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Abstract
When building a pangenome graph of tens of individual bacterial genomes, one often encounters a problem
that the structure of the resulting graph is generally unwieldy. In particular, some vertices are likely to connect
sequences that appear in different contexts in different genomes. When visualizing such pangenomes, these
vertices pull together different unrelated parts of individual genomes, creating a difficult to analyze hairball.
In this paper, we explore this issue and propose a greedy heuristic algorithm to simplify pangenome graphs
by eliminating certain vertices and edges. This means that certain portions of the original genomes will no
longer be represented in the pangenome, and therefore it is important to minimize such graph modifications. We
demonstrate effectiveness of our approach on a set of 50 Escherichia coli isolates and we show that visualization
of such a simplified pangenome graph can unmask interesting features of the pangenome organization.

Our software and data are available at https://github.com/SendyM/Pangenomic_Graph_Filtering_and_Visualization
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1. Introduction

Representing multiple individual genomes of the same species as a pangenome graph has become
increasingly popular [1, 2]. Pangenome graphs are not only a compact data structure that can efficiently
represent genetic variation in tens or even hundreds of individuals, but they can also serve as an
important visualization tool for studying structural properties of the pangenome as a whole.

In this paper, we consider block-based pangenome graphs that are built by tools such as minigraph
[3], PanGraph [4], or by our own pipeline based on GEESE software [5]. Similar sequences (both from
within and between individuals) are clustered together and form multiple alignment blocks that will
serve as vertices of the graph. Each individual can now be represented as a walk through these vertices
and the edges of the graph are simply a union of edges from these walks.

Block-based pangenome graphs do not emphasize local differences between individuals, such as single
nucleotide polymorphisms or short indels, as this information is hidden within multiple alignments
corresponding to individual vertices. Instead they highlight larger-scale differences between individuals
related to rearrangements, segmental duplications, or structural variation.

However, even when using only tens of individual bacterial genomes, the structure of the resulting
graph is generally unwieldy. First, some vertices represent segments (such as transposable elements,
phages and other mobile elements) that can occur in multiple locations within the same genome
or appear in different sequence contexts in different individuals (Figure 1A). Consequently, when
visualizing the pangenome, these vertices bring their otherwise unrelated neighbors to close proximity.
Second, even though homologous sequences between individuals should be represented by the same
vertex, sometimes they can be split into two or more vertices, generally fragmenting walks and creating
a visual clutter (Figure 1B). In extreme cases, complex bubbles are formed, potentially compounding
both of the previous issues (Figure 1C). Consequently, in visualization, many unrelated parts of the
pangenome graph are typically brought together into a small space, creating an unwieldy hairball that
effectively hides the underlying structure of the pangenome, as shown in Figure 2A.

A common practice is to anticipate these problems and attempt to identify the segments of sequences
that may give rise to problematic vertices, and excising them from the genomes before building the
pangenome. However, this step requires advance biological knowledge which is often not available or
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(A) (B) (C)

Figure 1: Common issues observed in pangenome graph visualizations. (A) Vertices occuring in many
contexts. (B) Fragmented vertices (or small bubbles). (C) Dense vertex communities (or complex bubbles).

incomplete. Instead, here we propose a heuristic to analyze the structure of the pangenome, identifying
vertices that are responsible for the hairball formation. These vertices can be removed from the graph,
reconnecting the corresponding walks by bypassing the vertex, effectively simulating excision of the
corresponding sequence from the original genomes. Alternately, in case of complex bubbles, the bubble
internal structure can be simplified by removing rarely used edges.

We demonstrate the technique on a pangenome of 50 Escherichia coli isolates. We also compare our
results to PanGraph’s graph simplification routine and show that we can get superior results which
moreover represent approximately 6× more of the length of the original input sequences than the
PanGraph results.

2. Results

We have decided to explore the possibilities for graph simplification on a pangenome constructed from
50 E. coli isolates associated with wastewater and livestock [6]. We assembled the genomes from a
combination of short and long-read data (see Methods for details) and used our own pipeline based on
GEESE software [5] to assemble a pangenome graph. The graph building procedure collapses similar
sequences at 95% identity to a single vertex (see Methods) which allows us to identify shared segments
between individuals, but at the same time also captures homologies within individual genomes.

The resulting graph in Figure 2A visualized with Bandage [7] has 4262 vertices and is clearly a
hairball. Note that input data contain E. coli chromosomes (shown in green) as well as plasmids (in
red). Many plasmid sequences are clearly separated from the chromosomes, but some of the plasmid
sequences share some vertices (such as insertion elements) with chromosomes.

For comparison, we have also constructed a similar pangenome graph with PanGraph [4], and it is
shown in Figure 2B. The PanGraph pangenome has a similar number of vertices (4337), but it is slightly
more collapsed compared to the GEESE graph, as the total length of the representative sequences of
PanGraph vertices is approx. 60% of the representative sequences in the GEESE graph. Regardless, the
PanGraph pangenome is also a hairball.

From the same data, we have also attempted to construct the pangenome with minigraph [3]. However,
minigraph algorithm starts from a single reference and then iteratively augments the resulting graph
with new sequences. In this process, it ignores large rearrangements (spanning regions over 100 Kbp in
length) and also does not consider any within-genome similarities. Consequently, the resulting graph
has a simpler structure, mostly consisting of a linear backbone with bubbles representing mid-size
structural variation and does not represent the full complexity of the pangenome.

We have developed a greedy heuristic which identifies and removes some of the vertices and edges
in the pangenome graph to address problems that were outlined in Figure 1 (see Methods). We have
applied this heuristic to the pangenome graph produced by GEESE and obtained the structure shown in
Figure 2C. The resulting simplified graph contains approx. 75% of the original vertices covering about
90% of the representative sequences from the original graph (Table 1). The graph shows a clear circular
structure (corresponding to the fact that E. coli has a single circular chromosome) and allows for quick
visual identification of common rearrangements and other structural variations. The hairball structure



(A) GEESE original (Bandage) (B) PanGraph original (Bandage)

(C) GEESE simplified (Bandage) (D) PanGraph simplified (Bandage)

(E) GEESE simplified (D3.js) (F) PanGraph simplified (D3.js)

Figure 2: Comparison of original and simplified pangenomic graphs built from 50 E. coli genome
assemblies. (A), (C), (E): Graphs constructed with GEESE. (B), (D), (F): Graphs constructed with PanGraph.

no longer obscures major pangenome features.
Bandage visualizes vertices of the pangenome as curved lines or boxes whose length is proportional to

the length of the sequences which are connected by very short edges. This approach has two limitations.
First, the visualization is mostly dominated by long sequences, hiding potentially interesting structural
variation that involves small and medium-sized segments. Second, the short edges between vertices
may sometimes not allow for enough freedom to construct a proper layout of some parts of the graph.



Table 1
Comparison of GEESE and PanGraph pangenome graphs before and after simplification. HI is the
hairball index describing the complexity of the graph (see Methods).

graph vertices edges total length HI

GEESE original 4262 6979 24.2 Mbp 4.8
GEESE simplified 3197 (75%) 4143 (59%) 21.5 Mbp (89%) 2.9
PanGraph original 4337 7195 14.3 Mbp 5.1
PanGraph simplified 1233 (28%) 1887 (26%) 3.6 Mbp (25%) 4.7

Therefore we have also explored alternative visualization where vertices are represented as simple
nodes connected by variable length edges. The layout of the graphs was produced by a force-directed
approach implemented in D3.js library (see Methods). Figure 2E shows the same simplified GEESE
pangenome graph. We used the color of the vertices and edges to represent the number of individual
genomes in which each vertex or edge is included (darker color means more individuals). The visualiza-
tion clearly shows a circular structure of the core E. coli pangenome in dark, with auxiliary parts of
the pangenome shown in lighter colors as bubbles or other connections that may represent large but
relatively rare rearrangements.

We have also used PanGraph “simplify” function on the PanGraph generated pangenome (Figures
2D,F). This resulted in a great reduction of visual complexity, however only 25% of the original sequences
were represented in this simplified graph (less than a single genome). Moreover, the graph still resembles
a hairball structure, without clear notion of a single circular chrosome which would be expected in a
graph illustrating E. coli genome organization.

3. Methods

3.1. Building a pangenome graph with GEESE

Both short and long sequencing reads of 50 E. coli isolates [6] were downloaded from NCBI and
assembled into near-complete genomes with unicycler [8]. For visualization purposes, all contigs longer
than 1 Mbp were labeled as “chromosome” and shorter circular contigs were labeled as “plasmids”. The
remaining contigs were labeled as “plasmids” if they mapped to the PLSDB database [9] on at least 80%
of their length and to the reference E. coli chromosome on less than 20% of their length.

The resulting genomes were used to build a pangenome graph as follows. First, last software [10] was
used to create all-to-all genome alignments; only alignments of length at least 100 with identity at least
95% were kept. These alignments were used to decompose the original contigs into non-overlapping
atomic segments by GEESE [5] so that no alignment boundary (a breakpoint) lies within the atoms. For
practical reasons, we only consider atoms of length 1000 or more. Due to this requirement, and also
because it is often impossible to determine precise alignment boundaries, certain parts of the original
sequence are not covered by atomic segments and are excluded from further analysis [11].

GEESE splits atoms into equivalence classes based on sequence similarity so that if two atoms
have sequence identity above 95%, they are in the same class. Each class forms a single vertex of the
pangenome graph and is assigned one of the member sequences as a representative. Each input contig
contains several non-overlapping atoms and thus can be seen as a sequence of class identifiers. Two
nodes of the graph (atom classes) are connected by an edge if they are consecutive in at least one of the
contigs.

This procedure resulted in a pangenome with 4262 vertices and 6979 sequences, with vertices
representing 24.2 Mbp of genome sequences in total. For comparison, the length of a single E. coli
genome in our set ranges between 4.5 and 5.3 Mbp, and the total length of the whole data set is 253.7
Mbp.



3.2. Simplifying the pangenome graph

The pangenome graph is represented by its vertices and a set of walks through these vertices corre-
sponding to input contigs. The edges of the graph are simply a union of edges of all walks. Each vertex
𝑣 is also characterized by the length of its representative sequence ℓ𝑣 . The depth 𝑑𝑣 of a vertex 𝑣 is the
number of walks that include the vertex. The context of a vertex on a walk is a triple that includes the
vertex, its predecessor, and its successor on that walk. Thus each vertex can occur in multiple contexts.
We define the context-width 𝑤𝑣 of vertex 𝑣 as the number of unique contexts in which it occurs on all
walks. Note that typically 𝑑𝑣 > 𝑤𝑣 , since the vertex likely occurs in the context of the same predecessor
and successor on multiple walks. Finally, we call a vertex duplicated, if it occurs in some walk at least
twice.

The basic simplifying operation is remove-and-reconnect, where some vertex 𝑣 is removed from the
graph and from all of the walks. To keep each walk contiguous, the predecessor of vertex 𝑣 on the walk
is reconnected with the successor of vertex 𝑣 on the walk.

The algorithm for simplifying the pangenome graph is a heuristic consisting of two steps.

1. Basic iterative filtering. The goal of the basic iterative filtering is to reduce the number of
vertices that clearly contribute to hairball effects in the graph. We remove-and-reconnect vertices
that have length ℓ𝑣 < 𝐿, depth 𝑑𝑣 < 𝐷, degree 𝑤𝑣 > 𝑊 , and we also remove-and-reconnect
duplicated vertices. After this step, we recompute the depth and degree of the remaining vertices
and iterate at most 𝑇 times. Here, 𝐿 (minimum length), 𝐷 (minimum depth), 𝑊 (maximum
context-width), and 𝑇 (the number of iterations) are user-specified parameters.

2. Complex bubble filtering. We search for complex compact bubbles by considering pairs of
vertices (𝑣𝑠, 𝑣𝑡) which are on some walk at most 𝑋 vertices apart. If the out-degree of vertex
𝑣𝑠 and in-degree of vertex 𝑣𝑡 are both greater than ∆, we consider the pair of vertices (𝑣𝑠, 𝑣𝑡) a
boundary of a complex compact bubble. Values 𝑋 and ∆ are user-specified parameters.
Our goal is to simplify complex compact bubbles by removing less frequent contexts of vertices
belonging to the bubble. In particular, for a pair of vertices (𝑣𝑠, 𝑣𝑡) that form a boundary of a
complex compact bubble, we collect all subwalks where 𝑣𝑠 and 𝑣𝑡 are at a distance less than 𝑋 ;
vertices on these subwalks will be part of the bubble. Vertex 𝑣 can occur on these subwalks in
multiple contexts. For each vertex 𝑣 that is part of the bubble, we keep only its most frequent
context; for all walks where the vertex 𝑣 occurs in other contexts, we remove it from the walk
and reconnect its predecessor and successor.

3.3. Hairball index

The graph filtering heuristic introduced in the previous section contains a number of user-specified
parameters that control its behaviour and affect the result. To avoid manual fine-tuning and visual
comparisons of many graphs, we have created an indicator called hairball index (HI) that measures a
structural complexity of a filtered graph with respect to the original graph. In our experiments, the HI
was used to explore the grid of the parameters to find combinations that produce graphs that can be
visualized well.

The HI is a linear combination of multiple components:

HI = 0.5𝐸/𝑉 + 0.25(1−𝑄) + 0.1𝐸𝐶/𝐸𝐶0+
0.1(𝑉0 − 𝑉 )/𝑉0 + 0.1(𝐸0 − 𝐸)/𝐸0+
0.05(𝐿0 − 𝐿)/𝐿0

Here, 𝐸 is the number of edges, 𝑉 is the number of vertices, 𝐸𝐶 is the average length of the shortest
path between pairs of vertices, and 𝐿 is the total length of all sequences represented in the graph.
The variables with subscript 0 represent the same indicators in the original graph. Indicator 𝑄 is a
modularity coefficient with values between 0 and 1, measuring whether the graph can be split into
densely connected communities that are themselves only loosely connected [12]. Low values indicate



(A) original graph, HI=4.78 (B) HI=3.28 (C) HI=2.95

Figure 3: Connection between hairball index (HI) and visual complexity of a pangenome graph. Graphs (B) and
(C) are different simplifications of graph (A).

dense graphs, while higher values mean graphs that are more modular. We computed the modularity
coefficient using implementation in the NetworkX library with greedy split to communities (function
greedy_modularity_communities).

The first three terms measure the properties that lead to graphs that can be visualized well. High
values indicate graphs that likely contain a global hairball. The remaining terms indicate how much of
the information was removed from the graph and introduce balance between visual complexity of the
graph and the amount of information that it represents. Figure 3 demonstrates the connection between
values of HI and the visual complexity of graphs.

3.4. Visualization of pangenome graphs

The standard accepted tool for visualization of pangenome graphs is Bandage [7]. Bandage represents
vertices of the graph as large curved boxes or thick lines whose lengths are proportional to the length
of the sequence represented. The layout of the graph is created by a fast force-directed approach as
implemented in the OGDF library [13, 14].

While the Bandage approach to displaying vertices leads to graphs where the amount of dedicated
space is proportional to the length of the sequence it represents, it has a disadvantage that it visually
diminishes importance of locally highly connected regions and structural variation. The drawing is
typically dominated by long stretches of sequence where no interesting rearrangements happen, while
regions such as recombination hotspots and other densely connected regions are collapsed into large
hairballs that are difficult to see and analyze.

Thus we also experimented with other representations that use more traditional graph visualization
approach, where graph vertices are represented as small nodes and are connected by (potentially long)
edges. We used a force-directed layout implemented in D3.js [15]. The library allows the user to
tune parameters interactively, possibly helping to reveal certain features of the graph, such as circular
structure of the core genome as shown in Figure 2E.

3.5. Building and simplifying pangenome graphs with PanGraph

PanGraph [4] pangenome graphs were created from the same data set as in Section 3.1, by following
the steps recommended in PanGraph documentation, keeping default parameters. PanGraph approach
to graph construction is different from GEESE. While GESSE optimizes segmentation of sequences into
atoms based on a global requirement of producing a set that is invariant to transitive closure, PanGraph
employs a progressive alignment strategy with splitting nodes where possible rearrangements are
detected. PanGraph also includes simplify command which we used to simplify its output graph as
displayed in Figure 2D,F. The output GFA files were visualized both by Bandage and by D3.js.



4. Conclusion

This paper presents a work in progress on visualization of pangenome graphs. A typical pangenome
contains vertices that represent sequences that occur in different individual genomes in different
contexts. This leads to graph visualizations that contain dense hairballs and beacause of that, it is
difficult to perceive any other high-level features of the pangenome organization. Our proposed method
removes some of the vertices and the edges from the pangenome graph. On a set of 50 Escherichia coli
isolates, we have demonstrated that our technique leads to a visualization showing distinct features of
the pangenome organization, while preserving approx. 90% of the represented sequences.

Our work opens several interesting avenues to further research. First of all, we have only demonstrated
our approach an a single pangenome graph constructed from 50 individual bacterial genomes. Natural
extension would be to look at pangenomes of a variety of bacterial species, pangenomes constructed
from hundreds or thousands of isolates, and at pangenomes of more complex organisms, such as humans
or plants. When applying our approach to larger genomes, scalability issues need to be explored and
resolved.

Our proposed method is a simple heuristic. It would be interesting to formulate the problem of
simplifying pangenome graphs as a well-stated optimization problem and pursue exact algorithms for
finding optimal pangenome simplifications. In this paper, we have proposed two operations: removal of
a vertex with path reconnection, or bypassing a vertex on certain paths. Another interesting operation
is to split a vertex into multiple vertices, each being used in different contexts. In this way, only
information about homology of certain segments would be removed, but the sequences themselves
would still be represented.

We have demonstrated on examples that hairball index introduced in this paper characterizes the
visual complexity of the pangenome graph. It may be of interest to determine whether any specific
threshold values imply consistently improved visualization or whether the index can be used systemati-
cally to determine threshold values in heuristic steps of pangenome simplification algorithms.

Finally, we did not study the sequences that were removed from the pangenome. It is clear that
transposable elements, phages, and other mobile elements will be represented, however more de-
tailed analysis may point out other interesting functional classes, which may differ between different
organisms.
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