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Abstract
We present bafiq, a command-line rust tool for repeated filtering and counting of sequencing reads stored in
the BAM file format. This software can be easily incorporated into NGS computational workflows, especially
in situations where one needs to repeatedly process mapped reads in large files based on their FLAG values.
Commands in bafiq follow query language familiar from samtools and similar software where, however, indexing is
only based on the location of reads in a reference genome. Our tool allows significant computational time savings
in situations where a single BAM file is queried repeatedly based on different FLAG combinations, leveraging a
flag-based index. We made an effort to match or outperform the commonly used samtools in sequence extraction
tasks as well as in sequence counting tasks.
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1. Introduction

Although long-read sequencing has been gaining traction steadily, short reads are still the most prevalent
driver of today’s NGS pipelines as a standard tool in biomedical research and clinical practice. Established
and time-tested procedures and workflows now exist for every analysis imaginable. A wet-lab library
preparation and sequencing phase is generally followed by computational analysis of the data. After
pre-processing the raw sequencing reads, many such workflows initiate their computational phase
by immediately comparing the reads to reference genomes, a step known as read mapping [1]. The
standard data formats for storing the mapped (or aligned) reads are SAM/BAM [2], and the more recent
CRAM [3] file formats.
The main goal of read mapping is to identify the regions of the reference genomes from which the

analyzed sequencing reads may have originated. The process, however, is subject to possible errors
that are then reflected in the contents of the alignment files (SAM/BAM/CRAM). Some reads may not
be mapped to the reference at all, some may only map partially, some may map to multiple locations[4].
Depending on the sequencing technology, a small percentage of reads also contain errors [5], further
complicating the picture. Computational tools designed to operate on the alignment files therefore not
only prepare and convert the data for the next workflow processing step (e.g. tabulation of variants and
their statistical analysis) but also tweak and filter their content so as to only work with an appropriate
subset of sequencing reads in any given downstream analysis.
Tools that have become popular in this area are sometimes called BAM processors. They often

convert and filter the BAM files before printing out selected subsets. In addition to the canonical
software samtools based on the htslib library [2], equivalents have been made for other environments by
wrapping these in Java [6], Python [7], or R [8]. Other BAM processors include Picard [9], samblaster
[10], biobambam [11], and Scramble [12]. They often focus on extra flexibility, as is the case of samql
([13]), or speed which was the priority of sambamba [14]. The flexibility of samql comes in the form of
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an SQL-like language for querying BAM files. The speed improvements are mostly based on parallel
execution and code optimizations.
A well-known speed-centered addition to BAM/CRAM files is an index based on their coordinate-

based sorting. This functionality made its way into samtools and many other BAM processors as well.
The index divides the mapped and sorted reads in a BAM file into bins, which are then referenced in
the index for fast data retrieval from a given range. Genome browsers such as IGV [15] rely on this
mechanism to modify visualized browser content quickly even when working on very large BAM files.

In our work with BAM files we often needed to process them in various ways that, unlike the example
above, depended on other components of the read data, not the coordinates. BAM format allows for
reads to be marked using FLAGs and TAGs. For example, we may want to eliminate read pairs that do
not map concordantly, or reads where their mate in the pair did not map. Or, we may want to only
work with reads mapping with a certain minimum mapping quality (MAPQ value). While existing tools
offer arguments to select specific flags or tags, these operations do not take advantage of indexing, as
if the queries and filtering operations were not supposed to be done more than once within a given
workflow. We noticed that this is not always the case. One may want to count certain types of reads in
the alignment files, repeat the counting procedure for different settings of a variable, then filter the file
for only a subset of reads to create a ”cleaned” version for further work. Also in certain educational
settings, an instructor may require students to query the same BAM file as part of a structured exercise.
To support higher speeds in these scenarios without compromising on the real-world data volume,

we propose to create a new type of index file that can be stored along with the original alignment file,
similarly to the coordinate-based (.bai) index that can be made using samtools. The bafiq tool described
here is a command-line program written in rust that takes a BAM file as an input along with a number
of filtering arguments. It then either counts or extracts the reads in SAM format that pass the query
criteria. When queried, bafiq first looks for an existing flag index (.bfi) of the input file. If it does not
exist, it is created upon first query. Any subsequent calls to bafiq on the same input BAM file will take
advantage of the index and return results faster. Counts are returned immediately as they are part of
the index, sequence retrieval based on the query follows standard I/O limitations with the added benefit
of the index allowing selective compressed blocks skipping.

2. BAM Flag Index (.bfi)

2.1. Read counts

The SAM format [2] defines a set of 16 binary FLAG values forming the total space of all FLAG
combinations stored as 16-bit integers, or 216 = 65,536. However not all flags are used, bits 12-15 are
reserved, therefore the more realistic boundary is much smaller: 212 = 4,096. Furthermore many of the
flag combinations do not make biological sense. For example a single read cannot be first in pair and
second in pair at the same time. Thus in a typical human NGS BAM file we observe up to 100 of flag
combinations actually used out of which just 4 represent over 90% (Table 1).

Leveraging this observation makes pre-computing of all the flag combinations and the number of the
corresponding reads upfront and embedding that into the .bfi index feasible. This way all count queries
are resolved immediately as bafiq retrieves that count directly from the index. That also means the
very first bafiq count query time is almost exclusively spent by building the index.

2.2. Read sequences

Learning the sequence number of given flag combinations in a BAM file is useful in itself however the
downstream analysis often also requires the sequence extraction. For that reason the .bfi index stores
the gzip file byte offsets of the blocks which contain at least one sequence of the given flag combination.
This allows for faster extraction of the actual sequences due to skipping of entire blocks during the
retrieval process without processing the whole file start to finish.



Flags Flag names Count Percentage
0x053 paired, mapped, read rev. strand, first in pair 16,607,130 24.04%

0x0a3 paired, mapped, mate rev. strand, second in pair 16,607,130 24.04%

0x063 paired, mapped, mate rev. strand, first in pair 16,502,892 23.88%

0x093 paired, mapped, read rev. strand, second in pair 16,502,892 23.88%

0x4a3 paired, mapped, mate rev. strand, second in pair, PCR/optical dup. 358,112 0.52%

0x453 paired, mapped, read rev. strand, first in pair, PCR/optical dup. 358,112 0.52%

0x493 paired, mapped, read rev. strand, second in pair, PCR/optical dup. 316,126 0.46%

0x463 paired, mapped, mate rev. strand, first in pair, PCR/optical dup. 316,126 0.46%

0x051 paired, read rev. strand, first in pair 258,982 0.37%

0x0a1 paired, mate rev. strand, second in pair 257,880 0.37%

Table 1
Top 10 most frequent flag combinations of chr1 sequence in a BAM file produced by NGS. The source chr1 BAM
file was obtained from the The 1000 Genomes Project’s high coverage WGS effort[16]. Statistics were obtained
using bafiq’s index viewer (Section 6.1)

2.3. Index Compression

The BAM file is compressed using gzip which stores sequences in blocks. For reference a BAM
file containing human chromosome 1 sequences obtained from a WGS (whole-genome sequencing)
experiment of 30x read depth (common scenario) contains close to 70M sequences. A typical BAM
block contains 180 sequences on average (see Section 6.1). That is roughly 380,000 blocks potentially
(worst-case scenario) distributed among the flag combinations. The lists of blocks containing sequences
of given flag combinations are referred to as bins. As each block can host sequences with different flag
combinations it can be part of multiple bins. As a result the total number of block offsets stored across
all bins can grow quickly. Therefore we have briefly explored possible means of compression of the
index itself to keep the size reasonable ideally without compromising bafiq’s speed.

2.3.1. Bin Sparsity

As established earlier the list of bins is quite sparse (100 out of 4,096). Stripping empty bins is thus the
first obvious step. That in itself however does not provide large enough space-saving benefit so we
explored further.

2.3.2. Delta Encoding

Each bin contains an ordered sequence of byte offsets which are growing in nature. Thus storing the
offsets as deltas from the first saves a lot of space and is trivial to decode at runtime.

2.3.3. Compression Gains

For the referenced example of chromosome 1 the .bfi index compression gains amount to ∼30% using
just the 2 methods:

Original size: 6,496,336 bytes (6.2 MB)
Compressed size: 4,471,326 bytes (4.3 MB)
Compression ratio: 1.45x
Space saved: 31.2%

If we break it down by technique the ratio is as expected:

Bin Sparsity: 129,280 bytes saved ( 6.0%)
Delta encoding: 2,025,458 bytes saved (94.0%)



2.3.4. Dictionary Compression

We have also explored the dictionary compression which would replace repeated offset subsequences
in the index with a literal to be expanded upon decompression. However the initial implementation did
not scale well (𝒪(𝑛2) in complexity) and was not the primary focus so we have decided not to include it.
It might be a subject of future optimizations should the index size becomes an issue.

3. Index Building Strategies

Since our main goal was to enable speedy exploratory analysis using flags we have explored and
compared multiple strategies (Table 2).1 of reading the input BAM file and building the index.

The index build process boils down to (1) read, (2) decompress, (3) index and optionally (4) compress.
Each of the steps can be solved sequentially, in parallelized fashion or some combination of the two
with various benefits and tradeoffs. Considering our goals we have decided to implement following 3
strategies: Channel Producer-Consumer (CPC) (utilizing crossbeam-channels[17]),Work Stealing (WS)
(utilizing rayon[18]) and Constant Memory (CM). The first two (CPC and WS) leveraging memory
mapping and different types of parallelization orchestration with potentially large memory requirements
in favor of speed. The third one is more memory conservative keeping an all-times low profile of
mere 100MB. It does not memory-map the whole input file rather streams it by chunks and drains the
processed ones from the memory as fast as possible.
The Work Stealing strategy leverages ryon[18] crate implementation of a parallel computation

scheduling concept dating back to 1999 from the Cilk runtime[19]. The core idea is as worker threads
becoming available to take new tasks they ”steal” tasks from queue of other busy worker threads. This
requires less synchronization then a central channel contention used by the Channel Producer-Consumer
strategy.

3.1. Discovery Phase

The first computational challenge is the fast gzip block discovery in the BAM file with respect to the
underlying OS I/O limitations. Two approaches were explored: (1) Discover-All-First and (2) Streaming.
TheDiscover-All-First approach uses single thread to read thewhole file (mapped intomemory) organized
into gzip blocks for downstream processing. While the Streaming approach is feeding the downstream
gzip block processors continuously as they are being discovered.

By nature of the memory mapping (leveraging memmap2[20] crate) bafiq eventually loads the whole
input file into memory. As that could cause pressure in low-memory environments (although not
completely, the memory recovers as needed over time) the Constant Memory strategy streams the input
from the disk and uses capped buffer so that the memory usage stays linear in respect to the input size.

3.2. Decompression Phase

The next phase takes in discovered gzip blocks and decompresses them in memory for the downstream
BAM records processing. Here the challenge is how to efficiently utilize existing decompression libraries
(as the decompression itself is outside of the scope of this work).

We are leveraging libdeflater[21] crate for fast decompression with all 3 strategies using thread local
buffer to process.

3.3. Flags Extraction Phase

In this phase the just decompressed block becomes addressable for the contents. With the simple
operation of reading just the flag bit we opted-out of using the htslib-rust[22] crate to avoid unnecessary

1As the naïve single-core non-parallel strategy scanning the BAM file start to finish was under-performing even on the
smallest test file (1.3GB, over 1m 30s) we have decided not to include it in further performance exploration.



Table 2
Comparison of Index Building Strategies

Dimension Channel Producer-
Consumer

Work Stealing Constant Memory

Perf. @ 10t, 1.3GB BAM 1.998 s 1.056 s 4.561s
Memory Usage 1.3GB 1.3GB 100MB
Coordination Crossbeam channels None Sequential chunks
Processing Model Producer-consumer Batch work-stealing Micro-batch streaming
File Access Memory-mapped Memory-mapped Streaming file I/O
Block Discovery Streaming Discover-all-first Streaming
Merge Strategy Parallel tree Parallel tree Immediate persistence

abstraction (however we’re leveraging it for writing SAM format output later in the sequence extraction
task).

3.4. Index Assembly Phase

Both WS and CPC strategies build up local indices within scoped threads and merge at the end of
decompression and extraction phases. The CM uses the same merge-tree algorithm although merges to
the main index after every micro-batch is processed to minimize memory impact.

4. Querying

To define flag combination for querying the BAM sequences we opted for samtools specification using
-f (required flags) and -F (forbidden flags) to keep familiarity.
As the SAM[2] specification defines following flags (bits) can be combined to query for sequences:

Bit Hex Read Flag

1 0x1 Paired read
2 0x2 Properly paired
4 0x4 Read unmapped
8 0x8 Mate unmapped
16 0x10 Read is reverse complemented
32 0x20 Mate is reverse complemented
64 0x40 First read in pair
128 0x80 Second read in pair
256 0x100 Secondary alignment
512 0x200 Fails quality checks
1024 0x400 PCR or optical duplicate
2048 0x800 Supplementary alignment

5. Benchmarking

We have measured the CPU and memory utilization as well as overall time to finish a task of all 3
selected bafiq strategies alongside samtools as a reference. As bafiq’s advantage comes primarily after
the index is built we also added our version of quick counting and filtering (bafiq fast-count) more
resembling to what samtools view -c does to demonstrate the underlying performance.
Apart from the actual index building we bench-marked the sequence retrievals using the .bfi index.



Two short-read BAM files originating from a typical NGS WGS 30x pipeline were selected for
benchmarking - chr22 (1.3GB) and chr1 (8.2GB) aligned to hg38 reference. As many of bafiq features
build on parallelized processing all benchmarking runs had explicit –threads setting aligned with
samtools for fair comparison.

All benchmark runs were performed either to produce or consume uncompressed indices as the final
index size was not an issue (∼0.5% of the input file).

5.1. Bench 1: first query (bafiq index)

As seen in the index building benchmarks (Table 3) the best performing strategy was Work Stealing
with its index building time close to samtools view -c across the different number of threads available,
even slightly faster when both constrained to 2 threads. As the subsequent query for sequence count
is fetched pre-computed from the index and resolve under 20ms we consider the index building a
time-equivalent task to bafiq index + bafiq query.
We can clearly see that the cost of channel management overhead and work organization required

by Channel Producer-Consumer strategy is very costly especially with limited threads but becomes less
significant as the number of available threads grows.
Due to the memory-mapping feature both CPC and WS strategies can exhaust memory up to the

original BAMfile size which is not pracical for full-genome alignments. Because of that we have included
more memory-conservative strategy (Constant Memory (CM)) which, although not as performant as
WS, keeps a constant memory footprint (∼100 MB) independent of the input file size.

5.2. Bench 2: sequence extraction (bafiq view)

The sequence retrieval (Table 4) of bafiq view leverages stored gzip block byte offsets (indexed for each
of the flag combination) so that reading from the original BAM file does not depend on a pre-scanning
step anymore and can limit its read to focused blocks. As each block stores 180 sequences on average
traversing it is relatively cheap operation.
Where .bfi index performs quite well are use-cases of retrieving rare flag combinations relative to

the bulk of records (chr22 0x4 ∼3,922). However its utility as a performance helper decreases with the
abundance of matching reads (as seen in chr22 0x2 and 0x10 flags).
Despite that observed performance decrease in most measured scenarios the index-based retrieval

was still faster than without it.

6. Supplementary Tools

6.1. Index Viewer (bafiq-viewer)

As the .bfi index file is stored in a binary form to save space we have developed a tool to quickly glance
over the contents including basic index statistics. For example a .bfi index of chromosome 1 can look as
follows:

Total records: 69095506
Total bins: 56
Non-empty bins: 56
Total blocks: 379169
Reads per block: min=35, max=310, avg=182.2

7. Discussion

We have shown that an exploratory analysis of aligned reads based on FLAG combinations can vastly
benefit from a dedicated index to obtain sequence counts (from s to ms) and for sequence retrieval



Table 3
Bench 1: Index Building Task, chr22 (1.3GB)

Strat. T Time (s) Pk RAM Pk/Avg CPU

CM 2 10.778 0GB 163% / 148%
CPC 2 34.456 1.3GB 242% / 200%
WS 2 3.113 1.3GB 196% / 188%
BFC 2 2.696 1.2GB 250% / 210%
S 2 6.536 0GB 143% / 136%

CM 4 7.356 0GB 250% / 225%
CPC 4 9.538 1.3GB 442% / 397%
WS 4 1.950 1.3GB 379% / 321%
BFC 4 1.495 1.2GB 466% / 423%
S 4 1.985 0GB 395% / 391%

CM 6 6.670 0GB 314% / 288%
CPC 6 4.600 1.3GB 677% / 610%
WS 6 1.634 1.3GB 555% / 439%
BFC 6 1.056 1.2GB 683% / 533%
S 6 1.340 0GB 650% / 624%

CM 10 7.226 0GB 369% / 346%
CPC 10 2.122 1.3GB 1060% / 943%
WS 10 1.195 1.3GB 865% / 630%
BFC 10 0.611 1.2GB 1127% / 1074%
S 10 0.927 0GB 1003% / 968%

CM 24 7.276 0GB 458% / 430%
CPC 24 0.970 1.3GB 2424% / 1741%
WS 24 0.854 1.3GB 1750% / 1463%
BFC 24 0.413 1.2GB 2469% / 2469%
S 24 0.912 0GB 1059% / 1026%

Table 4
Bench 2: Sequence Extraction Task

File Flag Tool T Time (s) Records

chr22 0x4

SV 2 5.787 3,922
BV 2 0.307 3,922
SV 24 1.206 3,922
BV 24 0.171 3,922

chr22 0x10

SV 2 7.763 5,364,679
BV 2 7.954 5,364,679
SV 24 2.139 5,364,679
BV 24 3.931 5,364,679

chr22 0x2

SV 2 10.046 10,544,216
BV 2 10.912 10,544,216
SV 24 6.094 10,544,216
BV 24 8.909 10,544,216

chr1 0x4

SV 2 33.986 13,028
BV 2 1.187 13,028
SV 24 5.353 13,028
BV 24 0.466 13,028

chr1 0x10

SV 2 319.660 34,551,825
BV 2 161.876 34,551,825
SV 24 191.471 34,551,825
BV 24 164.540 34,551,825

chr1 0x2

SV 2 358.796 67,657,186
BV 2 232.801 67,657,186
SV 24 351.908 67,657,186
BV 24 287.492 67,657,186

Table 3: CM = constant-memory, CPC = channel-producer-consumer, WS = work-stealing, BFC = bafiq-fast-count*,
S = samtools, T = number of threads, Pk/Avg = peak/average; Table 4: SV = samtools view, BV = bafiq view

scenario where the flag combination matches smaller subset. However in some cases where the flag
combination matches large proportion of sequences of the BAM file the benefits of stored offsets in
current implementation diminish.
Nevertheless the code base and insights from individual presented strategies can serve as a demon-

strator of utility of building narrowly focused indices. The present FLAG index scope could be also
extended to include other fields from the header (such as TAG or MAPQ).

8. Declaration on Generative AI

During the preparation of this work, the authors used Claude Sonnet 4 in order to: Assist in implementing
parts of the rust code base. After using the tool, the authors reviewed and edited the content as needed
and take full responsibility for the code content.
The authors have not employed any Generative AI tools for the publication content.
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A. Online Resources

The source code for the bafiq tool is available via GitHub (https://github.com/honzakotrs/bafiq).

https://github.com/honzakotrs/bafiq
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