
Precipitation and Cloud Forecasting Using Radar Data and
Encoder-Decoder Convolutional LSTM
Bianka Szepesiová1, Richard Staňa1,∗

1Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia

Abstract
Precipitation and cloud forecasting is critical for weather forecasting, impacting sectors like agriculture, trans-
portation, and renewable energy. Traditional methods, such as satellite imagery, radar systems, and numerical
models, often struggle with short-term accuracy. This paper explores the application of neural networks for
precipitation and cloud forecasting using sequences of radar images collected every 5 minutes. This approach
enables temporal modeling of precipitation and cloud dynamics. We analyze neural network-based methods,
propose a ConvLSTM model extended with an encoder-decoder architecture inspired by U-Net, and evaluate
its performance on radar data from the Slovak Hydrometeorological Institute (SHMÚ). Results show that while
the baseline ConvLSTM model replicates the last input frame, the encoder-decoder extension improves cloud
movement prediction, though with reduced image quality. Metrics like Mean Absolute Error (MAE) and Structural
Similarity Index Measure (SSIM) quantify performance, suggesting avenues for future optimization.

Keywords
Precipitation and cloud forecasting, Radar data, ConvLSTM, Encoder-Decoder

1. Introduction

Precipitation and cloud forecasting is crucial for accurate weather forecasting. It has an impact on
everyday activities, such as trips and sporting events, and also significantly affects many other areas,
including agriculture, transportation, and renewable energy. Traditional methods, including satel-
lite imagery, radar systems, and numerical models, provide valuable insights but face limitations in
short-term forecasting due to resolution or computational constraints [1, 2]. Recent advances in neural
networks, particularly Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
models, offer promising solutions by effectively analyzing temporal and spatial patterns in meteoro-
logical data [3]. This paper examines the application of neural networks in precipitation and cloud
prediction using radar data. We review neural network-based methods, propose a Convolutional LSTM
(ConvLSTM) model, and extend it with an encoder-decoder architecture inspired by U-Net [4]. The
models are trained and tested on radar data from the Slovak Hydrometeorological Institute (SHMÚ).
Unlike similar research papers described in the next section, we use images with a higher resolution
(in most cases, more than twice as large, Table 1) than other projects, and we focus on RGB images.
We evaluate performance using Mean Absolute Error (MAE) and Structural Similarity Index Measure
(SSIM), comparing the baseline ConvLSTM and its encoder-decoder extension to assess improvements
in predicting cloud movement.

The paper is structured into six sections. Following the introduction, Section 2 provides an overview
of existing research in the field of precipitation and cloud prediction. Section 3 provides the methodology
of this paper, including the used dataset and neural network models. The process of data preprocessing
and training of models is described in Section 4. In Section 5, the results of our experiments are provided
and discussed. Finally, Section 6 concludes our work and provides future possibilities.

ITAT’25: Information Technologies – Applications and Theory, September 26–30, 2025, Telgárt, Slovakia
∗Corresponding author.
Envelope-Open bianka.szepesiova@student.upjs.sk (B. Szepesiová); richard.stana@upjs.sk (R. Staňa)
Orcid 0000-0001-7938-2117 (R. Staňa)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-13

mailto:bianka.szepesiova@student.upjs.sk
mailto:richard.stana@upjs.sk
https://orcid.org/0000-0001-7938-2117
https://creativecommons.org/licenses/by/4.0/deed.en


Table 1
Comparison of existing research.

Research Resolution Data Methods
[6] 280×280×1 radar RDCNN, COTREC
[7] 256×256×1 satelite binarized U-Net, AROME
[8] 100×100×1 radar PredRNN_v2
[9] 150×150×1 radar RainPredRNN
[10] 96×96×1 radar variants of U-Net

[11] 256×256×2 radar, satelite
Optical flow, ConvLSTM,
U-Net, MSDM

[12] 344×315×1 radar ConvLSTM
[13] 64×64×1 radar ConvLSTM

our 512×288×3 radar
ConvLSTM,
encoder-decoder ConvLSTM

2. Related Works

Traditional cloud prediction methods depend on satellite images, radar data, and numerical models.
Electromagnetic radiation captured by meteorological satellites is used for monitoring cloud cover and
atmospheric conditions. Although they offer a wide atmospheric view and fast updates in real-time,
they are limited by low resolution [5]. Radar systems emit radio waves that reflect off precipitation
particles, creating real-time images. However, they have limited range, difficulty detecting signals close
to the radar, and may produce occasional false echoes from objects like planes or birds [1]. Numerical
models simulate atmospheric dynamics based on physical equations. However, it requires a significant
amount of computational power, and the initial conditions must be precise [2].

Neural network approaches have shown promise in overcoming these limitations. The RDCNN
model utilizes a recurrent dynamic subnet (RDSN) comprising convolutional, sampling, and hidden
layers, as well as a probability prediction layer, to forecast radar data. RDCNN achieved better results
compared to traditional methods, such as COTREC [6]. The U-Net [4] architecture has also been proven
more successful than traditional methods, such as the AROME model [7]. RainPredRNN combines
U-Net [4] and PredRNN_v2 [8], which results in lower computational costs while still being able to
produce good-quality predictions through spatiotemporal LSTM layers and memory decoupling [9].
Other variants of U-Net were used in research [10] for precipitation nowcasting. A combination of
radar and satellite images was used in the paper [11] for precipitation nowcasting with methods such
as Optical flow, ConvLSTM, U-Net, and MSDM. Variants of ConvLSTM were used for the same task on
radar data in works [12, 13]. In Table 1 is the comparison of the described research in this field with the
resolutions of images, the type of the dataset, and the methods they use.

3. Methodology

3.1. Dataset

The dataset was provided by the Slovak Hydrometeorological Institute (SHMÚ) [14] and comprises
radar images captured at 5-minute intervals between January 2016 and September 2023 (814,499 images
in total, each with a resolution of 2270 x 1560 pixels). The current radar network consists of four Meteor
735 CDP10 units located at Malý Javorník, Kojšovská hoľa, Kubínska hoľa, and Španí laz. All data are
processed centrally at the SHMÚ Koliba facility, and actual data are publicly accessible via the SHMÚ
website [14]. The example of the provided images is in Fig. 3.



Figure 1: Structure of a ConvLSTM cell. Source: [16].

3.2. Architecture Models

3.2.1. Baseline ConvLSTM

The baseline architecture consists of three components: ConvLSTMCell, ConvLSTM, and Seq2Seq [15].
ConvLSTMCell is the core unit of the model. This cell adopts principles of gates from a standard

LSTM cell. The simplified structure of the ConvLSTMCell is shown in Figure 1. The Forget Gate decides
how much information from the previous cell state (𝐶𝑡−1 in image 1) should be kept or discarded. The
input Gate controls how much of the new incoming information should be added to the cell state. The
New Cell State updates the new cell state (𝐶𝑡 in image 1), combining retained old information and
selected new information. The Output Gate determines how much of the cell state should be exposed
as output and passed on to the output (next hidden state 𝐻𝑡 in image 1). In the ConvLSTMCell, the
convolution is applied to the concatenation of the current input tensor (which can be the input frame or
the feature map from the previous ConvLSTM layer) and the previous hidden state along the channel
dimension. The number of output channels from this convolution is four times the number of the cell’s
designated output channels, allowing the result to be split into four separate tensors corresponding to
the input gate, forget gate, new cell state, and output gate. The input and forget gates are computed by
applying the sigmoid activation function to the element-wise addition of their respective convolutional
outputs and the Hadamard product of the previous cell state with learned weights. The input gate
controls the amount of new information added to the cell state, while the forget gate determines how
much past information is retained. The new cell state is then derived as a combination of the previous
cell state (modulated by the forget gate) and the candidate cell state (modulated by the input gate),
where the candidate is the corresponding convolutional output passed through an activation function
(ReLU or tanh). Subsequently, the output gate is computed by applying a sigmoid activation to the
element-wise addition of its corresponding convolutional output and the Hadamard product of the
newly computed cell state with dedicated learned weights. Finally, the new hidden state is obtained
through the Hadamard product of the output gate and the activated new cell state, where the activation
function is also ReLU or tanh. The final outputs of the ConvLSTMCell are the new hidden state and
new cell state. The internal operations of the ConvLSTM cell follow the equations introduced in [3]:



𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑖 ⊙ 𝐶𝑡−1 + 𝑏𝑖)
𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓 ⊙ 𝐶𝑡−1 + 𝑏𝑓)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1+
𝑖𝑡 ⊙ tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜 ⊙ 𝐶𝑡 + 𝑏𝑜)
𝐻𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)

where:

• 𝑋𝑡 is the input tensor at time step 𝑡,
• 𝐻𝑡−1 and 𝐶𝑡−1 are the hidden state and cell state tensors from the previous time step,
• 𝜎 denotes the sigmoid activation function,
• ∗ denotes the convolution operation,
• ⊙ denotes the element-wise (Hadamard) product,
• 𝑊𝑥𝑖, 𝑊𝑥𝑓, 𝑊𝑥𝑐, 𝑊𝑥𝑜 are the convolutional weight matrices applied to the input 𝑋𝑡 for the input,
forget, cell candidate, and output gates respectively,

• 𝑊ℎ𝑖, 𝑊ℎ𝑓, 𝑊ℎ𝑐, 𝑊ℎ𝑜 are the convolutional weight matrices applied to the previous hidden state
𝐻𝑡−1 for the respective gates,

• 𝑊𝑐𝑖, 𝑊𝑐𝑓, 𝑊𝑐𝑜 are learned weight parameters for the element-wise multiplication with the previous
or current cell state,

• 𝑏𝑖, 𝑏𝑓, 𝑏𝑐, 𝑏𝑜 are the bias terms for the respective gates.

ConvLSTM processes image sequences by unrolling a single ConvLSTMCell over time. At each time
step, it receives the current image along with the previous hidden and cell states, and produces updated
states that serve as input to the next ConvLSTMCell. The hidden states across all time steps form the
output sequence.

Seq2Seq stacks one or more ConvLSTM layers, each followed by batch normalization. The first layer
processes raw input frames, while subsequent layers operate on the hidden states generated by earlier
layers. The last frame of the output from the final ConvLSTM layer is passed through a convolutional
layer, with a Sigmoid activation function applied to predict the next frame.

3.2.2. Encoder-Decoder ConvLSTM

Inspired by U-Net [4], we extended the ConvLSTM with an encoder-decoder architecture, as shown in
Figure 2. The encoder consists of five blocks, each containing two convolutional layers followed by
max-pooling, except for the last block, which excludes pooling. This progressively reduces the spatial
dimensions by a factor of 16 while increasing the feature channels to 256. The compressed feature
maps from the encoder serve as input to the ConvLSTM layers, which process temporal dependencies
throughout the sequence. The output from the ConvLSTM is then passed to the decoder, which consists
of four blocks. Each block performs upsampling followed by two convolutional layers to restore the
spatial dimensions to their original size. A final 1 × 1 convolutional layer generates the predicted output
frame. For simplicity, skip connections were omitted in this implementation.

This approach reduces computational complexity by decreasing the dimensionality of the input to
the ConvLSTM, which enables the use of deeper recurrent layers.

4. Experimental Evaluation

4.1. Data Preprocessing

Radar images were processed using OpenCV [17] to reduce noise and decrease resolution. Morphological
opening, a combination of erosion followed by dilation, was applied to disconnect thin connections



Figure 2: Architecture of the encoder-decoder ConvLSTM model. Orange boxes represent multi-channel feature
maps, with the number of channels specified below each box. Spatial dimensions are shown on the left and
correspond to each box at that level. Teal boxes denote ConvLSTM cells. Arrows indicate various operations. For
simplicity, only the encoding of one input image is illustrated.

Figure 3: Up: original radar image. Middle: image after morphological processing. Down: cropped and resized
image.

between objects, suppress noise, and smooth the images by eliminating irrelevant details. Subsequently,
the images were cropped to a region primarily covering Slovakia and resized to 517×288 pixels (or
512×288 in the encoder-decoder model to maintain compatibility with max-pooling operations). The
transformation process is illustrated in Fig. 3.



Figure 4: Training and validation loss curves for 5-minute and 1-hour interval models using combined MSE and
Perceptual Loss.

4.2. Training

We experimented with different loss functions, including Mean Squared Error (MSE) and Perceptual
Loss [18], both alone and in combination. Additionally, models were trained on sequences with time
intervals of 5 minutes and 1 hour, and we tested their ability to predict one and four future frames. For
training, we utilized a server with two NVIDIA A100 GPUs, both with 40GB of memory.

For the baseline ConvLSTM models, we used 50,000 images for 5-minute interval sequences, which
we split into 40,000 for training, and 5,000 each for validation and testing. These images covered the
period from September 24, 2021, 00:00 to March 16, 2022, 14:40. (We also tested a larger dataset of
100,000 images without significant performance improvement.) For 1-hour interval sequences, we
applied the same split using images from January 1, 2016, 00:00 to September 14, 2021, 08:00.

All models contained a single ConvLSTM layer with 20 cells, matching the input sequence length.
The input had 3 channels, corresponding to the color channels of the images. We used 32 convolutional
kernels of size 3 × 3 with ReLU activation. For models predicting a single output frame, a batch size of 8
was used; for models predicting four frames, the batch size was set to 1 due to memory constraints.

Models trained on 5-minute interval sequences were trained for 5 epochs, whereas models trained
on 1-hour interval sequences were trained for 10 epochs. During training, we monitored both training
and validation loss, and to avoid overfitting, the training was stopped when the validation loss no
longer decreased while the training loss continued to decrease. Figure 4 shows an example of the loss
evolution for 5-minute and 1-hour models using the combined MSE and Perceptual Loss. Each epoch
lasted approximately 1.5 hours for 5-minute models and 45 minutes for 1-hour models, resulting in a
total training time of around 7.5 hours per model. The batch size was set as large as allowed by the
available GPU memory. A similar approach was applied to the encoder-decoder model, where batch
size and number of epochs were chosen based on memory constraints and validation loss convergence.

For the encoder-decoder model, we used 80,000 images with a 5-minute interval, spanning from
September 24, 2021, 00:00 to June 18, 2022, 18:40. We split the dataset into 64,000 training, 8,000
validation, and 8,000 testing images.

The encoder and decoder were first trained jointly as an autoencoder for 80 epochs, divided into four
phases of 20 epochs each. This training took approximately 16 hours in total. The pretrained encoder
and decoder were then integrated into a ConvLSTM network, where the input to the ConvLSTM part
was of size 20 × 256 × 32 × 18, corresponding to the encoder’s output. Compared to the baseline model’s
input size of 20 × 3 × 512 × 288, this reduces the input to the ConvLSTM network by a factor of three. It
is possible to reduce the input size even more, but for the purpose of this paper, we find it sufficient,
since it enabled us to utilize more ConvLSTM layers without encountering memory issues. The total
number of trainable parameters was approximately 14.3 million for the baseline model and 13.8 million
for the encoder-decoder ConvLSTM model.



Due to the complexity of the problem and the input of the network, we initially decided to use
a more complex approach with 8 ConvLSTM layers, each containing 20 cells corresponding to the
input sequence length. The number of input channels for the ConvLSTM was set to 256, matching the
encoder’s output channels. We used 128 convolutional kernels of size 3 × 3 with ReLU activation, and
the batch size was set to 24.

Training was divided into two phases, with the first phase consisting of 10 epochs and the second
phase consisting of 5 epochs. During the first phase, encoder and decoder weights were frozen. Once loss
convergence plateaued, the weights were unfrozen for fine-tuning in the second phase. This approach
was inspired by the training process commonly used in transfer learning [19], where a pretrained
network (in our case, the encoder-decoder model) with frozen weights is expanded by new layers (in
our case, ConvLSTM layers) for a specific task and by training only weights in the new layer changes.
When training is done, all weights are unfrozen and fine-tuned.

Total training time was approximately 18 hours, averaging 1 hour and 12 minutes per epoch.
As shown in Section 5, the results of 8 layers show significant problems with color accuracy. After

consulting this problem, inspired by research [20], we also tried to reduce the number of ConvLSTM
layers to 5 and trained a newmodel following the same approach. Thismodel had a total of approximately
9.6 million trainable parameters.

The code used for our experiments can be found on the GitHub repository: https://github.com/
bszepesiova/Cloud-and-Precipitation-Forcasting-Using-Convolutional-LSTM.

4.3. Evaluation of Models

Models were evaluated using MAE and SSIM [21] on the original test set prepared for the encoder-
decoder model, which contained 8,000 images. Since the images were normalized, the MAE values range
from 0 to 1, with lower values indicating more accurate predictions. SSIM measures image similarity
based on luminance, contrast, and structure and ranges from -1 to 1, where higher values reflect better
structural and visual similarity to the target.

Evaluation considered two aspects. First, the quality of the predicted outputs was assessed in terms of
color fidelity, structure, and overall visual similarity to the target images. This evaluation was performed
on the raw model outputs and their corresponding target images. Second, the shape and movement of
precipitation were analyzed independently of visual quality by binarizing the images to indicate cloud
presence or absence. Binarized comparisons using true/false positive and negative metrics, inspired
by [7], were used solely to evaluate the precipitation shape and motion, unaffected by the color or
visual details of the predictions. We decided on this binarized evaluation because accurately capturing
precipitation patterns is often more important for practical use than producing visually appealing
images.

Figure 5: Comparison between target images and baseline ConvLSTMmodel predictions using different
loss functions (MSE, perceptual loss, and a combination of both) at a 5-minute interval.

https://github.com/bszepesiova/Cloud-and-Precipitation-Forcasting-Using-Convolutional-LSTM
https://github.com/bszepesiova/Cloud-and-Precipitation-Forcasting-Using-Convolutional-LSTM


Figure 6: Comparison between target images and baseline ConvLSTM model predictions using different loss
functions (MSE, perceptual loss, and a combination of both) at a 1-hour interval.

Figure 7: Two examples of the comparison between target images and predictions of the model using a
combination of MSE and perceptual loss at a 5-minute interval, predicting four consecutive frames. On the
target row, the first image is the last image of the network input sequence. All predicted images are very much
alike this last image.

5. Results and Discussion

The baseline ConvLSTM predicted the last input frame rather than the target, which is likely due
to the network’s limited depth. This can be seen in Fig. 5, where each image in the second, third, and
fourth row closely resembles the target image from the preceding column, corresponding to the final
frame of the input sequence.

At 5-minute intervals, the images were of higher quality and appeared sharper because the differences
between the last input frame and the target frame were small, as illustrated in Fig. 5. At 1-hour intervals,
the model also tended to predict frames similar to the final input frame; however, these images were
noticeably less sharp and of lower quality, as shown in Fig. 6.

This behavior can also be observed in the model predicting four consecutive frames, as shown in
Fig. 7. All four predicted images exhibit the same shape, closely resembling the final target image three
rows above, which corresponds to the last input frame. The shapes in the predicted frames remained
static and gradually decreased in intensity over time.

MSE caused blurring, Perceptual Loss reduced color intensity, and their combination balanced



Figure 8: Comparison between target images and predictions of the baseline model and the encoder-decoder
models using 8 and 5 ConvLSTM layers.

Figure 9: Differences between target and predicted binary images of the baseline model and the encoder-decoder
model using 8 and 5 ConvLSTM layers. Red indicates areas where the model incorrectly predicted cloud presence,
blue indicates areas where it incorrectly predicted cloud absence, black indicates correctly predicted cloud
absence, and light yellow indicates correctly predicted cloud presence.

sharpness and color. Therefore, we decided to employ this combined loss in the second model.
The encoder-decoder model with 8 layers predicted images that lacked yellow and red tones and

were generally of lower quality. After reducing the number of ConvLSTM layers to five, the image
quality improved significantly, as shown in Fig. 8.

For further analysis, we binarized the predicted and target images using a threshold of 0.4 to indicate
cloud presence (1) or absence (0). Pixels were then classified as true positive (light yellow), true negative
(black), false positive (red), or false negative (blue), following the scheme in Fig. 9. The choice of 0.4 was
made empirically, as illustrated in Fig. 10, which shows target images together with contours of their
binarized versions at thresholds 0.1, 0.4, 0.5, and 0.6. Thresholds between 0.1 and 0.4 produced very
similar results and accurately captured the precipitation patterns, while thresholds of 0.5 and above
failed to cover the full extent of the precipitation areas, leading to a visible loss of information.

The baseline model yielded the best MAE and SSIM scores on the non-binarized images as shown
in Table 2. The encoder-decoder models showed lower performance on these images, possibly due to
inaccuracies caused by the decoder, as well as the increased depth of the network. The baseline model
tends to predict frames very similar to the last input frame, resulting in predictions with more accurate
structures compared to those of the encoder-decoder models. On the other hand, the encoder-decoder



Figure 10: Target images with contours of their binarized versions at thresholds 0.1, 0.4, 0.5, and 0.6.

Table 2
Comparison of ConvLSTM models using MAE and SSIM metrics.

Model MAE SSIM MAE (Binary) SSIM (Binary)

ConvLSTM 0.0183 0.8526 0.0314 0.8433
ConvLSTM + ED (8) 0.0282 0.8040 0.0342 0.8382
ConvLSTM + ED (5) 0.0190 0.7755 0.0268 0.8575

Table 3
Comparison of binarized model outputs and targets using MAE and SSIM with different binarization
thresholds ranging from 0.2 to 0.7.

Model 0.2 0.3 0.5 0.6 0.7

MAE SSIM MAE SSIM MAE SSIM MAE SSIM MAE SSIM

ConvLSTM 0.0314 0.8468 0.0311 0.8475 0.0431 0.8279 0.0355 0.8481 0.0160 0.9076
ConvLSTM + ED (8) 0.0349 0.8407 0.0338 0.8415 0.0440 0.8249 0.0383 0.8453 0.0215 0.9064
ConvLSTM + ED (5) 0.0260 0.8627 0.0259 0.8622 0.0361 0.8424 0.0281 0.8684 0.0132 0.9293

model with 5 ConvLSTM layers obtained the best results on the binarized images, outperforming both
the baseline and the encoder-decoder model with 8 layers. Additional results for thresholds ranging from
0.2 to 0.7 are provided in Table 3, where the 5-layer encoder-decoder model consistently outperformed
other models on the binarized images across all thresholds.

Although the baseline model shows better metric values in Table 2, predicting the last input frame
limits its practical value, resulting in worse overall performance than the encoder-decoder models.



6. Conclusion and Future Works

This study provides an evaluation of ConvLSTM architectures for meteorological prediction tasks,
demonstrating both the potential and limitations of these approaches when applied to radar data from
the SHMÚ. Two variants of the ConvLSTM network were used, trained with different loss functions
(MSE, Perceptual Loss, and their combination). Most of the tested combinations of used network and
loss functions failed to produce sharp images, preserve colors, or capture movement patterns. Only
the encoder-decoder variant with 5 ConvLSTM layers shows superior performance in capturing cloud
movement patterns (with a slight reduction in image quality), particularly evident in binarized image
analysis.

Future work should focus on optimizingmulti-step predictions and conductingmore experiments with
more hyperparameters, incorporating additional meteorological data (e.g., wind direction, temperature),
or exploring other architectures, such as DYffusion [22]. It might also be interesting to explore the use
of a Variational Autoencoder [23] instead of the original autoencoder, as it models a well-structured and
continuous latent space where even randomly selected or interpolated latent representations between
training samples produce coherent and realistic images.

Acknowledgments

We would like to express our sincere gratitude to the Slovak Hydrometeorological Institute (shmu.sk)
for generously providing the data that were essential for this research.

Declaration on Generative AI

During the preparation of this work, the authors utilized ChatGPT, Grok, and Grammarly to translate,
paraphrase, refine the writing style, and verify the grammar and spelling of the entire paper, as well as
to draft sections of the paper, including the Abstract, Introduction, and Conclusion. After using these
tools/services, the authors reviewed and edited the content as needed, taking full responsibility for the
publication’s content.

References

[1] A. B. of Meterorology, How does a weather radar work?, Available on the Internet: https://
media.bom.gov.au/social/blog/1459/how-does-a-weather-radar-work/, 2017. [cit. 2. 7. 2025].

[2] W. contributors, Numerical weather prediction — Wikipedia, the free encyclopedia, Available on
the Internet: https://en.wikipedia.org/w/index.php?title=Numerical_weather_prediction&oldid=
1185267885, 2023. [cit. 2. 7. 2025].

[3] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional lstm network:
A machine learning approach for precipitation nowcasting, Advances in neural information
processing systems 28 (2015).

[4] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmen-
tation, in: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, Springer,
2015, pp. 234–241.

[5] K. Singh, Types of satellite imagery, Available on the Internet: https://pangeography.com/types-
of-satellite-imagery/, 2023. [cit. 2. 7. 2025].

[6] E. Shi, Q. Li, D. Gu, Z. Zhao, Convolutional neural networks applied on weather radar echo
extrapolation, DEStech Trans. Comput. Sci. Eng (2017).

[7] L. Berthomier, B. Pradel, L. Perez, Cloud cover nowcasting with deep learning, in: 2020 Tenth
International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE, 2020,
pp. 1–6.

shmu.sk
https://media.bom.gov.au/social/blog/1459/how-does-a-weather-radar-work/
https://media.bom.gov.au/social/blog/1459/how-does-a-weather-radar-work/
https://en.wikipedia.org/w/index.php?title=Numerical_weather_prediction&oldid=1185267885
https://en.wikipedia.org/w/index.php?title=Numerical_weather_prediction&oldid=1185267885
https://pangeography.com/types-of-satellite-imagery/
https://pangeography.com/types-of-satellite-imagery/


[8] Y. Wang, M. Long, J. Wang, Z. Gao, P. S. Yu, Predrnn: Recurrent neural networks for predictive
learning using spatiotemporal lstms, Advances in neural information processing systems 30 (2017).

[9] D. N. Tuyen, T. M. Tuan, X.-H. Le, N. T. Tung, T. K. Chau, P. Van Hai, V. C. Gerogiannis, L. H. Son,
Rainpredrnn: A new approach for precipitation nowcasting with weather radar echo images based
on deep learning, Axioms 11 (2022) 107.

[10] C. Kaparakis, S. Mehrkanoon, Wf-unet: Weather fusion unet for precipitation nowcasting, arXiv
preprint arXiv:2302.04102 (2023).

[11] D. Li, Y. Liu, C. Chen, Msdm v1. 0: A machine learning model for precipitation nowcasting over
eastern china using multisource data, Geoscientific Model Development 14 (2021) 4019–4034.

[12] P. Demetrakopoulos, Short-term precipitation forecasting in the netherlands: An application of
convolutional lstm neural networks to weather radar data, arXiv preprint arXiv:2312.01197 (2023).

[13] S. Imran, T. Anuradha, R. Bharat, Radar based precipitation nowcasting prediction by using deep
learning techniques, in: E3S Web of Conferences, volume 405, EDP Sciences, 2023, p. 04003.

[14] SHMÚ, Slovenská rádiolokačná sieť, Available on the Internet: https://www.shmu.sk/sk/?page=
1566, 2025. [cit. 2. 7. 2025].

[15] R. Panda, Video frame prediction using convlstm network in pytorch, Available on the
Internet: https://sladewinter.medium.com/video-frame-prediction-using-convlstm-network-in-
pytorch-b5210a6ce582/, 2021. [cit. 2. 7. 2025].

[16] J. Kadupitiya, G. Fox, V. Jadhao, Survey on deep learning models for time series data, 2020.
doi:10.13140/RG.2.2.26413.92649.

[17] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools (2000).
[18] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep

features as a perceptual metric, in: CVPR, 2018.
[19] F. Chollet, Transfer learning & fine-tuning, Available on the Internet: https://keras.io/guides/

transfer_learning/, 2023. [cit. 2. 7. 2025].
[20] M. Bock, A. Hölzemann, M. Moeller, K. Van Laerhoven, Improving deep learning for har with

shallow lstms, in: Proceedings of the 2021 ACM International Symposium onWearable Computers,
2021, pp. 7–12.

[21] P. Datta, All about structural similarity index (ssim): Theory + code in pytorch, Available on the
Internet: https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-
pytorch-6551b455541e, 2020. [cit. 2. 7. 2025].

[22] S. Rühling Cachay, B. Zhao, H. Joren, R. Yu, Dyffusion: A dynamics-informed diffusion model
for spatiotemporal forecasting, Advances in neural information processing systems 36 (2023)
45259–45287.

[23] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114 (2013).

https://www.shmu.sk/sk/?page=1566
https://www.shmu.sk/sk/?page=1566
https://sladewinter.medium.com/video-frame-prediction-using-convlstm-network-in-pytorch-b5210a6ce582/
https://sladewinter.medium.com/video-frame-prediction-using-convlstm-network-in-pytorch-b5210a6ce582/
http://dx.doi.org/10.13140/RG.2.2.26413.92649
https://keras.io/guides/transfer_learning/
https://keras.io/guides/transfer_learning/
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e

	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Architecture Models
	3.2.1 Baseline ConvLSTM
	3.2.2 Encoder-Decoder ConvLSTM


	4 Experimental Evaluation
	4.1 Data Preprocessing
	4.2 Training
	4.3 Evaluation of Models

	5 Results and Discussion
	6 Conclusion and Future Works

