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Abstract

Security incidents involving unauthorized access and data leakage remain one of the most critical challenges in
modern cybersecurity, demanding transparent and interpretable methods for behavioral analysis. This paper
presents an application of Formal concept analysis and association rule mining to the NIST Data Leakage
Case EVT dataset, which simulates a security incident involving potential data exfiltration. Our objective is to
uncover and interpret logical dependencies among binary audit attributes and time-based features extracted from
system event logs. Using Formal concept analysis, we construct a concept lattice that visualizes the hierarchical
structure of attribute co-occurrences and reveals frequent as well as rare behavioral patterns. From the underlying
formal context, we derive a canonical base of attribute implications with 100% confidence and extend this with
approximate association rules to capture near-deterministic relationships. The results highlight both typical
access configurations and anomalous combinations involving weekend and night-time activity. Our findings
demonstrate that Formal concept analysis provides a transparent and systematic framework for reasoning over
event data, offering interpretable support for anomaly detection and forensic analysis in cybersecurity contexts.
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1. Introduction

Insider threats, particularly those involving intentional data exfiltration by trusted employees, represent
a persistent and complex challenge for cybersecurity systems. Traditional signature-based detection
methods often fail to identify subtle behavioral patterns that precede such incidents. To address this gap,
high-quality, realistic datasets are crucial for developing and evaluating behavioral and anomaly-based
detection models. Behavioral modeling approaches, such as those based on access logs, user activity
profiling, and context-aware policies have been proposed as more effective strategies for identifying
insider misuse [1, 2, 3]. Based on this dataset, a specific dataset [4] suitable for various machine learning
and data analysis methods was created. This dataset is also applicable in the area of formal concept
analysis. A more detailed description of the dataset is provided in Section 3.

However, progress in this area strongly depends on the availability of comprehensive and semantically
rich datasets that simulate real-world security contexts. The NIST Data Leakage Test Case is a publicly
available dataset designed by the National Institute of Standards and Technology to support research in
the detection of insider threats and unauthorized data exfiltration. It simulates user behavior within
a fictional organization, incorporating realistic event logs, file access traces, and security-relevant
metadata that culminate in a staged data leakage scenario. The dataset was created to evaluate behavioral
detection methods, policy enforcement mechanisms, and forensic analysis tools in cybersecurity [5].

Formal concept analysis is a set of mathematical methods grounded in lattice theory and propositional
logic, designed to identify and analyze relationships within structured data. As an unsupervised bi-
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clustering approach, Formal concept analysis simultaneously groups both objects and their attributes,
forming formal concepts, i.e., pairs consisting of a set of objects (extent) and a set of shared attributes
(intent). These concepts are organized into a hierarchical structure called a concept lattice, which
reveals inherent patterns, dependencies, and generalization-specialization relationships within the
dataset [6, 7].

Formal concept analysis provides a robust framework for exploratory data analysis, knowledge
discovery, and fuzzy extensions, particularly in domains where the interpretation of attribute co-
occurrence is essential. By uncovering hidden regularities and highlighting meaningful associations,
Formal concept analysis supports informed decision-making and deepens the understanding of complex
relational structures [8, 9, 10, 11].

The remainder of this paper is organized as follows. After the introduction, we present the related
research and papers in Section 2. Section 3 introduces the dataset and outlines the preprocessing steps
applied. In Section 4, we describe the proposed methodology, which integrates Formal concept analysis
and the extraction of attribute dependencies. Section 5 presents the experimental results along with
their interpretation and discussion.

2. Related works

In this paper, we focus on the use of Formal concept analysis for solving cybersecurity incidents and
conducting digital forensic analysis. In this sense, the paper complements the papers [12, 13]. In the
paper [12], the authors focus on analysing meaningful groups of digital objects based on common
attributes and visualising the hierarchy of concepts. They describe the formal context derived from
digital traces collected from NTFS file system and present several concept lattices enriched with
association rules. Their research is further expanded in the paper [13], where the authors generate four
concept lattices for different subsets of attributes (timestamps, file types, etc.) and compare several
association rule mining methods, while also interpreting fuzzy implications in the context of Formal
Concept Analysis. Digital forensic analysis of cybersecurity incidents involving social engineering is
also addressed in the paper [14].

Cybersecurity represents a broad area of different topics, as reflected in the related work. Formal
Concept Analysis can serve as a handy tool for detecting and retrieving various criminal activities
committed in cyberspace. In the paper [15], the authors develop an explicitly defined and conceptual
system for analysing e-fraud data in cyberspace.

The use of Formal concept analysis for malware analysis is also of interest. In the paper [16], the
authors propose F-FCA (Feature-driven Formal concept analysis), in which each object and concept
is associated with a temporal logic formula. They also introduce the FOCA algorithm to generate the
concept hierarchy using an object-joining operator. Experiments on a real dataset of 3,000 malware
samples demonstrate the effectiveness of the proposed approach compared to traditional Formal concept
analysis. Malware analysis using Formal concept analysis is also discussed in the paper [17], where the
authors argue that creating a standard naming convention and hierarchy for malware is important to
improve collaboration and information sharing in this field.

Security governance is an important part of cybersecurity, and examples of the use of FCA can also
be found in this area. In the paper [18], the authors present a systematic synthesis of the General
Data Protection Regulation (GDPR) using Formal concept analysis. Based on its principles, the GDPR
is synthesised into a concept lattice containing 144.372 records. This can be used, for example, to
identify implicit logical relations within the regulation and their intensity. These results can support
(re)design, development, operation, or refactoring of information systems towards a higher level of
GDPR compliance. Threat and threat-agent analysis is also part of cybersecurity management. In the
paper [19], Formal concept analysis was used to uncover deeper relationships in the MITRE taxonomic
framework. The results of the exploratory analysis were then encoded into an ontology using the OWL
language, allowing logical reasoning over the relationships between cyber techniques and procedures.

Finally, asset protection and the implementation of security measures are also part of cybersecurity.



In this respect, the paper [20] proposes a new heuristic approach based on Formal concept analysis for
improving the security and privacy protection of sensitive e-Health information through item-hiding
techniques. The proposed FACHS method minimises side effects and distortion of the original database
while not requiring preliminary frequent itemset mining.

The above shows that Formal concept analysis represents one of the possible approaches to solving
various cybersecurity problems. The research presented in this paper builds on the work reported in
the papers [12, 13]. In contrast to those papers, the present work focuses on a different type of forensic
artefacts. In addition, the presented research also focuses on temporal data, as also explored in the

paper [16].

3. Dataset and its preprocessing

The NIST Data Leakage Case [5] offers a unique resource for researchers and practitioners in this area.
Published by the National Institute of Standards and Technology (NIST) as part of its Data Exfiltration
Test Cases, the dataset simulates user behavior in a fictional organization where a data leakage incident
gradually unfolds. It includes detailed Windows event logs, file system activity, access records, and
metadata annotations. The NIST Data Leakage Case EVT dataset [4] created from captures both normal
and malicious activity, making it suitable for supervised and unsupervised machine learning, as well as
exploratory data analysis.

This dataset enables the study of temporal patterns, user behavior profiling, privilege escalation, and
unauthorized access attempts. Its structure supports tasks such as clustering, anomaly detection, and
association rule mining, particularly using its rich set of binary audit attributes and event metadata.

To investigate behavioral patterns and detect potential anomalies in system activity, we selected a
set of binary attributes from the NIST Data Leakage Case EVT dataset. From the full event log, we
extracted nine binary features representing audit categories and log metadata (Table 1). These were
complemented by two newly engineered time-based features.

Table 1
Selected binary attributes from the EVT dataset
Attribute Description
audit_account_management Indicates events related to account management operations, such as user
creation, deletion, or password changes.
audit_logon_logoff Captures user logon and logoff events, both interactive and remote.
audit_policy_change Marks changes in system security policies, e.g., audit settings or access
controls.
audit_system Signals general system-level events such as startup, shutdown, or driver
loading.
keywords_audit_failure Indicates that the logged event corresponds to a failed audit condition
(e.g., failed login).
keywords_audit_success Represents events that were successfully audited, such as successful au-

thentication.
keywords_correlation_hint Used for correlating related events across subsystems or processes.
keywords_event_log_classic ldentifies traditional (legacy format) Windows event log entries.
keywords_sqgm Refers to Software Quality Metrics events related to system telemetry.

In addition to these system-generated binary indicators, two custom binary time-based attributes
were created:

« is_night_activity: equals 1 if the event occurred between 00:00 and 05:59 UTC (nighttime
hours), and 0 otherwise;

« is_weekend: equals 1 if the event occurred on a Saturday or Sunday, and 0 otherwise.



The final dataset used for analysis consists of 10,306 rows and 11 binary columns, forming a structured
event-log matrix suitable for unsupervised learning techniques such as bi-clustering and the extraction
of attribute implications, which we describe in the following section. For a more detailed description of
the dataset creation process and attribute specification, see the paper [4].

4. Methodology

In this section, we introduce the basic notions of Formal concept analysis, a mathematical framework
for extracting and representing conceptual structures in data. Formal concept analysis is appropriate
for analyzing binary relations between objects and their attributes, which aligns with the structure of
our dataset. The fundamental building block of Formal concept analysis is the formal context, which
encodes the presence or absence of relationships between elements [6, 7]. We begin with the following
formal definition:

Definition 1. Let B and A be non-empty sets representing, respectively, a collection of objects and
attributes, and let I C B X A be a crisp binary relation indicating which objects are associated with which
attributes. The triple (B, A, I) is termed a formal context. The relation I is referred to as the incidence
relation, capturing the presence of attributes in objects.

X

C X

Figure 1: lllustrative example of a formal context comprising three objects and three attributes.

We may interpret a formal context as a binary incidence table, where each entry indicates whether
a given object possesses a particular attribute. To formally capture the structure embedded in such
a context, we now introduce two dual operators that act on subsets of objects and attributes. These
operators serve as the foundation for constructing formal concepts.

Figure 2: lllustrative example of the concept-forming operators derived from the formal context

Definition 2. Let (B, A, I) be a formal context, and let X € P(B),Y & P(A) denote subsets of the sets
of objects and attributes, respectively. We define two mappings:

J:P(B) = PA), X ={ycA|vVzeX, (xy) e},

/:PA) = PB), Y ={zeB|VWeY, (z,y) eI}

These mappings are referred to as the concept-forming operators of the formal context (B, A, I). The
operator /* yields the set of all attributes common to a given set of objects, while ,/ returns the set of all
objects that share a given set of attributes.



The concept-forming operators introduced above provide the foundation for defining structured
clusters of data known as formal concepts.

Definition 3. Let (B, A, I) be a formal context and let ,/, /" be the associated concept-forming operators.
Forany subsets X € P(B)andY € P(A), apair(X,Y) is called aformal concept of the context (B, A, I)
if and only if it satisfies the conditions:

X" =Y and Y¥ = X.

In this case, the set X is referred to as the extent of the formal concept, representing the collection of objects,
while the set Y is called the intent, representing the set of attributes shared by all objects in X.

 ({i})

{ab} — {a,b}

{i,ii,iii}

Figure 3: lllustrative example of a formal concept consisting of two objects and one shared attribute

The collection of all formal concepts derived from a given formal context (B, A, I') is denoted as:
C(B, A ={(X,Y)ePB)xPA) | X =Y, Y’ =X}

The set of all formal concepts derived from a given context can be naturally equipped with a partial
order based on the inclusion of extents (or, equivalently, reverse inclusion of intents). Under this order,
the set of formal concepts forms a complete lattice structure, known as the concept lattice.

Definition 4. Let (X1,Y1),(Xo,Ys) € C(B, A, I) be two formal concepts of the context (B, A, I).
Define a partial order < on C(B, A, I) by:

(X1,Y1) 2 (X2,Y2) ifandonlyif X; C Xy (equivalently, Yo C Y7).

The partially ordered set (C(B, A, I), =) is called the concept lattice of the context (B, A, I'). For conve-
nience, it is typically denoted by CL(B, A, I).

{ab,c}, 0)

{a,b}, {i}) {{b,c}, {ii})

{b}, {i.ii})

(0, {i,ii,iii})

Figure 4: lllustrative example of a concept lattice comprising five formal concepts

The formal context and its associated concept lattice provide a foundation for discovering attribute
dependencies, also known as attribute implications, that hold within a given dataset [6, 7]. These
dependencies capture regularities in how attributes co-occur across the object set. As demonstrated by
Ganter and Wille [6], Formal concept analysis can, for instance, be applied to the analysis of feasible
configurations of computer hardware components, where only certain combinations of features are



considered valid. This exemplifies how one may study admissible attribute combinations and the logical
relationships between them.

Such an approach is particularly beneficial in classification tasks where a large set of objects is
characterized by a relatively small number of attributes. In these cases, it becomes advantageous
to represent domain knowledge through attribute implications, i.e., logical formulas stating that the
presence of one subset of attributes guarantees the presence of another.

Formally, we define attribute implications as follows:

Definition 5. Let A be a non-empty set of attributes and let Z, W C A. An attribute implication over
A is a formal expression of the form Z = W, interpreted as: "every object possessing all attributes in Z
also possesses all attributes in W." The implication Z = W is said to bevalid inasetY C Aif Z CY
implies W C Y. Equivalently, the implication is valid inY if either Z LY orW C Y.

We now provide a simple example to illustrate the validity of an attribute implication:

Example 1. Let A = {ay, a9, a3, a4} be a set of attributes, and let B = {a1,a4} C A. The implication
{a1,a3} = {a4} is a valid attribute implication over A. Moreover, it is valid in the subset B, since
{a1,a3} Z B and the premise of the implication does not hold in B.

We now extend the notion of implication validity from individual subsets of attributes to collections
of such subsets. This generalization enables us to formalize the notion of an attribute implication being
valid across a set of observations or contexts.

Definition 6. Let A be a non-empty set of attributes, and let Z,W C A. Furthermore, let )) C P(A)
denote a collection of subsets of attributes. An attribute implication Z = W is said to be valid in Y if it is
valid in every setY € ), i.e, forallY € Y, the condition Z CY = W CY holds.

This generalized notion of validity allows us to define the validity of attribute implications within a
formal context by interpreting the context as a collection of attribute sets derived from objects.

Definition 7. Let (B, A, I) be a formal context, and let Z, W C A. An attribute implication Z = W is
said to be valid in the formal context (B, A, I) if it is valid in the collection

Y ={{z} |z € B},
where ,/* denotes the concept-forming operator that maps an object to the set of attributes it possesses.

The set Y = {{x}/" | € B} thus represents all attribute sets associated with individual objects in
the context. This construction provides a basis for evaluating the validity of any attribute implication
with respect to the entire formal context.

While this approach allows for checking the validity of selected attribute implications, our objective
is often to compute a complete and non-redundant set of all valid implications that fully characterizes the
data. For this purpose, the Guigues—Duquenne basis (also known as the stem base) offers a canonical and
minimal representation of all valid attribute implications in a formal context [21]. Efficient algorithms
for its computation are described in [6, 22], and it plays a central role in the logical analysis of data
dependencies.

While attribute implications capture only those relationships that are logically valid in the context (i.e.,
hold in 100% of the objects), a more flexible framework is needed to describe approximate dependencies
that may hold with high but not perfect reliability. This is where the notion of confidence becomes
central [23].



Definition 8. Let (B, A, I) be a formal context, and let Z, W C A. The confidence of an implication
Z = W in this context is defined as:

{zeB|ZCa" andW C 27}
VA = .
conflZ = W) weB[ZCa ]

That is, confidence is the proportion of objects possessing all attributes in Z that also possess all attributes
inW.

An attribute implication is thus a special case of an association rule with confidence equal to 100%.
More generally, association rules allow for modeling relationships that are statistically strong but not
universally valid. For example, the rule

Z =W withconf(Z = W) =97%

expresses that in 97% of all objects where Z holds, the attributes in W also hold. This framework is
particularly useful in data analysis tasks involving noise, exceptions, or incomplete patterns.

In our analysis, we first computed all attribute implications with confidence 100% using the canonical
Guigues-Duquenne basis. We then extended the analysis by relaxing the confidence threshold, thereby
deriving a broader set of association rules that capture near-deterministic behavioral patterns in the
data.

5. Results and interpretation

To analyze the structure of dependencies and co-occurrences among binary attributes in the dataset,
we applied Formal concept analysis described in the previous section. This technique allowed us to
extract a hierarchy of formal concepts based on shared attribute subsets, resulting in a concept lattice
consisting of 26 distinct concepts.

Figure 5 shows the resulting concept lattice diagram. Each node in the diagram represents a formal
concept, characterized by an extent (the number of objects/rows) and an intent (the set of common
attributes). The extent size and its proportion with respect to the full dataset (10,306 rows) are shown
in each node, e.g., "4862 / 47%" indicates that 47% of the objects share the attributes represented by that
node.

The lattice is ordered by set inclusion: higher nodes have more general attribute sets (smaller intent,
larger extent), while lower nodes represent more specific combinations (larger intent, smaller extent).
Edges between concepts indicate subset relationships among attribute sets.

10306 / 100%

P A
6532/63%
125 1% J keywords" eeni_log_classic

862 /47%

= { audi_Togon_logoff
T - - -575 /6%
1522 /15% -.-_..“\
- - | 254 /2% -
audit_policy_change —

Figure 5: Concept lattice of binary attributes from the EVT dataset. Nodes are labeled with extent size and
percentage.

Several important observations emerge from the structure of the concept lattice. These insights
reflect not only the frequency and co-occurrence of attributes, but also reveal potentially anomalous or
rare behavioral patterns in the dataset:



« The most frequent attribute is keywords_event_log_classic, present in 63% of the events,
followed by is_weekend (47%) and keywords_correlation_hint (16%).

+ The time-based attribute is_night_activity appears in only 1% of the events, reflecting
the fact that the dataset contains only a small fraction of activity recorded during nighttime
hours. This low support limits its general influence but makes it a useful indicator for identifying
potential anomalies occurring outside regular working hours.

« Concepts near the bottom of the lattice (with very small support, e.g., < 1%) can represent
highly specific and rare patterns. These may be of interest in anomaly detection or in identifying
suspicious behavioral combinations.

« No objects were found to match the bottom-most node (extent = 0), meaning that no event shares
the full set of binary attributes simultaneously, which is expected.

In summary, the concept lattice provides a hierarchical view of how event attributes co-occur,
revealing frequent combinations and rare intersections. This structure can guide both rule extraction
(via implications) and further filtering of unusual behavior for investigation, which is described in the
following paragraphs.

In addition to the concept lattice analysis, we applied attribute implication mining and association
rule extraction' on the same binary dataset consisting of 10,306 rows and 11 attributes. The goal was to
discover logical dependencies between attribute combinations, expressed in the form of implications
A = B with associated support and confidence values. The resulting rules provide interpretable
insights into frequent co-occurrences, typical system behaviors, and potential temporal or structural
patterns in the event data. A selection of the most relevant rules is summarized in Table 2.

Table 2
Selected attribute implications and association rules extracted using Formal Concept Analysis
No. Premise Conclusion Confidence
1 audit_policy_change keywords_event_log_classic 100%
2 audit_policy_change, is_weekend 99%
keywords_event_log_classic
3 audit_logon_logoff keywords_event_log_classic 97%
4 audit_logon_logoff, keywords_event_log_classic 98%
is _weekend
5 audit_account_management keywords_event_log_classic 100%
6 audit_system keywords_event_log_classic 100%
7 is_night_activity is_weekend 100%
8 is_night_activity, keywords_event_log_classic 86%

is _weekend

The rules in Table 2 reveal strong co-occurrence patterns among audit and keyword attributes.
For instance, rules 1, 3, 5, and 6 show that whenever certain system-level activities occur (such as
audit_policy_change, audit_logon_logoff, or audit_account_management), the events are
consistently logged using the legacy Windows event log format (keywords_event_log_classic).
This highlights the dominant presence of classical logging mechanisms in administrative operations.

Rule 2 suggests that nearly all policy change events (in combination with legacy logging) occur during
the weekend, which may indicate scheduled maintenance or non-standard administrative behavior.

Rule 7 implies that all events recorded during the night (is_night_activity) also occurred on
weekends (is_weekend). This narrow temporal window may reflect an intentional restriction or
filtering in the data source which we mentioned in the previous concept lattice, as well.

Rule 8 shows that such weekend-night events are typically logged using the classic format, but with
slightly reduced confidence (86%), which might hint at occasional outliers or logging exceptions.

"The concept lattice, attribute implications and association rules were generated using the Concept Explorer tool, a software
environment for Formal concept analysis, available at http://conexp.sourceforge.net.
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Together, these rules help identify deterministic and near-deterministic patterns in event attributes,
allowing for the creation of a behavioral baseline. Deviations from these rules could serve as indicators
of anomalies or unusual system activity.

6. Conclusion

In this study, we explored the application of Formal concept analysis to a security dataset, the NIST Data
Leakage Case EVT. Using a carefully selected set of binary audit attributes and engineered time-based
features, we constructed a formal context with 10,306 objects and 11 attributes. This enabled us to
apply Formal concept analysis methods for uncovering logical dependencies and co-occurrence patterns
within system event logs.

We first analyzed the structure of the dataset using a concept lattice, which revealed 26 formal
concepts organized by attribute inclusion. This hierarchical representation provided insights into the
frequency and overlap of various event types, highlighting typical combinations as well as rare and
potentially anomalous ones. In particular, we identified rare conjunctions involving weekend and
night-time activity that may warrant further security inspection.

Building on the concept lattice, we extracted both exact attribute implications (100% confidence) and
approximate association rules (with confidence less than 100%). These rules capture stable behavioral
patterns within the dataset and serve as a form of interpretable knowledge discovery. For instance, we
found that all system-level and account management events consistently appear with legacy event log
markers, and that night-time activity is limited and correlated with weekend occurrences.

In this study, we focused on the classical framework of Formal concept analysis applied to binary
(single-valued) formal contexts, where the incidence relation strictly defines whether an object possesses
a given attribute. While this approach provides a solid foundation for structural analysis and dependency
mining, it assumes crisp object-attribute relationships. As a direction for future work, the extension
of Formal concept analysis to many-valued or fuzzy settings presents a promising research avenue.
Future work could benefit from integrating fuzzy and many-valued extensions of Formal Concept
Analysis, which enable reasoning over graded or uncertain information. Notably, theoretical foundations
developed by Bélohlavek [24], Butka et al. [25], and Medina et al. [26] offer promising directions for
adapting our framework to more complex, real-world data scenarios.
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