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Abstract
As LLM-based agents become integral to workflows, enabling accurate task execution through collaboration
between multiple agents and humans has emerged as a critical research challenge. Knowledge graphs (KGs)
support semantic consistency but are often incomplete in dynamic domains. We propose a method combining
(1) autonomous extraction of structured knowledge from inter-agent discussions, (2) integration into a shared
evolving KG, and (3) consensus-driven refinement during task execution. Preliminary experiments compared two
configurations: one implementing all components and another omitting consensus. Incorporating consensus
increased non-taxonomic relations by 15% and improved relation precision from 79% to 97%, confirming its
effectiveness. Future work will examine how refined knowledge impacts overall task accuracy.
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1. Introduction

As AI agents powered by large language models (LLMs) become increasingly integrated into real-world
workflows, there is growing demand for accurate and reliable task execution. Collaborative frameworks
involving multiple agents [1, 2, 3] and human-in-the-loop approaches [4] have been proposed to align
task outputs with human intent. While many tasks require up-to-date domain knowledge, LLMs only
store knowledge learned during pretraining. Fine-tuning is one way to incorporate new knowledge, but
it demands enormous time and computational resources, making it impractical for frequent updates.

Retrieval-Augmented Generation (RAG) [5] addresses this by combining LLMs with external knowl-
edge bases. Among candidates, vector-search-based document databases [6] and knowledge graphs
(KGs) [7] are promising. Vector-based stores retrieve semantically similar documents but cannot guar-
antee accurate relationships. In contrast, KGs explicitly represent semantic relations, making them
suitable for complex reasoning and consistency checks.

To utilize KGs in RAG, it is necessary to construct the graph itself. Public KGs such as Wikidata1 are
often insufficient for domains with fluid structures, where knowledge must adapt to emerging entities
and shifting relationships. Agents must therefore update and reorganize knowledge representations to
respond effectively to changing requirements.
This study proposes a framework to enhance task accuracy by organizing and sharing knowledge

extracted from input materials. It consists of three components: (1) autonomous extraction of structured
knowledge; (2) construction of a shared KG; and (3) consensus-based refinement through “KG update
meetings.” To validate the approach, we conducted experiments using ACT-generated dialogue logs [1]
as input. Results show that consensus-based refinement increased the qunantity of non-taxonomic
relations by 15% and improved precision from 79% to 97%.
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2. Preliminaries

2.1. Teminology

To ensure clarity, we define key terms used throughout this paper:
Task Resolution. The process of generating an output artifact that satisfies a user-specified task
instruction. Task resolution involves interpreting the input task and producing a coherent deliverable
aligned with the given requirements.
Agent. In this study, an agent refers to an AI entity that performs a specific role based on a consistent
objective and persona. Each agent operates by selectively employing multiple LLM prompts to accom-
plish its assigned responsibilities within the collaborative workflow.
Input Materials. We use the term input materials to denote the data targeted for knowledge extraction
during KG updates. Typically, these materials consist of textual resources—structured or unstruc-
tured—obtained through autonomous research activities such as web searches, database queries, or
interactions with external expert agents.

2.2. LLMs4OL

The LLMs4OL framework [8] investigates the hypothesis that LLMs known for their ability to capture
complex linguistic patterns, can effectively support ontology learning (OL) tasks without extensive
domain-specific training. Specifically, LLMs4OL evaluates multiple LLM families under zero-shot
prompting for three core OL tasks:

• Term Typing: Assigning ontological types to extracted terms.
• Taxonomy Discovery: Identifying hierarchical relationships among concepts.
• Non-Taxonomic Relation Extraction: Detecting semantic relations beyond hierarchical struc-
tures.

Empirical results show that LLMs generalize effectively across diverse ontological domains, including
lexical (WordNet), geographical (GeoNames), and biomedical (UMLS), offering a scalable alternative to
manual curation.

Our research builds upon this paradigm by adopting the same three tasks as foundational components
of our methodology to build KGs. By leveraging LLMs in these processes, we aim to enhance semantic
consistency, aligning with the principles established by LLMs4OL.

2.3. ACT

Our research assumes a framework in which multiple agents autonomously conduct researches and
collaboratively generate outputs, similar in spirit to ACT [1]. ACT operationalizes complex task
execution through a four-phase workflow:

1. Agent Generation: The input task is decomposed into subtasks, and agents are dynamically
instantiated and assigned responsibility for each subtask.

2. Team Meeting: Agents engage in a collaborative discussion to refine the overall task design
and their respective subtasks. A randomly selected leader fuses individual task proposals into
a coherent team-level plan, ensuring feasibility and alignment; agents also acquire structured
knowledge of others’ approaches.

3. Break Time: Each agent independently analyzes its contribution and deepens its expertise. To
that end, agents dynamically generate expert agents and conduct focused interviews to expand
task-relevant knowledge.

4. Production Meeting: Agents share accumulated insights and integrate their contributions to
produce the final output aligned with the team-level task.



Inspired by this paradigm, our study proposes a method for consolidating the outcomes of agents’
discussions and the findings from their autonomous research into a formal KG. Rather than limiting
knowledge to ACT’s internal representation for coordination, we leverage agents’ interactions and
external knowledge sources to populate and refine a KG.

3. Methodology

3.1. Overview of Task Resolution

Let 𝑥 denote an input task specification and 𝑦 the desired final output. The framework resolves 𝑥
through four phases, while maintaining a persistent knowledge graph (KG) that evolves across tasks:

1. Agent Generation. The task 𝑥 is decomposed into subtasks 𝒮 = {𝑠1, … , 𝑠𝑚}. For each 𝑠𝑗, we
instantiate an agent 𝑎𝑖 with a persona 𝜋𝑖 and a role-specific task descriptor 𝜗𝑖, forming a team
𝐴 = {𝑎1, … , 𝑎𝑛}.

2. Individual Research. Each agent autonomously gathers input materials 𝑀𝑖 (e.g., web/DB
documents or outputs from external agents) guided by (𝜋𝑖, 𝜗𝑖) and a KG-conditioned view 𝑉𝑖 of
the current graph 𝐾𝐺(𝑡). Formally,

𝑉𝑖 = Select(𝐾𝐺(𝑡), 𝜋𝑖, 𝜗𝑖), 𝑀𝑖 = Research(𝜋𝑖, 𝜗𝑖, 𝑉𝑖).

3. KG Update Meeting. Agents propose knowledge extractions from {𝑀𝑖} under a consensus
protocol (Sec. 3.3), yielding a consolidated update Δ𝐾𝐺 and an updated graph 𝐾𝐺(𝑡+1).

4. Output Production Meeting. Referencing 𝐾𝐺(𝑡+1), agents iteratively co-author the final output
𝑦 under the same consensus protocol.

The KG is reused across tasks and updated monotonically with conflict handling, enabling long-horizon
knowledge reuse and consistent decision-making. This study focuses on KG generation and does not
specify details of individual research or output production beyond aspects relevant to KG construction.

3.2. Knowledge Extraction Pipeline

The knowledge graph at iteration 𝑡 is represented as

𝐾𝐺(𝑡) = (𝑇 (𝑡), 𝐶(𝑡), 𝑅(𝑡)NT, 𝑅
(𝑡)
TAX),

where:

nosep 𝑇 (𝑡): set of terms (entities/concepts),
nosep 𝐶(𝑡): set of types (the first level classes of the taxonomy),
nosep 𝑅(𝑡)NT: set of non-taxonomic relations,

nosep 𝑅(𝑡)TAX: set of taxonomic (IS-A) relations.

Given input materials 𝑀 collected by agents, the update process for 𝐾𝐺 consists of the following
steps:

(i) Term Extraction. Extract domain-specific terms from 𝑀:

𝑇 cand = 𝑔term(𝑀)

Merge with existing terms:
𝑇 (𝑡+1) = 𝑇 (𝑡) ∪ 𝑇 cand.



(ii) Non-Taxonomic Relation Extraction. Identify semantic relations among terms:

𝑅candNT = 𝑔nt(𝑇 (𝑡+1), 𝑀).

Merge with existing relations:
𝑅(𝑡+1)NT = 𝑅(𝑡)NT ∪ 𝑅candNT .

(iii) Type Extraction. Generate candidate types incrementally:

𝐶(𝑡+1) = 𝑔type(𝑇 (𝑡+1), 𝐶(𝑡), 𝑀).

This design allows dynamic type induction without relying on a fixed schema.

(iv) Type Assignment. Assign each term in 𝑇 (𝑡+1) to exactly one type in 𝐶(𝑡+1). Formally:

𝛼 ∶ 𝑇 (𝑡+1) → 𝐶(𝑡+1),

where 𝛼(𝜏) returns the unique type 𝑐𝑗 ∈ 𝐶(𝑡+1) that best represents term 𝜏. If no suitable type exists, a
new type candidate may be introduced during 𝑔type in the next iteration.

(v) Taxonomic Relation Extraction. For each type 𝑐𝑗 ∈ 𝐶(𝑡+1), extract hierarchical relations using:

𝑅TAX,𝑗 = 𝑔tax(𝑐𝑗, {𝜏 ∈ 𝑇 (𝑡+1) ∣ 𝛼(𝜏 ) = 𝑐𝑗}).

Aggregate all per-type results:
𝑅(𝑡+1)TAX = ⋃

𝑐𝑗∈𝐶(𝑡+1)

𝑅TAX,𝑗.

The updated knowledge graph is:

𝐾𝐺(𝑡+1) = (𝑇 (𝑡+1), 𝐶(𝑡+1), 𝑅(𝑡+1)NT , 𝑅(𝑡+1)TAX )

Conflict resolution and structural invariants (e.g., acyclicity for 𝑅TAX) are enforced during merge.

3.3. Multi-Agent Consensus Algorithm

The consensus mechanism operates as an internal control loop within each stage of the knowledge
extraction pipeline described in Section 3.2. Specifically, whenever a pipeline step—such as term
extraction, type induction, or relation identification—is executed, multiple agents collaborate to refine
the intermediate outputs before committing them to the evolving knowledge graph. Agent state.
Each agent 𝑎𝑖 is parameterized by 𝑠𝑖 = (𝜋𝑖, 𝜗𝑖), where 𝜋𝑖 encodes its persona and 𝜗𝑖 specifies the role-
dependent extraction task. The task descriptor determines which pipeline function the agent invokes,
e.g., Extract(𝑠𝑖, 𝑀𝑖), where Extract corresponds to one of the operators 𝑔term, 𝑔type, 𝑔nt, 𝑔tax defined in
Section 3.2.
Iterative consensus protocol. For a given pipeline step, the process unfolds as follows:

1. Initial Proposal. Each agent 𝑎𝑖 produces an initial candidate Δ(0)
𝑖 = Extract(𝑠𝑖, 𝑀𝑖), applying its

designated extraction operator to its local input materials.
2. Opinion Statement. At iteration 𝑘, agent 𝑎𝑖 emits an opinion

𝑜(𝑘)𝑖 = (𝛽(𝑘)𝑖 , 𝛿 (𝑘)𝑖 , 𝜌(𝑘)𝑖 ), where 𝛽(𝑘)𝑖 denotes elements to modify in the current shared candidate set,
𝛿 (𝑘)𝑖 denotes elements to add and 𝜌(𝑘)𝑖 ∈ True, False denotes agreement flag indicating whether
the agent accepts the current state.

3. Opinion Aggregation. A designated leader ℓ𝑘 integrates all opinions into a consolidated agenda
Ω(𝑘) = Integrate(𝑜(𝑘)𝑖

𝑛
𝑖=1), summarizing required modifications and additions.



Figure 1: Evolution of the hierarchical structure within the “QualityAssessment” type. Newly added nodes are
indicated with asterisks(∗), and nodes with relationships changed are indicated with hashes(#).

4. Regeneration. Each agent revises its proposal conditioned on Ω(𝑘):
Δ(𝑘+1)
𝑖 = Regenerate(𝑠𝑖, Ω

(𝑘)).

The loop terminates when all agents agree (∀𝑖 ∶ 𝜌(𝑘)𝑖 = True) or the maximum iteration count 𝑇max is
reached (three in our experiments). The finalized proposals are then merged into the global knowledge
graph using a conflict-aware operator. This design ensures that consensus-driven refinement occurs at
every pipeline stage, yielding a more coherent and structurally consistent 𝐾𝐺(𝑡+1).

4. Experiments

4.1. Datasets and settings

We simulated a scenario where input materials arise from agents conducting individual research and
interacting with external agents. For this simulation, we employed the ACT framework to generate
input materials. ACT was executed using the Reddit CreativeWriting dataset [1], which consists of 6,673
non-factoid QA pairs extracted from Reddit posts and categorized into five domains: Tea, Cafe, Design,
Architecture, and Fashion. From the Tea category, we randomly selected four questions and assigned
each as a subtask to one of four agents. The agents then performed the Team Meeting and Break Time
(cf. section 2.3) phases of ACT. During Break Time, each agent instantiated a domain-specific expert
agent and conducted an interview of 24–26 turns, resulting in four dialogue logs. These logs were
treated as input materials for our framework (denoted as 𝑀1 through 𝑀4 in Section 3.1). We conducted
two experiments:

Experiment 1: We varied the number of input materials |𝑀| from 1 to 4 to examine how KG evolves
as more materials are incorporated. In this setting, consensus-based refinement was omitted; initial
proposals Δ(0) were directly applied to KG updates. Experiment 2: Using all four input materials, we
compared KG construction with and without consensus, focusing on the number and precision of
non-taxonomic relations. Precision was computed as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). The authors manually inspected
each input material: a relation was labeled true positive if its semantics were supported by the material,
and false positive otherwise.
All experimental processes were implemented using GPT-4o mini.



4.2. Experiment 1: Progressive KG Development

This experiment is aimed to assess the feasibility of incremental knowledge graph (KG) expansion.
We constructed four KGs using one to four input ma- terials to analyze graph evolution. As input
increased, the KG is expanded to more detailed structures with non-taxonomic relationships. Ultimately,
nine types were extracted: BrewingFactors, HealthImpact, OdorManagement, Qual- ityAssessment,
SellerCategory, StorageMethod, TeaOrigin, TeaStoragePractices, and TeaType.

Findings from Structural Evolution. Figure 1 presents the evolution of the hierarchical structure
with respect to the QualityAssessment type as input materials are incrementally incorporated. Our
analysis yields the following three findings: (1) Despite being independently generated, the four graphs
exhibit recurring structural patterns. This indicates a degree of logical reproducibility in how agents
organize knowledge, suggesting that the process is not entirely arbitrary. (2) In contrast, nodes such as
FlavorProfile show high positional variability across graphs. This suggests possible inconsistencies in
terminology or semantic boundaries, highlighting areas where the schema may require re- finement. (3)
These observations underscore the importance to evaluate the ro- bustness of the knowledge structure
when incorporating new information. Such evaluation serves as a diagnostic tool to identify unstable
areas and assess the overall coherence and validity of the resulting graph.

4.3. Experiment 2: Refining the KG via Multi-Agent Consensus

We compared KG construction with and without the consensus mechanism. The number of the re-
lations increased from 33 to 38, and the precision improved from 79% to 97%. Agents’ consensus
corrected errors such as reversed entities (e.g., ('BakingSoda', 'uses', 'OdorNeutralization')).
Challenges included concretizing general relations and simplifying overly descriptive types. For in-
stance, (Darjeeling, hasBrewingTechnique, BrewingTechnique) lacked specific attributes, and
(Tea, benefitsFromStorageTechnique, CoolAndDryPlace) could be better structured. Such im-
provements are a subject for future work.

5. Conclusion

This study proposed a framework in which multiple AI agents collaboratively execute tasks while
constructing and refining a knowledge graphs (KGs) in do- mains with fluid knowledge structures. Using
an LLM-based knowledge extrac- tion, we built a KG incorporating both taxonomic and non-taxonomic
relations and analyzed its evolution quality through repeated task execution. Our evaluation implies
that the KG structure exhibits varying stability― some components remain consistent across tasks,
while others require refinement. This suggests a strategy for improving reliability by focusing on
unstable regions. We also demonstrated that multi-agent consensus enhances the quality of extracted
knowledge. Specifically, the proportion of logically valid non-taxonomic

relationships was improved from 79% to 97%, confirming the effectiveness of collaborative refinement.
Future work will explore algorithmic improvements to further enhance the accuracy in creating KGs
and in resolving tasks using created KGs.
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