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Abstract
The surge in automation within logistics has led to an overwhelming growth in data, making it increasingly
difficult to efficiently find relevant information. Traditional keyword-based search methods often fail to deliver
precise and context-aware results. This paper presents the design and evaluation of advanced Question Answering
(QA) systems tailored for logistic data, leveraging state-of-the-art Transformer-based language models. A core
contribution of this work is the development of a novel, well-annotated QA dataset, automatically generated using
large language models (LLMs). The dataset includes extractive and binary questions, enabling comprehensive
evaluation across multiple QA tasks. The proposed pipeline covers the full methodology—from dataset generation
to model training and evaluation—reducing manual effort while maintaining data quality. Additionally, a
classification extension was introduced to improve the handling of different question types, particularly enhancing
binary QA performance. Experimental results demonstrate improved QA accuracy and system adaptability,
offering valuable insights for applying modern NLP in logistics.
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1. Introduction

The landscape of logistics is undergoing a profound transformation driven by increasing automation,
which in turn generates an unprecedented volume of operational data. This data explosion presents a
critical challenge: efficiently extracting relevant and precise information from vast, complex datasets.
Conventional keyword-based search techniques, limited by their inability to grasp context and nuances,
frequently fall short in delivering the accurate and immediate answers required by dynamic logistical
operations. Addressing this, Question Answering (QA) systems, a cutting-edge domain within Natural
Language Processing (NLP), offer a robust solution by enabling machines to directly answer questions
posed in natural language.

This paper focuses on the design and evaluation of advanced QA systems specifically tailored for
logistic data. Leveraging state-of-the-art Transformer-based language models, which have revolution-
ized NLP by demonstrating superior capabilities in understanding and generating human language, we
aim to overcome the limitations of traditional information retrieval methods. Our work highlights the
efficacy and precision of these advanced models when applied to the unique context of logistics.

A central contribution of this research is the development of a novel, high-quality, and well-annotated
QA dataset. This dataset is meticulously designed to support comprehensive evaluation across multiple
QA tasks, featuring extractive and binary question types. Crucially, the entire dataset is automatically
generated using large language models (LLMs), significantly reducing the manual effort typically
associated with dataset creation while ensuring high data quality and consistency. This automated
pipeline represents a scalable approach to building domain-specific QA resources.

Furthermore, we propose and implement a comprehensive methodology that spans the entire QA
system development cycle: from the automated generation of the dataset to the training and rigorous
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evaluation of the models. An innovative aspect of our approach includes the introduction of a classifi-
cation extension to the Transformer models, specifically designed to improve the handling of different
question types. This extension is particularly effective in enhancing the performance of binary QA,
demonstrating a refined understanding of question intent.

Experimental results from our evaluation demonstrate notable improvements in QA accuracy and
overall system adaptability within the logistics domain. These findings offer valuable insights into the
practical application of modern NLP techniques for specialized information retrieval, showcasing the
potential of Transformer-based QA systems to enhance efficiency and decision-making in complex
logistical environments.

The remainder of this paper is structured as follows: Section 2 reviews related work in Question
Answering, focusing on Transformer architectures and dataset generation. Section 3 details our proposed
methodology, including the automated dataset generation pipeline, model architecture, and training
procedures. Section 4 presents the experimental setup and discusses the performance results across
various QA tasks. Finally, Section 5 concludes the paper, summarizing our contributions and outlining
directions for future research.

2. Related Work

The field of Question Answering (QA) has evolved significantly, progressing from early rule-based
and Information Retrieval (IR) methods to sophisticated machine learning-driven systems. Initial
approaches, exemplified by systems participating in the TREC QA track, often relied on handcrafted
rules and extensive knowledge bases to extract answers. The advent of statistical and machine learning
methods marked a shift towards more flexible and robust systems, leading to hybrid architectures that
combined the strengths of both symbolic and data-driven techniques [1, 2]. A notable milestone in this
evolution was IBM Watson’s DeepQA system, which showcased the potential of complex QA pipelines
in open-domain scenarios [3].

The resurgence of deep learning has revolutionized Natural Language Processing (NLP), profoundly
impacting QA research. Recurrent Neural Networks (RNNs) like LSTMs and GRUs, along with convolu-
tional neural networks (CNNs), enabled models to capture sequential dependencies and local features
in text, leading to improvements in machine comprehension tasks. The introduction of the attention
mechanism significantly enhanced these models by allowing them to focus on relevant parts of the
input sequence, overcoming the limitations of fixed-size context vectors [4].

The Transformer architecture, proposed by Vaswani et al. in 2017 [5], marked a paradigm shift in NLP.
By entirely relying on attention mechanisms without recurrence or convolutions, Transformers enabled
unprecedented parallelization and captured long-range dependencies more effectively. This innovation
led to the development of powerful pre-trained language models such as BERT (Bidirectional Encoder
Representations from Transformers) [6], which demonstrated superior performance across a wide
array of downstream NLP tasks through its masked language modeling and next sentence prediction
objectives. Subsequent advancements built upon BERT, including RoBERTa [7], ELECTRA [8], and
efficient variants like ALBERT [9] and DistilBERT [10], further pushed the boundaries of what is
achievable in QA.

The availability of large, high-quality datasets is crucial for training effective QA systems. Promi-
nent datasets like SQuAD (Stanford Question Answering Dataset) [11], HotpotQA [12], and Natural
Questions [13] have been instrumental in driving research in extractive, multi-hop, and open-domain
QA, respectively. However, generating such datasets manually is a labor-intensive and time-consuming
process, often limiting their domain specificity and scale. Recent progress in large language models
(LLMs) has opened new avenues for automated dataset generation, enabling the creation of tailored
datasets for specific domains like logistics, which is a focus of our work.



3. Methodology

In this section, we describe the methodology for constructing a QA dataset and fine-tuning transformer-
based models to handle both extractive and binary QA tasks.

Our pipeline involves generating structured synthetic data, transforming it into natural language,
creating question-answer pairs, and validating the output. Finally, we describe the training procedure
for several selected models.

3.1. QA Dataset Creation Pipeline

To build a high-quality question answering (QA) dataset, we followed a four-stage pipeline:

1. Generation of structured data
2. Transformation into natural language
3. Automatic generation of question-answer pairs
4. Validation and formatting

Our goal was to produce rich, coherent contexts and relevant questions whose answers could be
reliably inferred. The dataset was designed to support two major question types:

• Extractive questions: where the answer is a direct span from the context.
• Binary (Yes/No) questions: where the answer must be inferred as either true or false.

To promote model generalization and reduce overfitting, we introduced variability at the data
generation stage. Structured fields—such as company names, cities, street names, and postal codes—were
randomly sampled from realistic, diverse pools. This randomness acted as a form of regularization,
encouraging the model to learn generalizable patterns rather than memorizing surface forms.

3.1.1. Generation of Structured Data

We began by generating a synthetic set of 500 structured logistics records in JSON format. Each
record captures shipment details, including pickup and delivery addresses, time windows, package
specifications, and vehicle requirements. Placeholder values were randomly populated before training
using curated lists and realistic numerical ranges.

Example:

{
"pickup": {
"company_name": "COMPANY_PICKUP",
"postal_code": "ZIP_PICKUP",
"street_name": "STREET_PICKUP",
"datetime": "2026-05-11 19:00:00"

},
"delivery": {
"company_name": "COMPANY_DELIVERY",
"postal_code": "ZIP_DELIVERY",
"street_name": "STREET_DELIVERY",
"datetime": "2026-05-13 23:15:00"

},
"goods": {
"weight": "143kg",
"dimensions": [



{
"length": "21cm",
"width": "21cm",
"height": "58cm",
"weight": "88kg"

},
{
"length": "49cm",
"width": "14cm",
"height": "41cm",
"weight": "55kg"

}
]

},
"required_vehicle": "Sprinter",
"special_request": "ADR requested"

}

3.1.2. From Structure to Natural Language

Using large language models (LLMs), we converted each structured JSON record into a coherent natural
language paragraph suitable for QA. This step ensured that the resulting contexts resembled real-world
text and could serve as meaningful inputs for question answering.

Example:

We need to transport a shipment of goods from COMPANY_PICKUP in ZIP_PICKUP,
STREET_PICKUP on May 11th at 19:00 to COMPANY_DELIVERY in ZIP_DELIVERY,
STREET_DELIVERY on May 13th at 23:15.

The shipment consists of two items with the following dimensions:

• Item 1: Length 21cm, Width 21cm, Height 58cm, Weight 88kg
• Item 2: Length 49cm, Width 14cm, Height 41cm, Weight 55kg

The total weight of the shipment is 143kg. We require a Sprinter vehicle with ADR
(dangerous goods) certification. Please ensure the driver is available at the specified pickup
and delivery times.

3.1.3. Generation of Question-Answer Pairs

We used LLaMA 3.3 [14] to generate question–answer pairs for each context, producing up to 20 items
per record across various question types.

Categories:

1. Extractive questions: where the answer is a continuous span of text that appears explicitly in
the context.

2. Binary (Yes/No) questions: where the answer must be inferred from the context and is not
typically stated verbatim. These questions require a semantic understanding of the text to
determine whether the answer is ”Yes” or ”No”.



Example QA Pairs:

• Q: Where do we need to pick up the goods?
A: COMPANY_PICKUP, STREET_PICKUP, ZIP_PICKUP

• Q: What type of vehicle is needed for the transport?
A: Sprinter

• Q: How many packages are being transported?
A: 2

Binary Examples:

• Q: Are the pallets stackable?
A: No

• Q: Is the transport of dangerous goods requested?
A: Yes

Heuristic rules were applied to detect malformed, irrelevant, or ambiguous pairs. We manually
reviewed a subset to ensure quality.

The final dataset includes 4,723 extractive and 4,913 binary QA pairs. All pairs were stored in an
extended SQuAD-v2 format with metadata such as question type, answer span, and label.

3.1.4. Validation

Validation was crucial to ensure high data integrity. For extractive questions, we confirmed that the
answer was an exact substring of the context. Binary answers were verified through logical consistency
checks.

If a generated context did not yield at least one consistent QA pair, the entire context was discarded
from the dataset. This ensured that only contexts with valid supervision signals were included. To
further improve data quality, we applied heuristic filtering rules. For example, we removed QA pairs
with empty or overly short answers, pairs where the question text duplicated fragments of the answer,
and pairs with ambiguous references. A random subset of the filtered dataset was then manually
reviewed to verify correctness.

3.2. Model Selection and Training

To evaluate performance across different model sizes, we selected three Transformer-based models
from the Hugging Face QA catalog:

1. XtremeDistil l12 h384 Uncased (33M parameters): A distilled multilingual QA model optimized
for efficiency [15].

2. XLM-RoBERTa Base (279M parameters): A robust encoder trained on CommonCrawl in 100+
languages [16].

3. XLM-RoBERTa Large (561M parameters): A deeper version of the base model with enhanced
multilingual performance [16].

3.2.1. Dual-Head Architecture

To effectively handle both extractive and binary QAwithin a single framework, we extended the baseline
Transformer models with a dual-head architecture:

• Span prediction head: This component follows the standard extractive QA design. Two linear
layers predict the start and end positions of the answer span, applied to the hidden states of the
encoder. The outputs correspond to indices within the input sequence, trained with cross-entropy
loss.



• Binary classification head: To handle yes/no questions, we added an additional classification
layer on top of the [CLS] token embedding. The [CLS] representation, which encodes global
context of the input, is passed through a fully connected feed-forward layer with dropout, followed
by a softmax activation producing probabilities for the two classes (”Yes” or ”No”). Training uses
binary cross-entropy loss.

The two heads share the same Transformer encoder, allowing the model to transfer knowledge
between tasks. Each head is trained with its own loss function, described in Section 3.2.3.

This shared design reduces training cost while facilitating cross-task knowledge transfer between
extractive and binary QA.

3.2.2. Input Handling and Tokenization

Input sequences were limited to 512 tokens, which corresponds to the maximum sequence length
supported by all selectedmodels. For contexts exceeding this limit, we applied a slidingwindow approach
with a stride of 256 tokens. This technique ensures that long passages are split into overlapping chunks,
reducing the risk of missing relevant answer spans while keeping memory requirements manageable.
Although these settings are widely adopted defaults, we acknowledge that alternative configurations
(e.g., longer sequence lengths with models supporting extended contexts, or optimized stride values)
could be explored in future work to further improve coverage and efficiency.

3.2.3. Loss Function

The total training loss ℒ is a weighted combination of the span prediction loss and the binary classifi-
cation loss:

• ℒspan: cross-entropy loss for start/end token prediction.
• ℒbinary: binary cross-entropy loss for Yes/No classification.

The combined loss is defined as:

ℒ = 𝜆 ⋅ ℒspan + (1 − 𝜆) ⋅ ℒbinary,

where 𝜆 controls the relative contribution of each component. In our experiments, we set 𝜆 = 0.5. This
choice assigns equal importance to both tasks and balances the impact of the two loss components.

We did not systematically explore alternative values of 𝜆; investigating its sensitivity may provide
further insights into the balance between extractive and binary objectives.

4. Experiments and Results

This section presents the experimental setup, model configurations, and results for both extractive and
binary QA tasks. While the core methodology has been described earlier, selected implementation
details — particularly parts of the dataset generation pipeline and training scripts — are available in the
accompanying GitHub repository1.

4.1. Experimental Environment

All models were trained and evaluated on a server equipped with 2× NVIDIA A100-PCIE-40GB GPUs.
The training pipeline was implemented in Python using the Hugging Face Transformers [17] and
Datasets [18] libraries, with PyTorch [19] as the backend framework.

1https://github.com/macomatom/logistics-qa-pipeline

https://github.com/macomatom/logistics-qa-pipeline


4.2. Training Configuration

Models were fine-tuned using model-specific hyperparameters:

• XtremeDistil: learning rate 1e-5, batch size 8, gradient accumulation 2 (effective batch size 16), 3
epochs, dropout 0.15 in both hidden and attention layers, weight decay 0.01, 500 evaluation steps.

• XLM-RoBERTa Base: learning rate 1e-5, batch size 16, gradient accumulation 2 (effective batch
size 32), 3 epochs, dropout 0.1, weight decay 0.01, 200 evaluation steps.

• XLM-RoBERTa Large: learning rate 2e-5, batch size 16, gradient accumulation 2 (effective batch
size 32), 3 epochs, dropout 0.1, weight decay 0.01, 250 evaluation steps.

All models used the AdamW optimizer with cosine learning rate scheduling and a warmup ratio
of 0.1. The training loss was computed with 𝜆 = 0.5, giving equal weight to span-based and binary
objectives. Evaluation based on validation loss was performed every 200–500 steps, and early stopping
was triggered after three consecutive evaluations without improvement. Effective batch sizes were
adjusted using gradient accumulation (1–2 steps).

These values were adopted from Hugging Face baselines and prior literature. We did not perform
systematic hyperparameter tuning, which remains an open direction for future work.

4.3. Training Dynamics

Training dynamics are visualized in Figure 1, which shows the progression of training and validation
loss for each model. XtremeDistil exhibits a smooth and gradual convergence over more than two
epochs, stabilizing around a validation loss of 0.97. XLM-RoBERTa Base achieves its lowest validation
loss (0.61) after roughly two epochs, with well-aligned training and validation curves. XLM-RoBERTa
Large converges the fastest, reaching a validation loss of 0.53 in under one epoch, but displays slight
fluctuations thereafter—possibly due to its higher sensitivity to noise in smaller batches.

Figure 1: Training and validation loss progression across models.

4.4. Evaluation Metrics

To evaluate the performance of our models, we employed standard metrics tailored to the nature of
each QA task. For extractive questions, we report Exact Match (EM), F1-score, precision, and recall,
reflecting the model’s ability to correctly identify and locate the answer span within the context. For
binary (yes/no) questions, we use accuracy and F1-score, providing a balanced view of correctness and
robustness in classification. These metrics are widely adopted in QA research and enable meaningful
comparison across model sizes and task types. Additionally, confusion matrices were examined for the
binary task to better understand the distribution of false positives and false negatives.



4.5. Extractive QA Performance

As shown in Table 1, all models demonstrate strong generalization in extractive QA, with F1 scores
above 83%, and a clear accuracy gradient based on model size. The precision-recall balance remains
consistent, with XLM-RoBERTa Large slightly favoring recall.

Model EM F1 Precision Recall

XtremeDistil 62.4 83.4 81.1 85.8
XLM-RoBERTa Base 75.9 93.5 92.9 94.0
XLM-RoBERTa Large 82.3 95.5 95.4 95.6

Table 1
Results for extractive questions (in %).

4.6. Boolean QA Performance

In contrast, the binary QA task (see Table 2) reveals a sharper distinction between model capacities:
the smaller XtremeDistil underperforms (F1 77.5%), while the two XLM-R models exceed 90% F1,
demonstrating the difficulty of boolean classification for lighter architectures. This difference highlights
the importance of model expressiveness for classification-type decisions in QA systems.

Model Accuracy F1 Precision Recall

XtremeDistil 77.7 77.5 77.5 77.4
XLM-RoBERTa Base 90.2 90.1 90.1 90.3
XLM-RoBERTa Large 92.1 92.1 92.1 92.5

Table 2
Results for binary questions (in %).

4.7. Resource vs. Performance Trade-off

These results show that accuracy improves consistently with model capacity, with XLM-RoBERTa Large
outperforming the other models on both extractive and boolean tasks. However, XLM-RoBERTa Base
achieves nearly comparable F1-scores while requiring significantly fewer resources.

4.8. Impact of Question Length on Binary QA

As illustrated in Figure 3, binary QA performance improves with increasing question length. Longer
questions appear to provide the model with richer semantic cues and more context for decision-making,
resulting in higher F1-scores. This suggests that extended formulations help the model better capture
the intent and relevant context of binary queries, ultimately enhancing classification accuracy.

4.9. Limitations and Error Analysis

While our results demonstrate that Transformer-based QA models can be successfully adapted for
logistic data, several limitations must be acknowledged.

First, the dataset was generated synthetically using LLMs. Although heuristic filtering and partial
manual validation were applied to reduce noise, occasional artifacts or hallucinated facts may persist.
This limitation stems from the nature of LLM generation and causes. Consequently, the generated
contexts are less diverse than naturally authored texts, which may reduce generalization to real-world
scenarios.

Second, the structured records used to create synthetic contexts were generated by sampling fields
independently from curated pools (e.g., company names, street names, vehicle types). While this



Figure 2: Confusion Matrices for binary questions classification.

Figure 3: Performance of XLM-RoBERTa Large in binary questions by question length.

ensured diversity, it also limited realism, as attributes were not always internally consistent. The
natural language conversions likewise reflect synthetic phrasing rather than the style of real customer
communication.

Third, a limitation concerns the size of the dataset. Although it was generated from only 500
structured logistics records, the final corpus includes 4,723 extractive and 4,913 binary QA pairs. This
apparent disproportion arises because each record was expanded into multiple questions covering
different perspectives (e.g., locations, times, quantities, vehicle requirements). Although this increases
diversity, it also means that the dataset is narrower in terms of unique contexts, which may limit the
generalization of models to unseen real-world scenarios.

Beyond these dataset-related issues, we also analyzed the types of errors made by the models. The
results showed that errors were not uniformly distributed but concentrated in a subset of particularly
challenging instances. Many of these cases required reasoning over implicit relationships, such as
comparing pickup and delivery dates or aggregating quantities across multiple items, which are not
explicitly stated in the text. Interestingly, some errors recurred across all model sizes, suggesting that
they stem from dataset-inherent complexities rather than limited model capacity. This indicates that
current Transformer-based architectures struggle when questions demand logical inference beyond
surface-level text matching, emphasizing the need for reasoning-augmented models and more diverse
datasets.

5. Conclusion and Future Work

This paper addresses the challenge of the labor-intensive process of creating QA datasets for specialized
domains. We present a comprehensive methodology for automatic dataset generation, demonstrated



on a logistics use case. By leveraging LLMs, we construct a high-quality QA dataset comprising both
extractive and binary questions. This automated pipeline provides a scalable and efficient solution,
significantly reducing manual effort while ensuring consistency and domain relevance.

Our proposed dual-head architecture enabled simultaneous handling of both QA tasks within a unified
model. Through experimentation with models of varying capacities — from lightweight XtremeDistil
to large-scale XLM-RoBERTa — we demonstrated that model size correlates strongly with performance,
especially in binary QA. The results confirm that advanced multilingual Transformers can be effectively
adapted for specialized domains like logistics, delivering high accuracy even with synthetic datasets.

Several directions offer promising opportunities for future work:

• Multilingual QA: Extend the dataset with new languages and compare cross-lingual perfor-
mance.

• NewQuestion Types: Incorporate additional QA formats to broaden task coverage, e.g. numbers,
dates.

• Data Variation: Use augmentation to boost input diversity.
• Span-Only Modeling: Reformulate extractive QA task as span prediction task.

Overall, this work demonstrates the feasibility and scalability of combining LLM-powered data
generation with fine-tuned Transformer models for domain-specific QA. Continued exploration of
these extensions could further improve the adaptability and generalization of QA systems in real-world
logistic applications.
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