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Abstract
Modern multi-agent systems are built on improvisation. Large language model (LLM) agents reason flexibly but
communicate opaquely: they make decisions without explaining intent, escalate ambiguously when stuck, and
lose context across interactions. Current orchestration frameworks attempt to resolve this by using LLMs to
interpret other LLMs’ outputs, creating uncertainty cascades where each interpretive layer compounds drift and
error.

We argue that reliable hybrid-intelligence systems require a protocol layer that separates coordination from
content. We present UpFormat, a communication protocol that treats agent interactions as structured data
contracts rather than unstructured text exchanges. UpFormat introduces explicit coordination signals that make
communication transparent, traceable, and auditable, while preserving the generative flexibility of LLMs for
semantic reasoning. Through lightweight semantic metadata, UpFormat enables interoperability with knowledge
graphs and symbolic reasoning systems without mandatory ontology commitment.

Through structured reasoning, targeted feedback, and semantic hooks, UpFormat turns agent collaboration
into an engineering problem rather than an interpretation challenge. We show how UpFormat brings deterministic
structure to agent collaboration, enabling explainable and accountable AI systems.

1. Introduction

Modern multi-agent systems hold significant promise for automating complex enterprise workflows,
yet most are built on improvisation. Frameworks such as LangChain [1], CrewAI [2], and AutoGen [3]
treat communication as unstructured text, leaving coordination logic as an implementation detail for
developers. Each framework allows developers to design their own state representations, error signals,
and coordination patterns—an approach that works within single deployments but fragments the
ecosystem. Agents built for one framework cannot easily interoperate with another, and orchestration
logic becomes tightly coupled to specific message formats.

Large language model (LLM) agents reason flexibly and adapt to new situations, but they communicate
opaquely: their operational state is embedded in conversational responses, forcing orchestrators to
infer whether agents can proceed from natural language. This lack of structure creates a fundamental
reliability problem. When an agent expresses uncertainty or asks a question, the system cannot
distinguish between different operational states. A model might say “I think this might need escalation”
(blocked), “I’d suggest considering escalation” (optional follow-up), or “I’ve completed this, should
I escalate?” (done, awaiting next steps). Without explicit state signals, orchestration systems must
interpret nuance instead of reading state directly.

Existing frameworks attempt to fix this by using one LLM to interpret another’s output—employing
language models to decide whether peers are “stuck,” “uncertain,” or “complete.” But LLMs are inherently
non-deterministic [4], creating uncertainty cascades where each interpretive layer compounds drift
and error [5]. As workflows scale, these cascades amplify [6], producing unstable control flow that
heuristics cannot prevent [7]. Enterprise deployments reflect this fragility: studies of AI initiative
failures frequently cite coordination reliability as a barrier to production adoption [8].
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We argue that reliable hybrid-intelligence systems require communication protocols that separate
coordination from content. We present UpFormat, a protocol that makes agent operational state
explicit through structured fields rather than conversational text. UpFormat does not remove LLM
non-determinism—the same prompt may yield different confidence scores or reasoning—but it ensures
that operational state is declared in parseable form, enabling both deterministic orchestration and
explainable decision-making.

By enforcing explicit state representation, UpFormat transforms opaque message passing into trans-
parent, debuggable data exchange. It turns agent collaboration from an interpretive exercise into an
engineering discipline, enabling accountable orchestration across heterogeneous agents.

The remainder of this paper presents the UpFormat protocol (Section 2), demonstrates its application
(Section 3), and discusses implications for accountable AI systems (Section 4).

2. UpFormat Protocol

UpFormat separates coordination semantics from data semantics in agent interactions. Rather than
embedding operational state inside payloads—which may be natural language, JSON, or other ad
hoc formats—agents communicate through structured messages that declare state fields explicitly.
This abstraction decouples the coordination layer, used for orchestration, from the payload layer,
used for content exchange, allowing systems to reason about coordination independently of payload
representation.

Any participant in an agentic workflow—LLM-based or tool—can produce and consume UpFormat
messages. An orchestration agent may signal state: needsHumanDecision when requirements are
ambiguous, while a tool may use the same state after authentication failure. UpFormat thus provides a
uniform, interpretable coordination layer across heterogeneous components while allowing payload
formats to vary freely.

2.1. Core Message Fields

Each UpFormat message includes fields for identity, lineage, and operational state:

• messageId, threadId, parentMessageId: traceable message lineage;

• state: operational state (submitted, waiting, completed, failed, needsHumanDecision,
followup);

• timestamp: message creation time;

• payload: structured data or content being communicated;

• explanation: natural-language context for the state.

These fields allow orchestrators to interpret progress and escalation consistently across agents. When
an agent signals needsHumanDecision, the orchestrator can route to human review or intervene
without secondary model interpretation. The explanation field provides rationale, while lineage
fields support transparent, auditable workflows.

2.2. Extensions

UpFormat defines optional extensions that add structure to reasoning, feedback, and semantics.

upThought – Structured Reasoning. Captures an agent’s reasoning process, questions, confidence
(0–1), and alternative approaches. It distinguishes between genuine blocking states and exploratory
clarifications, reducing ambiguity at its source.



upFeedback – Targeted Responses. Structures human or agent feedback through explicit type
(edit, approve, rank, comment, instruction), target references, and metadata (severity, priority).
Feedback may include text edits, annotations, or diffs—enabling precise, machine-readable revision
cycles rather than unstructured comments.

upContext – Semantic Metadata. Provides lightweight, self-describing metadata within the payload
layer. Rather than enforcing a shared ontology, upContext attaches semantic hints automatically
derived from structured model definitions (e.g., Pydantic or JSON Schema). Each context may include:

• entity: brief description of represented content;

• fields: field-level semantic descriptions;

• concepts: tags for categorization or routing;

• constraints: validation hints (ranges, requirements);

• schema: optional JSON Schema reference.

This design promotes interoperability among agents exchanging heterogeneous payloads. For ex-
ample, one agent may send analysis results as a JSON object while another expects tabular input; the
attached upContext describes field meanings and constraints, allowing receivers to map data correctly
without brittle name-based inference. Orchestrators rely on the coordination layer to manage workflow
logic, while agents use the payload layer—augmented with context—for semantic alignment.

By separating coordination from content and embedding minimal semantics, UpFormat turns agent
communication into structured, interpretable data exchange. The coordination layer governs interaction
flow, while the payload layer carries self-described content that remains adaptable to domain and agent
variability. This division reduces ambiguity cascades while preserving the generative flexibility that
makes LLM-based agents valuable.

We next illustrate how UpFormat’s dual-layer structure enables transparent collaboration and ex-
plainable decision-making in a hybrid agent workflow.

2.3. Implementation Approach

In practice, agents implement UpFormat through structured output validation and deterministic state
mapping. **Coordination states are set by agent code, not by LLMs.** The LLM generates structured
outputs; the agent deterministically maps these outputs to states.

When an LLM generates a response, agent code validates it against a schema (e.g., Pydantic). Con-
sider a freelancer search agent: the LLM outputs {canProceed: true, confidence: 0.45,
candidates: [...]}. The agent’s deterministic logic examines these fields: if confidence
< 0.5, it sets state: needsHumanDecision regardless of the LLM’s canProceed claim. If
canProceed=false, the state becomes needsHumanDecision with the LLM’s explanation attached.
Only when canProceed=true and confidence exceeds the threshold does the agent set state:
completed.

If validation fails—the LLM omits required fields or produces malformed JSON—the agent prompts:
“Either fix the validation errors, or explain why human intervention is needed.” Using structured
output formats (e.g., OpenAI structured output), the LLM responds with an enumerated choice: fixed,
needHuman, or beyondCapability. The agent deterministically maps these: fixed triggers re-
validation; needHuman becomes state: needsHumanDecision; beyondCapability becomes
state: failed. In both validation paths, the LLM provides explanations and reasoning, but state
assignment is purely deterministic agent logic operating on structured LLM outputs.

This hybrid architecture channels LLM flexibility through explicit checkpoints. The same prompt
may yield confidence: 0.45 in one run and 0.52 in another, but the agent’s threshold-based
logic ensures consistent routing: low-confidence outputs always escalate to humans. By making the



LLM declare canProceed and confidence explicitly rather than embedding uncertainty in conversa-
tional hedging, UpFormat transforms coordination from an interpretation problem into a deterministic
mapping problem.

2.4. Semantic Interoperability

UpFormat’s upContext extension bridges pragmatic self-description and formal semantics. While
avoiding mandatory ontology commitment, upContext enables optional semantic enrichment that
supports integration with knowledge graphs, symbolic reasoning systems, and existing Semantic Web
infrastructure.
Concept Linking: Tags in upContext.concepts may reference formal ontologies (Schema.org,

Wikidata, domain ontologies) when semantic precision or cross-system integration is required. An
agent describing freelancer candidates might use concepts: ["schema:Person", "wikidata:Q5", "soft-
ware_engineer"], mixing formal terms with domain vocabulary. Fields can reference RDF predicates,
constraints can encode validation rules, and the JSON structure maps to JSON-LD contexts for systems
requiring RDF serialization.

Hybrid Reasoning: The separation between LLM-based agents and symbolic reasoners is deliberate.
UpFormat messages serve as structured interfaces: LLMs produce natural language explanations,
confidence scores, and content within the payload; symbolic systems consume the coordination layer
(state, upThought) and upContext annotations to apply formal logic. A compliance system might validate
upContext.constraints against SHACL shapes, or a policy engine might evaluate upThought.confidence
thresholds using rule-based decision trees. The LLM does not perform symbolic reasoning—it declares
what it knows and how confident it is, leaving deductive inference to specialized systems designed for
that purpose.

This design philosophy—"semantic hooks without semantic mandates"—allows UpFormat to span
the neural-symbolic divide without forcing either paradigm into the other’s computational model.
LLMs excel at content generation and pattern recognition; symbolic systems excel at formal validation
and logical inference. UpFormat provides the structured communication layer that allows each to
operate in its domain of strength while coordinating effectively. The protocol supports a spectrum
of integration: from purely neural systems using free-text tags to tightly coupled hybrid systems
where every upContext field references a formal ontology and external reasoners validate semantic
consistency.

3. Illustrative Use Case: Human-in-the-Loop Shortlisting

We demonstrate UpFormat in a hybrid hiring workflow involving an Orchestrator, a Freelancer
Recommender Agent, an Email Tool, and a Human reviewer. The scenario highlights explicit state
coordination and payload mediation through upContext.

3.1. Scenario

The Orchestrator requests freelancer recommendations. The Recommender detects a missing location
and signals state: needsHumanDecision, with upContext describing the required field. The
Orchestrator routes the request to the Human, who provides the location via upFeedback. The
Orchestrator forwards this feedback to the Recommender.

The Recommender returns a ranked candidate list with semantic metadata. The Orchestrator then
signals state: followup to the Human, offering the option to select specific candidates; if no
response is received, it defaults to inviting the top two. Finally, the Orchestrator invokes the Email
Tool to send invitations. Because the Email Tool expects a different schema, the Orchestrator uses
upContext from both agents to map fields (e.g., candidates[].email→ recipients[]), avoiding
brittle, hardcoded conversions.



Figure 1: UpFormat coordination in a human-in-the-loop hiring workflow. The Orchestrator uses explicit states
for routing and upContext for schema mediation between the Recommender and Email Tool. The followup
state enables optional human input with a default fallback.

3.2. Key Observations

Coordination remains explicit through operational state signals. When the Recommender signals
needsHumanDecision, the Orchestrator routes to the Human for required input; when the Orchestra-
tor signals followup, it indicates an optional refinement step with a default fallback.

The upContext extension enables semantic interoperability. The Recommender’s output may in-
clude fields.email: "contact address", while the Email Tool expects fields.recipients:
"email addresses". The Orchestrator uses these semantic descriptions to align payloads without
name-based inference. Together, explicit state transitions and self-describing payloads make coordina-
tion transparent, extensible, and resilient to schema variation across agents.

4. Related Work

UpFormat builds on decades of agent communication research, adapting classical approaches for the
LLM era. The challenge of coordinating autonomous agents through structured communication has
deep roots in distributed AI, and UpFormat inherits key insights while addressing new requirements
introduced by neural language models.

Early Agent Communication Languages: KQML (Knowledge Query and Manipulation Language),
developed in the early 1990s as part of the DARPA Knowledge Sharing Effort, pioneered the use of
performatives—speech acts defining permissible agent operations [9]. Building on KQML, FIPA-ACL



(Agent Communication Language) emerged as a standardized approach with formal speech-act seman-
tics, defining message parameters including performatives, content, and ontology references [10]. Both
protocols established the principle that agent coordination requires explicit communication primitives
rather than implicit inference from unstructured messages. UpFormat inherits this architectural insight:
operational state should be declared, not inferred. However, KQML and FIPA-ACL rely on shared on-
tologies for semantic interoperability. This can be a barrier when agents do not agree on or have access
to the shared vocabulary. UpFormat relaxes this requirement through upContext’s lightweight semantic
hooks that leverage LLMs for functional natural language annotations, while allowing opportunistic
ontology/URI referencing.
Semantic Web Services: SAWSDL (Semantic Annotations for WSDL and XML Schema) defines

extension attributes for adding semantic annotations to web service descriptions, allowing concepts
from external semantic models to be referenced within WSDL components [11]. OWL-S provides
an ontology within the OWL framework for describing semantic web services, enabling automatic
discovery, invocation, and composition through service profiles, process models, and groundings [12].
These approaches demonstrated how semantic metadata could augment service descriptions without
requiring complete ontological commitment at every layer.

UpFormat’s upContext draws directly from this lineage: like SAWSDL, it attaches semantic annota-
tions to structured definitions (here, agent message schemas rather than WSDL); like OWL-S, it enables
discovery and composition through self-describing metadata. The key adaptation for LLM agents is
automation: upContext derives semantics from model definitions (Pydantic, JSON Schema) rather than
requiring manual SAWSDL annotation, reducing the engineering overhead that limited Semantic Web
service adoption.
Contemporary Agent Protocols: Recently, the Agent2Agent (A2A) Protocol by Google and sup-

ported by industry partners, addresses agent-to-agent communication through standardized HTTP-
based interactions, agent cards for capability discovery, and task-oriented collaboration [13]. A2A
focuses on cross-platform agent interoperability and treats agents as opaque services that can delegate
tasks without revealing internal implementations. Similarly, Anthropic’s Model Context Protocol (MCP)
provides standardized interfaces for LLM-tool integration, enabling LLMs to interact with external data
sources and services [14].

UpFormat complements these protocols by addressing a different architectural layer. While A2A
and MCP define how agents discover and delegate to each other or access external resources (the
"outer loop" of task management), UpFormat specifies how agents structure their operational state
and payload semantics within messages (the "inner loop" of coordination). A2A’s task delegation or
MCP’s tool invocations could carry UpFormat messages: requests might contain UpFormat’s state
and upThought fields to make agent reasoning explicit during task execution. Where A2A and MCP
optimize for cross-platform interoperability, UpFormat optimizes for transparency and accountability
within orchestrated workflows.

UpFormat’s Distinctive Position: To our knowledge, no prior protocol explicitly separates agent
coordination semantics from payload semantics while remaining both ontology-agnostic and LLM-
compatible. KQML and FIPA-ACL require ontology commitment; SAWSDL and OWL-S target web
services rather than conversational agents; A2A and MCP focus on task delegation and tool access
rather than explicit operational state. UpFormat fills this gap by making coordination state (needsHu-
manDecision, followup, completed) a first-class protocol concern while keeping semantic annotation
lightweight and optional, enabling deterministic orchestration of non-deterministic LLM agents.

5. Conclusion and Future Work

We presented UpFormat, a structured communication protocol that separates coordination seman-
tics from content generation in multi-agent systems. By requiring agents to declare operational
state explicitly through structured fields, UpFormat enables deterministic orchestration even when
LLM-generated content varies. The protocol’s separation of coordination layer (explicit states



like needsHumanDecision, followup, completed) from payload layer (self-describing data with
upContext) eliminates the need to use LLMs to interpret other LLMs’ outputs, addressing the uncer-
tainty cascade problem in current multi-agent frameworks.

5.1. Future Work

Several directions merit exploration: (1) establishing UpFormat as an open standard with reference
implementations and framework integrations (LangChain, AutoGen, CrewAI); (2) extending to federated
settings where agents from different organizations collaborate; (3) integration with formal ontologies
and knowledge graphs for richer semantic reasoning; and (4) empirical evaluation comparing UpFormat-
based systems against traditional approaches on metrics like escalation precision, coordination failures,
and system debuggability. As multi-agent systems move from prototypes to production, explicit
communication protocols become essential infrastructure for building accountable, debuggable, and
reliable AI collaboration.
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A. Appendix: UpFormat Specification Reference

This appendix provides a reference for UpFormat’s core message structure and operational states. Up-
Format is under active development, and the specification continues to evolve based on implementation
experience and community feedback.

Field Description Type/Values
messageId Unique message identifier UUID
threadId Conversation thread identifier UUID
parentMessageId Reference to parent message UUID (optional)
timestamp Message creation time ISO 8601 datetime
state Operational state (see below) Enum
payload Domain-specific data JSON object
explanation Natural language context String
agentId Sending agent identifier String (optional)

Table 1
Core UpFormat message fields

Operational States
submitted Task submitted for processing
waiting Waiting for external dependency
completed Task successfully completed
failed Task failed (unrecoverable error)
needsHumanDecision Requires human input to proceed (blocking)
followup Task complete, optional refinement available (non-blocking)
cancelled Task cancelled before completion

Optional Extensions
upThought Structured reasoning: reasoning (array), questions (array),

confidence (0-1), canProceed (boolean), alternatives (array),
assumptions (array)

upFeedback Targeted feedback: type (edit/approve/reject/rank/comment/instruc-
tion), target (message/part reference), content (text/edits/annota-
tions), metadata (severity, priority)

upContext Semantic metadata: entity (description), fields (field descriptions),
concepts (tags), constraints (validation hints), schema (JSON
Schema reference)

Table 2
UpFormat operational states and optional extensions

https://a2aprotocol.ai
https://a2aprotocol.ai
https://modelcontextprotocol.io


From State To State Trigger Condition
submitted needsHumanDecision Missing required information
submitted completed Task finished successfully
submitted waiting External dependency required
needsHumanDecision submitted Human provides input
completed followup Optional refinement offered
followup submitted Human requests changes

Table 3
Common state transitions
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