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Abstract

Deep learning dominates image segmentation, but its reliance on large labeled datasets and GPU resources may
limit its applicability. We introduce a lightweight, handcrafted pipeline tailored for brightfield microscopy in
settings with scarce to no labeled data. Our method employs classical image-processing techniques to segment
cells, eliminating the need for manual annotations or training.

Visual inspection and comparison with the deep-learning model Cellpose [1] confirm reliable performance
across a variety of imaging conditions. Notably, our approach maintains high-quality, smooth boundaries by
operating at full resolution, avoiding the jagged edges introduced by downsampling and upscaling required by
Cellpose. The pipeline is interpretable, fast, and resource-efficient, offering a practical alternative when deep
models are either unnecessary or infeasible.
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1. Introduction

Cell segmentation is a fundamental task in bioimage analysis, enabling downstream applications such as
cell counting, morphology quantification, tracking, or texture-based cell analysis. While deep learning
has become the dominant approach to segmentation in recent years, its adoption often comes with
practical barriers. Whether trained from scratch or adapted from pre-trained models, deep networks
typically require large amounts of annotated data and access to GPU resources — both of which may be
unavailable in laboratory settings.

Brightfield images are often acquired alongside other modalities such as fluorescence, phase contrast,
or confocal channels. In our setting, for example, segmentation based on brightfield images (Figure 1a)
is preferable, as fluorescence channels (Figure 1b) often exhibit blurred or less distinct cell boundaries.
This highlights the importance of robust, label-free segmentation methods that rely only on brightfield
input.

We present a lightweight, handcrafted pipeline for cell segmentation in brightfield images, designed
specifically for contexts where manual cell annotations are unavailable. Our approach uses classical
image processing techniques such as filtering, thresholding, and morphological operations to segment
cells without the need for training or annotations. Designed with interpretability and simplicity in
mind, the pipeline runs efficiently on standard hardware and demonstrates reliable segmentation across
diverse conditions, as confirmed by visual inspection. It offers a practical alternative in settings where
deep learning is unnecessary, infeasible, or undesirable.

2. Materials

Magnusiomyces magnusii CBS 234.85 is an ascomycetous yeast belonging to the family Dipodascaceae
(subphylum Saccharomycotina). Its giant cells containing multiple nuclei make this species a suitable
model organism for cell biology studies.
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(a) Brightfield image (b) Fluorescence image

Figure 1: Comparison of Brightfield vs. Fluorescence.

For microscopy, the cultures of M. magnusii CBS 234.85 were grown overnight in yeast extract-
peptone-dextrose (YPD) medium (1% [wt/vol] yeast extract, 2% [wt/vol] peptone, 1% [wt/vol] glucose)
at 28 °C on a rotary shaker. Cells were observed in visible light using an Olympus BX50 microscope
and a Zeiss Axio Imager.Z2 microscope.

On the Olympus BX50, images were captured at 1920 x 1200 resolution with a pixel size of 0.059 pm in
true-color RGB (8 bits per channel). On the Zeiss Axio Imager.Z2, images were acquired at 2752 x 2208
resolution as 16-bit grayscale frames at a pixel size of 0.045 pm.

3. Methods

3.1. Challenges of Automated Cell Segmentation

Cell segmentation from images in the brightfield microscopy is not a trivial task, particularly for the
following reasons:

« Irregular cell shape and size. Cells can vary significantly at different stages of their life cycle,
so classic preset mask shapes often do not suffice.

+ Noise and background artifacts. Biological samples often contain tissue residues, small debris,
or dust, which can be mistakenly identified as cells during binarization.

+ Uneven illumination. The sample may not be evenly illuminated, leading to variable con-
trast—some cells appear darker, others are significantly overexposed (Figure 4).

+ Cell overlap. In dense cultures or tissues, cells can partially or completely overlap, complicating
the extraction of contours.

Our goal, is to avoid deep learning approaches, which imply a black-box solution. We aim to develop
a robust pipeline that:

1. automatically handles fluctuating illumination and contrast (using adaptive thresholding),
2. removes noise and artifacts without losing detail at cell boundaries,

3. refines object contours and fills internal cavities to produce binary masks with correct separation
of cells from background.



3.2. Cell Segmentation Methods

The chosen segmentation methodology combines adaptive thresholding with morphological image
processing. The entire process can be divided into several steps:

1. Image preprocessing - noise smoothing and normalization (as detailed in section 4)

2. Local thresholding to create a binary mask

3. Morphological mask cleaning (removal of small objects, hole filling, gap closing)

4. Identification and measurement of properties of individual segmented objects

5. Selection of the segment that best corresponds to the target cell (the most regular object)

6. Adaptive threshold refinement to improve the segmented shape (if necessary)

3.3. Thresholding

Thresholding is a fundamental segmentation technique: it converts a grayscale image into a binary one
based on a threshold value. Initially, we experimented with Otsu’s thresholding [2] — a global method
that selects a single threshold by maximizing the between-class variance of the image histogram.

However, because Otsu’s method applies one fixed threshold to the entire image, it cannot cope with
the local variations in illumination and contrast present in our micrographs, and thus produced less
satisfying results than adaptive (local) thresholding.

Adaptive thresholding computes a threshold T(x, y) independently for each neighborhood around
pixel (x, y). In this work, we employ the Niblack’s thresholding method [3] which is well suited for
inhomogeneous backgrounds [4]:

Niblack threshold T(x,y) is computed by:

T(x,y) =m(x,y) + k-s(x,y) (1)

where m(x, y) is the local mean intensity (brightness) and s(x, y) is the local standard deviation within
a window around (x, y). The parameter k allows shifting the threshold relative to the mean—usually
downward into darker regions. While for text documents Niblack recommended a negative k to capture
dark letters on a light background, in the context of cell images it is more appropriate to choose a
positive k. This is because a positive value slightly raises the threshold above the local mean, helping
to reduce false background merging while still preserving the weaker (darker) parts of the cell as
foreground. In our case, we empirically set k = 0.2 within a 15 x 15-pixel window. This parameter
can be optionally adjusted (e.g., increased or decreased by 0.1) whenever the cell boundary is not fully
enclosed.

The resulting local threshold values are stored in matrix T(x, y) for each pixel. By comparing the
original image to this matrix, a binary image (mask) is produced, in which pixels with intensity above
T(x,y) are marked as foreground (cell) and the rest as background.

Adaptive thresholding using Niblack’s method ensured that the cells were correctly detected even
under uneven illumination, unlike the global Otsu threshold, which in our tests either missed the
weaker parts of the cells or included excessive background noise. This switch from Otsu to Niblack
thresholding was therefore crucial and significantly improved mask quality.

3.4. Morphological Operations

The raw binary mask after thresholding usually contains small artifacts (isolated pixels or small noise
regions) and may have holes within objects. To clean the mask, we apply a set of morphological
operations:



(a) removal of small objects
(b) filling of small holes

(c) closing of narrow gaps
(d) optional dilation

Operations (a) and (b) were carried out by removing all connected components smaller than a given
area or by filling all holes smaller than a given area, respectively. For our images, we chose a threshold
of 500 pixels, based on empirical tuning. This value reliably removed small specks and background
noise without eliminating faintly cells.

Next, we applied the morphological closing [5] with a disk-shaped structuring element of radius 3
px. Closing corresponds to dilation followed by erosion; its effect is to join nearby regions and close
narrow gaps or slits within objects. This was followed by dilation with a disk of radius 1 px, slightly
expanding the resulting cell outline.

These steps aim to obtain as clean mask as possible, where each cell is represented by a single white
area without small protrusions or holes.

3.5. Segment Analysis and Object Selection

After morphological cleaning, the next step is to identify individual segmented objects and select those
corresponding to target cells. The cleaned binary mask may contain several connected components.

Each connected object is assigned a unique label. Then, for each object, a set of properties is computed.
The most important features in our logic are the object’s area, the area of its convex hull, and the
object’s Euler number.

+ Euler number E of a connected region is defined as one minus the number of holes it contains.
An ideal cell segment should therefore have the Euler number equal to 1 [6].

« Convex area The area of the convex hull, i.e. the area of the smallest convex polygon that
contains (encloses) the region [7].

Feature Usage To select the segment representing the target cell, we assume the cell will be among
the larger objects in the mask and have a relatively compact (regular) shape. We first filter the list of all
objects by convex area larger than 15000 px, thus ignoring segments which we are not considered as
whole cells.

The remaining objects are then sorted. Preference is given to the object with an Euler number closest
to 1, and if there are multiple such objects, the one with the largest convex area is chosen. Such an object
is considered the most regular - it has a large area and almost no holes, which roughly corresponds to
the characteristics of a fully segmented cell.

This procedure yields the label of the selected object, which is then marked as the candidate for the
final cell mask. If there is only one cell in the frame, this algorithm naturally selects it (if it meets the
minimum size); if there are multiple cells or fragments, it automatically chooses the one with the most
intact shape.

3.6. Adaptive Threshold Refinement

After selecting the best object (cell), an additional threshold refinement step is added to remove remaining
imperfections, especially if the selected segment contains holes. If the selected object’s Euler number
differs from 1, the algorithm attempts to fill the hole by further adjusting the threshold. Adaptation
consists of iteratively reducing the offset responsible for noise suppression.

We originally set this A to 0.05 (5 % intensity). By increasing A, we tighten the condition for
foreground pixels — a larger A means a higher intensity above the threshold is required, and conversely,
by decreasing A we allow slightly darker parts to pass into the foreground.



This refinement process consists of iteratively decreasing the offset A by 0.005 in each step and
re-segmenting the image with the new threshold value; iterations continue as long as the selected
segment’s Euler number improves. Specifically, if the segment had E = 0, after a slight decrease of A
that hole can be filled (the part that originally had slightly lower intensity than the original threshold
now becomes white) and the Euler number increments. The algorithm checks whether the object’s
Euler number approaches 1; if not, it proceeds to another decrease of A.

This iterative process stops when the Euler number reaches 1 or when further decreasing A no longer
improves the Euler number, or when A reaches the minimum set value (0.005 in our implementation).
This adaptive refinement ensures that the final cell mask is as compact as possible and contains no
internal holes caused by an overly strict threshold.

4. Implementation
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Figure 2: Runtime comparison of our tool with cellpose across hardware configurations. Top-to-down
mean times in seconds: 8.7 + 5.4, 21.3 + 0.2, 140.6 + 5.8, 505.0 &+ 12.9.

The implementation is carried out in Python using the scikit-image and SciPy/NumPy libraries. The
main script processes either a single image (. tif, .png or .czi) or an entire folder of images, and saves
or visualizes the resulting masks.

1. Loading and preprocessing: Depending on the format, the image is loaded and converted to
grayscale (rgb2gray). A Gaussian filter [8] (filters.gaussian, ¢ = 0.4-1.6 adjusted to specific
microscope) is applied and the result is normalized to [0, 1] via min-max scaling, so that the
darkest pixel maps to 0 and the brightest to 1. Smaller values of o gently suppress high-frequency
noise while preserving fine cell-boundary detail, whereas larger values more aggressively smooth
background variations.

2. Adaptive thresholding: The smoothed image is thresholded with threshold_niblack (window
15 x 15), producing the binary mask binary = gray_smooth > thresh.

3. Morphological cleaning: The binary mask is cleaned in sequence:

« remove_small_objects(binary, min_size=500) — removal of noise,

« remove_small_holes(..., area_threshold=500) — hole filling,
» binary_closing(..., disk(3)) - closing of narrow gaps,
« binary_dilation(..., disk(1)) - slight outline dilation.

4. Labeling and segment selection: Connected components are labeled (using ndimage . label
of SciPy), and for each component we compute region properties (via regionprops of skimage).



Among the components with convex area > 15000, we select the one whose Euler number is
closest to 1.

5. Threshold refinement: If the selected segment still contains holes (E < 1), the offset A is
iteratively decreased by 0.005 during thresholding and the mask is re-cleaned until the Euler
number improves or the offset reaches 0.005.

5. Results

We tested the proposed method on multiple brightfield cell images from two microscopes of varying
quality and content - images with a single dominant cell, images with multiple cells or fragments in the
background, images with uneven illumination. In most cases the algorithm successfully identified the
cell regions and produced plausible segmentation masks (see Figures 3a, 3c, 4a, and 4e).

We consider an output successfully segmented if the mask follows the contours of all cells in the
original image, with no disconnected regions within cell outline. Examples when this is not fulfilled
can be seen in Figure 3e (triangular shape between the 3 cells) and 4c (the central cell not segmented
correctly).

Based on this criterion and visual inspection, out of 50 images, 46 were successfully segmented,
indicating a success rate of 92%.

For those images that were not correctly segmented on the first attempt, one can fine-tune the
k parameter in Niblack thresholding or adjust the ovalue in the Gaussian filter to achieve proper
segmentation.

5.1. Comparison with Cellpose

As we lack ground-truth segmentations, standard quantitative validation is not possible. Nonetheless,
we assessed how consistently our handcrafted segmentation pipeline agrees with a pre-trained deep-
learning, state-of-the-art model.

Cellpose [1] is a widely used generalist segmentation model designed to work out-of-the-box on
various microscopy images without retraining or parameter tuning. It offers both a GUI and API suited
for high-throughput analysis.

Although neither our nor Cellpose segmentation clearly represents the ground truth, comparing
them can offer valuable insights into their relative behavior and agreement.

We quantified this agreement using the Intersection over Union (IoU), also known as the Jaccard
index [9]. Let O and C denote the sets of segmentation pixel coordinates of our method and Cellpose,
respectively. Then:
|OnC]
|OuC|

This metrics yields values from the unit interval with 1 indicating a perfect overlap. In many biomedical
segmentation benchmarks, IoUs in the 0.85-0.95 range indicate excellent agreement.

Across the dataset, we observed a high average intersection over union (IoU) of 0.91 (standard
deviation: 0.17), indicating that both approaches segment largely overlapping regions. This high
concordance suggests that our handcrafted pipeline produces results comparable in coverage to a
pre-trained deep network, while retaining advantages in interpretability, computational simplicity, and
independence from labeled training data

Further visual inspection revealed that Cellpose tends to produce suboptimal segmentation on our
full-resolution scans. Plausible segmentations were only achieved after appropriate downsampling,
whether via image pyramids or by specifying the average cell diameter. While downsampling typically
improves Cellpose’s ability to delineate cell bodies, rescaling the resulting masks back to original
resolution introduces jagged, pixelated boundaries, particularly evident when zooming into Figures 3
and 4. Thus, the segmentation boundary smoothness becomes a trade-off against detection plausibility.
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In contrast, our handcrafted pipeline operates natively at full resolution, producing smooth, high-
quality boundaries without requiring rescaling. This demonstrates a clear advantage in preserving
boundary integrity — suggesting that when high-resolution delineation is important, our method may
offer more reliable results.

(a) (b)
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Figure 3: Segmentation examples where our algorithm (a,c,e) and Cellpose [1] (b,d,f) are in concordance
The loU for the three examples are 0.99, 0.99, and 0.98, respectively.
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Figure 4: Segmentation examples where our algorithm and Cellopose [1] differ and eventually fail.
Top-to-down loU scores are 0.91, 0.84, and 0.92, respectively. Cellpose may produce partial or fragmented
masks at image borders (b),(d), or even under-segment (f). Our method may be sensitive to intensity
gradient along the cell boundary (c).

6. Discussion, Conclusions, and Future Work

When deploying Cellpose in real-world biomedical labs, several practical limitations become evident.



First, GPU acceleration is a necessity (see Figure 2). On CPU alone, processing a single high-resolution
image can take over 500 seconds, which is impractically slow for routine tasks. Even using GPUs,
performance disparities are significant: on Apple M1 hardware, it still takes more than 140 seconds per
image, whereas the pricey high-end NVIDIA RTX-5000 brings this down to around 20 seconds.

Second, despite its generalist claim, Cellpose still may require parameter tuning or downsampling
large scans to achieve optimal segmentation for specific samples.

Furthermore, the high computational demands and the need for manual parameter adjustments make
Cellpose inadequate for fast-paced, GPU-limited laboratory environments.

On the other hand, our handcrafted brightfield segmentation pipeline offers several compelling
benefits over Cellpose when applied to high-resolution microscopy images.

Full-resolution precision Unlike Cellpose — which downscales inputs to match its trained cell sizes
- our pipeline operates natively at full resolution, preserving smooth, accurate cell boundaries
without jagged artifacts.

Resource efficiency Our pipeline runs on standard CPU hardware, requires no GPU and performs
well without extensive parameter tuning. This is in contrast to Cellpose, which demands GPU
acceleration.

Interpretability and flexibility Based on classical image processing (filters, thresholding, morphol-
ogy), our approach is transparent and customizable. In fact there are currently two parameters to
adjust, should the segmentation be implausible. Cellpose on the other hand relies on a complex,
hardly-interpretable deep model.

Strong agreement Despite its simplicity, our method achieves high overlap with Cellpose segmenta-
tions, demonstrating it produces biologically plausible masks comparable to a state-of-the-art
pretrained deep network.

Overall, we show that for brightfield microscopy with limited or even no ground truth segmentation,
a well-tuned handcrafted pipeline can deliver segmentation quality on par with deep learning — while
being faster, more transparent, and finely preserving boundary detail at native resolution. This makes
it a valuable, practical alternative when deep models are unnecessary or unavailable.

Limitations Our method may fail when parts of the cell wall are severely out of focus or exhibit
very low local contrast; in such cases the object boundary can be mis-segmented. In many images,
this failure mode can be alleviated by modest tuning of the Niblack parameter k and/or the Gaussian
smoothing o prior to thresholding. We also observe occasional under-segmentation in dense, irregular
clusters: when neighboring cells are separated by only a narrow or low-contrast gap, this gap may not
be detected and adjacent cells may merge into a single component.

Future work We still consider our cell segmentation tool a work in progress that requires further
refinement to enhance its usability and practicality. In particular, we foresee that incorporating the
image intensity derivatives would precisely define cell walls with an inhomogeneous appearance, such
as the central cell in Figure 4c.
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