of the tested problems.



Table 5
Medians of results for 𝐷𝑖𝑚 = 30 for all tested algorithms

F SOMA-T3 RL DIV RL-DIV

1 2.746E+05 7.564E+05 9.246E+04 2.522E+05
2 0.000E+00 8.938E-06 0.000E+00 0.000E+00
3 1.974E-07 1.165E-04 0.000E+00 0.000E+00
4 6.924E+01 7.369E+01 3.302E+00 7.042E+01
5 2.063E+01 2.059E+01 2.002E+01 2.026E+01
6 1.092E+01 1.155E+01 1.037E+01 1.075E+01
7 0.000E+00 0.000E+00 0.000E+00 0.000E+00
8 1.990E+00 9.950E-01 9.950E-01 9.950E-01
9 2.985E+01 3.086E+01 4.676E+01 4.676E+01
10 8.042E+00 5.335E+00 3.592E+00 3.561E+00
11 2.516E+03 4.017E+03 2.046E+03 2.214E+03
12 8.740E-01 8.775E-01 2.245E-01 2.435E-01
13 1.705E-01 1.561E-01 2.068E-01 1.775E-01
14 3.106E-01 2.780E-01 2.431E-01 1.864E-01
15 3.333E+00 5.697E+00 3.702E+00 3.745E+00
16 1.097E+01 1.142E+01 1.047E+01 1.062E+01
17 2.380E+04 4.465E+04 1.772E+04 3.191E+04
18 3.906E+04 3.643E+04 5.806E+04 5.491E+04
19 2.168E+01 2.479E+01 3.069E+01 3.180E+01
20 1.576E+04 2.920E+04 1.170E+04 1.993E+04
21 1.296E+04 1.607E+04 6.306E+03 1.091E+04
22 2.651E+02 2.949E+02 1.966E+02 2.790E+02
23 2.228E+02 2.228E+02 2.228E+02 2.228E+02
24 2.240E+02 2.240E+02 2.245E+02 2.220E+02
25 2.086E+02 2.092E+02 2.051E+02 2.054E+02
26 1.002E+02 1.002E+02 1.002E+02 1.002E+02
27 4.014E+02 4.026E+02 4.012E+02 4.015E+02
28 8.724E+02 8.673E+02 8.792E+02 8.963E+02
29 6.741E+03 6.903E+03 6.317E+03 6.139E+03
30 4.549E+04 1.097E+05 1.622E+04 2.723E+04

#w/#l 7/21 19/8 15/12

7. Conclusion

In this article, we focus on the SOMA optimization algorithm, in particular the SOMA-T3 variant,
which we modified to improve optimization performance. Three algorithms based on SOMA-T3 were
proposed: SOMA-T3-RL, SOMA-T3-DIV, and a combination of both, SOMA-T3-RL-DIV.
The results show that SOMA-T3-RL (with random length of the migration vector) does not bring

significant improvements and in some cases leads to a slight decrease in performance compared to
the original algorithm. However, its performance remains largely comparable to that of the original
SOMA-T3, suggesting that this modification does not introduce instability or consistent deterioration.
In contrast, SOMA-T3-DIV (with a mechanism for maintaining population diversity) demonstrates

stronger and more robust improvements in both dimensions tested. The combined variant, SOMA-T3-
RL-DIV, also achieves competitive results, reaching a similar or even better balance of improvements
compared to SOMA-T3-DIV.

In general, the proposed modifications confirm that the most effective strategy is to enhance popula-
tion diversity (DIV). The combined variant SOMA-T3-RL-DIV provides results similar to SOMA-T3-DIV
and in some cases is even slightly better, showing that the random length mechanism can bring a small
additional benefit when used in combination with population diversity maintenance.

However, a space for further improvement remains there, suggesting that additional modifications or



Table 6
Results of Wilcoxon two-sample tests for all three proposed modifications of SOMA-T3 for both tested dimensions

RL DIV RL-DIV
F / 𝐷𝑖𝑚 10 30 10 30 10 30

1 − − + + ≈ ≈
2 − − + + + +
3 − − + + + +
4 − − + + ≈ ≈
5 ≈ + + + + +
6 − ≈ − ≈ − ≈
7 ≈ ≈ − ≈ − ≈
8 ≈ + ≈ ≈ ≈ +
9 ≈ ≈ ≈ − ≈ −
10 ≈ + − + + +
11 ≈ − ≈ + + +
12 ≈ ≈ + + + +
13 ≈ + ≈ − + ≈
14 + + + + + +
15 ≈ − ≈ − ≈ −
16 ≈ − ≈ + + +
17 − − ≈ + ≈ −
18 ≈ + ≈ − + −
19 ≈ − ≈ − + −
20 − − + + + ≈
21 ≈ − + + + ≈
22 ≈ ≈ + + + ≈
23 − ≈ ≈ ≈ ≈ ≈
24 + ≈ ≈ ≈ + +
25 ≈ ≈ ≈ + ≈ +
26 ≈ ≈ + − + ≈
27 ≈ − − ≈ − ≈
28 − ≈ − ≈ − −
29 − ≈ + ≈ + ≈
30 ≈ − ≈ + ≈ +

#+ 2 6 12 16 17 12
#− 10 13 5 6 4 6
#≈ 18 11 13 8 9 12

hybrid strategies could be explored in future work.
Future research will also include a comparison of the proposed methods with more recent SOMA

variants introduced in recent studies [14, 15, 16].
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