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Abstract
High-quality ontology engineering traditionally prioritizes complete, reusable domain models. While effective
for broad reuse, this “ontology-first” approach can misalign with the needs of strategic decision makers, who
need targeted, actionable insights on constrained timelines. This paper introduces a value-first framework that
inverts this process, beginning with the strategic goals, jobs, and knowledge gaps of business leaders to generate
lean, purpose-built knowledge graph that delivers immediate value. In a pilot project with CompanyA, we
applied this framework to the wind energy ecosystem, successfully answering 15 distinct knowledge questions.
To demonstrate this, we focus on one such question out of 15, analyzing data from 35 companies collected
at WindEnergy Hamburg 2024. Our findings show that this approach not only answers knowledge questions
effectively through tailored visualizations but also uncovers critical blind spots—such as the intermediary roles of
consulting firms—that conventional business ecosystem analyses would necessarily miss.
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1. Introduction

A business ecosystem is not just a collection of isolated entities but a dynamic system, much like a
biological one [1, 2]. Its dynamism emerges from its active organizations (e.g., corporations, non-profits)
interconnected by shared goals, value propositions, and relationships, creating a causal unity. This
unity, however, presents a double-edged sword. On the one hand, it can foster innovation and shared
success for these actors; on the other, disruptions [3] within the ecosystem (e.g., a key player’s failure
or an innovation) can significantly affect the entire ecosystem [1, 2].

Therefore, overlooking relationships or the implicit roles of certain actors within these ecosys-
tems [1]—what we term “blind spots”— during the decision-making process, means failing to navigate
the dangers inherent in this double-edged sword. This danger is not merely an academic oversight;
such blind spots can directly hinder practical strategic activities, obscure market opportunities, and
leave an organization vulnerable in its competitive position, which could make or break its future [1, 2].
Therefore, effectively uncovering such blind spots demands practical, structured approaches, where
Ontology and Knowledge Graph Engineering (OKGE) offer significant promise [4, 5, 6].

Current OKGE methodologies, however, create a fundamental mismatch with the needs of strate-
gic decision-makers (e.g., Business Development Managers, Chief Innovation Officers). For example,
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established OKGE frameworks (e.g., METHONTOLOGY [7]) offer valuable methodologies for engineer-
ing comprehensive, reusable domain models. To serve broad communities, their process is logically
organized around domain completeness and user needs. Nevertheless, strategic decision-makers face a
different challenge entirely. They need targeted competitive intelligence that directly answers specific
business questions (e.g., Can we offer additional services to our potential or current customers?) to make
the decision quickly, rather than comprehensive domain representations [8, 9].

This mismatch represents a fundamental quality and expectation gap in how OKGE creates value.
Current methodologies treat strategic insight as an afterthought—an emergent property of a technically
sound model. The philosophy is: build a complete, consistent ontology first, assuming strategic value
will eventually follow. Strategic decision-makers need the inverse: a targeted ontology, designed
specifically around their knowledge gaps, to help them get their job done [3], whether that job is driving
revenue growth, fostering innovation, and gaining a competitive advantage [3, 10].

Therefore, bridging this gap requires a paradigm shift. Ontology engineering must explicitly organize
the development process around strategic business objectives as the primary design driver, rather than
treating strategic value as an emergent consideration. This demands new frameworks that explicitly
translate strategic goals directly into ontology design decisions— from initial value definition to final
value delivery—to get decision makers’ job done [3].

This pressing pragmatic need leads to our research question: How can strategic business objectives be
systematically operationalized as the foundational organizing principle for ontology and knowledge graph
engineering to enable competitive intelligence in dynamic business ecosystems?

To address this, we introduce BEAR [11], a value-first framework that makes three key contributions.
First, it establishes strategic business objectives as the foundational organizing principle for OKGE,
putting it in a value-driven context. Second, it provides a systematic process to translate those objectives
into ontological design decisions. Moreover, third, it reveals critical blind spots that traditional business
ecosystem analysis in the literature misses. In the following sections, we will discuss related work,
outline BEAR’s core principles, and demonstrate its value through a case study in the wind energy
ecosystem, key findings, and future directions.

2. Background and Related Work

As we have argued in the introduction, analyzing business ecosystems requires bridging two distinct
research domains: high-level business strategy with ontology and knowledge graph engineering (OKGE).
This section builds the arguments for our approach in two steps. First, we review the state of business
ecosystem literature, to identify a critical gap: the lack of methods that are both semantically rich
and empirically grounded. Second, we argue that while OKGE is perfectly suited to fill this gap,
current ontology-centric methodologies are not explicitly designed for strategic analysis. Therefore, the
following review will show a consistent pattern of treating strategic insight as a secondary, emergent
property rather than the primary design driver, thereby establishing the critical knowledge gap that the
BEAR framework is designed to fill.

2.1. Approaches to Business Ecosystem Analysis

To analyze business ecosystems, recent data-driven methodologies utilize natural language processing
and text mining on large unstructured text corpora (e.g., company reports) [12]. These methods
typically identify relevant entities and construct interactive network visualizations based on the entity
co-occurrence within the source documents. However, relying on textual co-occurrence has significant
semantic limitations. For example, explicit intensions regarding the relationships between entities
are often missed [13] or, in the best case, inferred statistically from textual proximity (e.g, cosine
similarity) [12, 14, 15]. Therefore, this paradigm is mostly statistical/syntactic, lacking intensions crucial
for semantic analysis.

Beyond data-driven approaches, structured conceptual modeling offers alternative ways to analyze
business ecosystems, focusing on intensions [1, 16, 17, 18]. Methodologies like e3 value provide



foundations for modeling economic value exchanges, enabling the analysis of financial viability and
value flows within defined networks [18]. Some authors further explored the usability of such conceptual
modeling, for example, through tangible interfaces that aim to map complex modeling languages and
practitioner needs [19]. While these approaches provide valuable frameworks for understanding value
networks, they heavily focus on intensions rather than instances and their extensions [1, 16, 17, 18, 19],
which is necessary for deductive inference for deeper ecosystem analysis.

2.2. Ontology Engineering Methodologies: From Domain-Centric to Value-Centric

Established OKGE frameworks, such as METHONTOLOGY, offer robust methods for domain analysis
but are fundamentally product-centric [7]. They focused on defining the ontology, treating strategic
value as an indirect outcome rather than a primary engineering driver. This paradigm is evident in their
use of ontology requirements specification documents, which detail the ontology’s intended users, and
Competency Questions (CQs), much like a blueprint for a software product [7, 20]

This product-centric focus persists even in collaborative, efficiency-driven methodologies with
disintermediating efforts of ontology engineers [21]. UPON lite, which is a light version of the UPON
methodology [22], rightly critiques traditional ontology building (e.g., [7]) as too expensive and time-
consuming. Even though we agree on this criticism, the method’s focus is still on the ontology itself,
evident from its first step: defining the domain terminology [21]. Similarly, frameworks like LOT [23]
aim for greater precision in requirements by adding more granular details and options, but the goal
remains the same: to specify what the ontology must represent. A business leader, however, is still left
asking, “So what?”.

The Extreme Design (XD) methodology is notable for explicitly incorporating business value into its
design philosophy, inspired by Extreme Programming practices [24]. Its extreme lightweight ontology,
maintenance, and prototyping principles aim to deliver quick business value, rather than building
for the abstract future [24]. XD tries to capture this value through planning, where customers define
their needs via desired features and CQs. However, this is where the methodology’s business value
philosophy disconnects from its product-centric process. While customers are asked to define “business
value”, the mechanism for this is still the CQ, a tool for specifying the product’s features (See Table 1).
Furthermore, XD does not explicitly describe how to derive the initial “baseline ontology” [25] from
strategic goals. Ultimately, despite its aims and starting point, the process later focuses on building the
ontology itself, rather than building the ontology around the given strategic goals and knowledge gaps
of the stakeholders.

Even highly innovative structural approaches, such as the Modular Ontology Modelling methodology
(MOMo), illustrate this focus on the ontology as the end product. Building upon the Extreme Design
Methodology, MOMo’s guiding principle is not the traditional taxonomical (is-a ) hierarchy. Instead, it
prioritizes the modularity of the ontology, viewing each module as a part of the whole [26]. Despite this
novel and innovative approach to ontology engineering, the first two steps, as well as the example use
case descriptions of the MOMo workflow, indicate that the methodology still focuses on the ontology
itself, seeing it as the end product [26]. This journey through the current landscape, from traditional
to recent, reveals a clear and consistent theme. If we generalize, they ask the question, “What must
this ontology be able to represent?” This inevitably forces the strategic decision maker to adapt to the
model’s structure.

Therefore, a critical gap remains for a methodology that inverts this process. We argue for a shift
away from defining a model’s features and toward delivering its value. In this context, we define value
not as a model’s technical completeness or reusability but as the degree to which it closes a specific,
strategic knowledge gap for a decision-maker to get their job done and reach their or their organization’s
business goals. Therefore, an ontology became a means to an end rather than an end in itself. These
arguments lead us to ask different type of question: “What strategic question must this ontology answer
to get the job of decision maker done?”This shift is the foundation of the BEAR framework, which we
introduce next.



Table 1
The Paradigm Shift from Competency Questions (CQs) to Knowledge Questions (KQs). This table
contrasts the traditional, product-centric view of ontology requirements (CQs) with BEAR’s value-first
approach (KQs), highlighting fundamental differences in purpose, audience, and strategic outcome.

Criterion Competency Question (CQ)
(The Traditional, Ontology-First View)

Knowledge Question (KQ)
(The BEAR, Value-First View)

Primary Purpose To verify the functional scope of the
ontology. It serves as a technical "spec
sheet" for the model.

To articulate a strategic knowledge
gap of the business. It serves as the "prob-
lem statement" for the stakeholder.

Primary Audience Ontology Engineers & Knowledge
Modelers. It guides their implementa-
tion and testing.

Business Decision-Makers & Strate-
gists. It frames their problem and sets
the success criteria for the project.

Point of Origin Derived from domain analysis and use
cases. Answers: "What must our ontology
be able to represent?"

Derived from high-level business goals
and "Jobs-To-Be-Done" [3]. Answers:
"What must we know to succeed?"

Object of Inquiry The ontology itself. The question is
about the model’s capabilities (its classes,
properties, axioms).

The business ecosystem. The question is
about real-world dynamics, relationships,
and emergent structures.

Nature of Question Factual & Verificational. Typically asks
"What" or "List". It can often be answered
with a direct SPARQL query.

Analytical & Exploratory. Typically
asks "How" or "Why". The answer is an
insight revealed through reasoning and
visualization.

Role in Methodology A requirement for the design phase. It
helps define the necessary components
of the ontology.

The foundational driver for the entire
process, dictating data collection, ontol-
ogy design, and the final value delivery.

Resulting Ontology Tends to produce a comprehensive,
reusable domain ontology. The ideal is
logical completeness and correctness.

Produces a lean, purpose-built "Seed
Ontology". The ideal is pragmatic suffi-
ciency to answer the KQ.

Associated Paradigm Product-Centric. The focus is on build-
ing a robust knowledge product. Strategic
value is an expected emergent property.

Value-First. The focus is on delivering a
specific strategic answer. The ontology is
a means to that end.

Core Trade-off Risk of high development cost and cre-
ating a technically perfect model that is
strategically irrelevant (the "so what?"
problem).

Risk of creating siloed, non-reusable
graphs for each KQ, sacrificing long-term
asset building for short-term answers.

Example "Can the ontology represent a product
delivery relationship between two compa-
nies?"
or
"Can we list all the bearing manufacturers
that deliver to generator manufacturers?"

"How do specific companies establish
their positions through product/service
delivery interactions within the wind en-
ergy ecosystem?”

3. The BEAR Framework

The BEAR framework has three core processes: Value Definition, Creation, and Delivery. This section
describes the principles and workflow of each process in a sequence. The next section presents a detailed
case study to provide a clear illustration of this framework in action.



Figure 1: The BEAR framework translates business goals into strategic value delivery. Undirected edges in the
figure represent the iterative nature of the subprocesses and temporal proximity. The process moves from left to
right through three phases. (1) The value definition process begins by identifying a stakeholder’s business goals,
jobs, and knowledge gaps to formulate a specific knowledge question and formalize it into a seed ontology. (2)
Value Creation process uses that seed ontology to guide data collection and engineer a targeted knowledge
graph. (3) Value Delivery process delivers the answer to a knowledge question through query modeling and
tailored visualizations, revealing strategic insights.

3.1. Value Definition: From Business Goal to Seed Ontology

BEAR’s value definition process begins by treating decision makers as customers. The first process is
to identify their high-level business goal—goals that are strategic, informal objectives they express in
natural language. From these goals, BEAR defines the stakeholder’s specific “Jobs To Be Done (JTBD)”—
a progress a customer is trying to make in a given circumstance to advance their goals [3, 27]. By
identifying the job the decision-maker is trying to get done (e.g., "assess a new market opportunity"),
BEAR can then identify the precise knowledge gap that prevents them from completing that job
successfully, facilitating progress toward their goals.

Through collaborative elicitation (e.g., workshops, interviews, meetings), we find these business
goals, jobs, and knowledge gaps, subsequently formulating the gaps into single, consensus-driven
knowledge questions (KQ). Following iteratively refining the KQ with decision makers, BEAR engineers
analyze it to identify the core Representational Units (RUs), which are the minimal semantic components
(classes, properties, relationships), in our context, needed to answer the KQ [28]. These RUs are then
formalized into a lean Seed Ontology (SO) similar to baseline ontology [24, 25] in OWL [29], leveraging
its expressive power and formal semantics.

This SO is neither a comprehensive domain nor an application ontology. Instead, it formally represents
what the stakeholder needs to know to get their job done. It functions as a lightweight, reusable pattern
for value-first modeling, emphasizing pragmatic sufficiency over exhaustive domain coverage, much
like ontology design patterns (ODPs) promote reuse and modularity in ontology engineering [26].
In a business context, this SO provides a reusable blueprint that ontology engineers can "hire" to
address similar knowledge gaps across different ecosystems, ensuring alignment with stakeholder
jobs-to-be-done [27].

3.2. Value Creation: From Seed Ontology to Knowledge Graph

In the value creation process, SO becomes the template for designing the data collection methodology.
It ensures we only target the evidence that addresses the stakeholder knowledge gap. Based on the SO
and stakeholder agreement, we specify the exact data sources (e.g., expos, websites, databases, social
media) and collection protocols (e.g., interviews, surveys, web scraping) for the value creation process.



Once we collect the data, BEAR analyzes RUs within the collected evidence and iteratively maps
them to the developing SO. During this mapping process, BEAR employs a form of reification [30] to
handle evidence where specific information about an entity is ambiguous or incomplete (e.g., an entity
is mentioned by company type but not by company name).

This iterative mapping evolves the lean SO into a more comprehensive application ontology, and
we argue, potentially towards a reference ontology through continued iterations. Crucially, deductive
reasoning, employing standard OWL reasoners [29], plays a significant role in consistency checking
through this SO evolution.

3.3. Value Delivery: From Graph to Answering the Knowledge Question

BEAR’s third and final process, value delivery, answers the stakeholder’s KQ. Following the business
ecosystem literature, we develop interactive, tailored visualizations [12, 14]. BEAR enables these
visualizations and allows access to the enriched knowledge by modeling SPARQL queries. These
queries leverage reasoners to retrieve explicitly asserted and implicitly inferred information within the
knowledge graph.

Importantly, these inferences are not mere technical artifacts. They are the engine for revealing
strategic insights that decision makers are looking for and exposing critical blind spots— the core value
BEAR was designed to deliver.

To deliver these insights effectively, BEAR employs and advocates custom, flexible visualizations
built with libraries like D3.js [31]. We argue that standard off-the-shelf ontology visualization tools
are too rigid to answer specific knowledge questions, as they are often designed to display the overall
schema, rather than enable exploration of instance-class level interactions [32, 33]. In contrast, a tailored
visualization can provide more than just a picture of the data; it is a critical mechanism for delivering
value— an answer engineered to close the knowledge gap to get the stakeholder’s job done to reach
business goals.

4. Case Study: Applying BEAR to the Wind Energy Ecosystem

To validate and illustrate the BEAR framework, we applied it in a pilot project with CompanyA to a
real-world strategic challenge within the wind energy business ecosystem. The project followed the
three core processes of the BEAR framework.

Because we advocate for open science and reproducibility, we have made the research artifacts from
this pilot publicly available in our GitHub repository [11]. The repository includes the semi-structured
survey, the resulting knowledge graph, its visualization, and the SPARQL queries used for the selected
knowledge question. Proprietary materials, such as raw stakeholder discussions and the visualization
source code, have been excluded.

4.1. Applying Value Definition Process in the Wind Energy Ecosystem Analysis

The value definition process began with a collaborative workshop with senior leaders at CompanyA.
Their high-level business goal was clear: to drive revenue growth in the increasingly crowded wind
energy ecosystem. Nevertheless, they were struggling to reach that goal. Traditional market analysis
and business development efforts felt like they were competing against the luck [27]—trying to innovate
their business models, often with no real way to predict their organization’s success.

At this moment of struggle, we helped them articulate the specific jobs to be done, which prevented
them from making progress as advocated in the jobs to be done theory [27]. The real job they needed
to get done was: “Help us see the hidden relationships of our ecosystem so we can confidently identify
new, high-margin service opportunities and stop wasting resources and company capabilities on low-
probability bets.” This job was not the only one we identified; however, for this paper, we focus on this
one. Therefore, within this context, getting this job done was one of the ways to achieve their broader
business goal of revenue growth.



Beginning to get this job done, we had to move from their abstract struggle to concrete knowledge
gaps. Here we argue that, to get this job done, they also might need human resources, special equipment,
and many other resources; however, another important point relevant to the ontology engineering is
the knowledge gap they had: “company positions within wind energy ecosystem achieved through
product/service delivery interactions”.

As competency questions bridges the gap between the ontology engineers and stakeholders [7, 23, 34],
we formalized the knowledge gap into a Knowledge Question (KQ), however acknowleding the difference
(See Table 1), which would serve as the foundation for the rest of the BEAR process: “How do specific
companies establish their positions through product/service delivery interactions within the wind
energy ecosystem?”.

Analyzing this KQ revealed related Representational Units (RUs), such as “Company”, “Product
Delivery Interaction”, and “Service Delivery Interaction”. A systematic analysis was used to distill the
KQ into its core semantic components (Table 2). We then formalized these RUs in OWL2 to engineer
the Seed Ontology (SO), with design decisions guided explicitly by the Value-First Principle (Table 3).

Table 2
Systematic RU Analysis Process Applied to Wind Energy KQ

Step 1: Left-to-Right Parsing

Input: Complete KQ
Output: 17 candidate words
Process: Sequential word extraction: How, do, specific, companies, establish, their,

positions, through, product, service, delivery, interactions, within, the,
wind, energy, ecosystem

Step 2: POS Filtering

Input: 17 candidate words
Output: 7 selected terms
Criteria: Singular nouns and noun phrases representing domain entities, or

relationships: companies, positions, product, service, product delivery
interaction, service delivery interaction, wind energy ecosystem

Step 3: RU Selection & Normalization

Input: 7 selected terms
Output: 3 RU decisions
Principle: Model only concepts essential for answering the KQ: Company, product

delivery interaction, service delivery interaction

4.2. Applying Value Creation Process: From Seed Ontology to Application Ontology

For this application, we used the SO to guide the data collection methodology creation process directly.
We designed a semi-structured survey for rapid, open-ended data acquisition at industrial expos [11].
With stakeholder approval, we utilized this survey at WindEnergy Hamburg 2024, which is one of the
largest wind energy expos in the world [35]. This data collection process in the expo yielded 37 filled
surveys from 35 companies. After anonymizing the data, we iteratively mapped the collected RUs from
these data back onto the SO.

As anticipated, this iterative modeling process uncovered new, more abstract classes not present in
our initial SO. For example, we created a wbeo:Operator parent class to unify wbeo:GridOperator and
wbeo:WindTurbineOperator (See Figure 2). To manage these emergent abstractions with ontological
rigor, we applied the established principle of single inheritance [28]. This process also forced us to
handle incomplete data, for which we used reification—creating typed blank nodes for relationship
modelling (Figure 3).

Consequently, through this iterative process of mapping and refinement, the SO evolved into the
Wind Business Ecosystem Ontology (WBEO) [11]—an application ontology that offers a clear pathway



Table 3
Engineering the Seed Ontology with the Value-First Principle. This table shows the design decisions for
modeling key concepts from the Knowledge Question, prioritizing a lean, value-focused ontology over a
comprehensive one.

Selected Term (from KQ) Operationalization in the Seed On-
tology

Rationale (BEAR Value-First Princi-
ple)

company Modeled as a primary class:
:Company, with specific types
(e.g., ‘:BearingManufacturer‘) added as
subclasses during modeling.

The company is the central actor. Typ-
ing the companies is essential for infer-
ring the nature of their interactions.

delivery interaction Modeled as two core object proper-
ties: :deliversTo and its inverse,
:receivesFrom.

This directly captures the primary dy-
namic described in the KQ. Modeling
the action as a relationship between
companies is the most efficient way to
build the network.

product, service Not modeled as explicit classes. The
specific item being delivered is seman-
tically implied by the defined types of
the interacting ‘:Company‘ instances.

The strategic goal is to map the value
network, not to build a product catalog.
Inferring the product from the actor
types keeps the SO extremely lean and
focused on relational intelligence.

position Not modeled in the SO. Treated as
an analytical outcome.

A company’s position is an emergent
property of its network of interactions.
It is the answer we seek from the final
KG, not a concept to model at the start.

wind energy ecosystem Not modeled as a class in the SO.
It is represented by the entire instance
graph of all companies and their inter-
actions.

The ecosystem is the holistic structure
of all companies and their interactions.
The goal is to represent this emergent
structure, not define it as a single en-
tity.

towards a reference ontology for the wind energy domain. Although BEAR advocates the principle of
reuse, we developed this SO primarily from RUs due to pilot project constraints and quality concerns of
existing domain ontologies [36].

4.3. Applying Value Delivery Process: From Application Ontology to Knowledge
Question Answering

In our wind energy application, we first modeled two SPARQL queries [11] to answer KQ. We executed
these queries in GraphDB, using its OWL 2 RL (also valid in DL) reasoner [33]. This allowed us to
extract both asserted and inferred facts, such as deduced delivery links (See Figure 4 and Figure 3).

Finally, we exported these results as a JSON file and fed them into an interactive visualization
developed with D3 [31]. This final tool did more than just displaying the inferred data, it answered the
stakeholder’s KQ directly, revealing strategic blind spots through features like filtering and granularity
adjustments (See Figure 4).

In conclusion, the project resulted in several meetings of the interactive visualization with key
decision-makers within different departments at CompanyA. During the meetings, stakeholders could
explore the interactive visualization and ask follow-up questions, which led to further insights and
discussions about their business ecosystem. The value was directly apparent, leading to two key
outcomes: a richer, shared understanding of their business ecosystem and the formal approval of a new
pilot project. This second project will test the BEAR framework’s utility in a new business context,
affirming its role as a repeatable and valuable strategic tool not just for business ecosystem analysis,
but also for other strategic decision-making contexts.



Figure 2: The BEAR framework transforms semi-structured survey data into a formal Application Ontology.
This figure shows the part of the Value Creation process, where natural language responses from a business
survey filled by Organization8 (top) are mapped through RU analysis into the explicit semantic relationships of
an Application Ontology (bottom). Yellow represents the individual Organization8, blue represents the extended
classes , and red represents the seed ontology entity. For the structure of the survey, see [11].

5. Discussion

Uncovering complex structural relationships and strategic blind spots within business ecosystems
demands a semantic approach, not just syntactic analysis. While existing OKGE methodologies are
inherently semantic, they do not explicitly organize and focus their engineering processes based on
business goals, their jobs, and knowledge gaps of the stakeholders [7, 37, 38, 23, 34, 24, 21]. BEAR is
engineered precisely to bridge this gap, inspired by well established OKGE methodologies, anchoring
them within a value-first paradigm tailored for a single purpose: to answer what a decision-maker
needs to know to get the job done [27].

To answer these KQs effectively, BEAR’s robust handling of incomplete data—an everyday reality in
business ecosystems yet unaddressed in literature [1, 12, 14, 15]—is a key capability for uncovering blind
spots. For example, consider interactions occurring with a type of entity rather than a specific named
individual. When data indicates an interaction with an unspecified entity (e.g, wbeo:Organization11
wbeo:deliversTo “some” engineering consultant company), BEAR models this target using reification;
[rdf:type wbeo:EngineeringConsultantCompany]. This semantic modeling enables DL reasoners to
deduce implicit connections and consequently reveals implicit connections and reveals blind spots—
like consulting companies playing intermediary roles (Figure 4), that would otherwise remain hidden
in traditional business ecosystem analysis.



Figure 3: How BEAR Uses Reification to Connect Incomplete Data. The black asserted edges show the raw data:
Organization8 (owl:NamedIndividual) pays to an unnamed Grid Operator (bnode1) and receives some product
or service from some Wind Turbine Manufacturer (bnode2). Through inverse object property and reification, the
DL reasoner infers the implicit relationships (purple dashed line): Some Grid Operator is getting paid by the
Organization8, and some Wind Turbine Manufacturer is delivering some product or service to Organization8.
This semantic inference is the engine that connects disparate data points into a coherent knowledge graph. Note:
To demonstrate the reification more explicitly, we have shown one additional relation, which belongs to another
knowledge question about the cash flows. The dotted bfo:ObjectAggregate entity shows a path for future work:
aligning the model with an upper-level ontology [28].

5.1. The Modularity Paradox: Seeds, Silos, and Scale

Our seed ontology approach presents a fundamental tension in ontology engineering. By designing
minimal ontologies for specific KQs, we achieve direct value delivery where traditional methodologies
struggle. Yet, this focus risks creating “conceptual silos”—isolated ontologies that answer one question
with pragmatic sufficiency, but do not communicate.

Our solution to this paradox lies in BEAR’s relationship to modular ontology engineering philosophy.
Our seed ontologies are inherently modular, not in their structure, but in their value, a different sense
of MOMo [26]. Each seed ontology is a self-contained “value module”, that delivers specific insight. The
architectural challenge is, however, to prevent these modules from becoming disconnected. How do
we prevent different knowledge questions from leading to disconnected seed ontologies? For example,
in our pilot, we answered in total of 15 distinct KQs, and while we could essentially merge them
into a single Wind Business Ecosystem Ontology (WBEO) [11], a systematic integration of these seed
ontologies are needed to prevent siloing, especially as the domain of the KQs change significantly: We
had to answer KQs about the different flows, at the same time, look at the importance of the operational
data within it (See Survey [11]).

Our preliminary answer lies in treating seed ontologies as specialized modules in an evolving reference
ontology. Evidently, the WBEO began from a single KQ; however, with iterative refinement—each new
data point, each emergent class (like wbeo:Operator abstraction)—it moved closer to a comprehensive
domain model (See Figure 2). This suggests a clear development pathway: seed ontologies for immediate
value, which iteratively build and enrich a larger reference ontology for a long-term knowledge asset.



Figure 4: Interactive visualization uncovers hidden intermediary roles in the wind energy ecosystem. This
tailored visualization, the final output of the BEAR framework, answers a stakeholder’s knowledge question
by mapping the complex ecosystem. Interactive features, such as (c) granularity adjustment and (d) named
individual filtering, enable the discovery of critical blind spots while answering the given knowledge question.
For instance, the graph exposes (e) hidden intermediary roles of consulting service companies and reveals that (f)
Organization8 acts as a key bridge between wind turbine manufacturers and grid operators. Visual conventions
aid interpretation for the decision makers: (a) red edges show individual-to-class relationships, while green
edges show class-to-individual relationships. (b) Node colours represent the granularity level, with gray being
the named individuals.

However, we argue that to achieve this, we must integrate an upper ontology (e.g., Basic Formal
Ontology [28]) to map each seed ontology to a common framework.

5.2. Quality Metrics for Value-First Ontology Engineering

A value-first paradigm demands value-first metrics. While foundational for model soundness, traditional
metrics like technical correctness and completeness measure the engineering artifact, not its business
impact. They can tell us if a model is built correctly (e.g., by validation through competency questions [7,
23, 24]), but not if we built the right thing for the organizations.

We argue that, to bridge this gap, a project’s success must be judged by its disposition to fill the
stakeholders’ knowledge gap. Based on the insights from our pilot project, we propose an initial set of
value-first quality metrics (Table 4). This initial set permits further research and systematic validation.

5.3. Limitations and Future Work

Our framework, while promising, evidently has apparent limitations that define our future work. The
current implementation relies on manual data collection and RU analysis, a critical scalability concern
raised by our pilot stakeholders, which is our most explicit challenge. While our semi-structured survey
is a step toward rapid, ontology-aligned data acquisition at events like industrial expos, true scalability
requires automation. Therefore, we have initiated a new pilot focused on automated blind spot detection
using graph pattern recognition. We are also exploring the use of LLMs to semi-automate RU extraction



Table 4
Value-First Quality Metrics for Ontology Engineering.

Metric Guiding Question Rationale: Why it Matters

Strategic Alignment Do the developed ontologies, collected
data, knowledge graph, etc., directly
address the stakeholders’ core busi-
ness problem?

Ensures the work is aligned with
strategic priorities, not just technical
curiosity.

Actionability Does the final answer enable a specific,
informed decision or action?

Bridges the gap between data and ex-
ecution; the output must be usable.

Pragmatic Sufficiency Is the developed ontology sufficiently
lean to deliver the maximum insight
required by the knowledge question?

Prevents over-engineering and focuses
resources on value, not exhaustive
modeling.

Time-to-Value How quickly does the engineering pro-
cess move from business goal to ac-
tionable insight?

Measures the agility of the framework,
which is critical for decision-makers
on tight timelines.

Knowledge Gap Closure To what degree was the stakeholder’s
initial knowledge gap resolved?

The ultimate success metric, rooted in
the Jobs-To-Be-Done framework [3].

from unstructured sources, using a human-in-the-loop mechanism to accelerate the RU analysis and
mapping process, directly aiming to improve the time-to-value quality metric (See Table 4) [39].

Another important aspect is the philosophical grounding of the BEAR framework. Our implicit
commitment to scientific and ontological realism [40, 41], unlike cognitive [42] or linguistic [43], which
aligns with the Basic Formal Ontology (BFO) [28], must be formalized to provide a more solid grounding
for future development and integration.

Finally, while our single case study demonstrates feasibility and the successful handling of 15 distinct
KQs suggests adaptability, generalizability must be validated. Even though it is due to its focus on one
ecosystem (wind energy) and a subset of data (37 surveys), we have already begun a new pilot project
in a different business context to test BEAR’s applicability across diverse contexts and stakeholders,
and we will share these results in future work.

As a conclusion, the complexity of modern business ecosystems demands semantic analysis—this
much has been shown in our wind energy study. However, semantic capability alone is insufficient.
Strategic decision makers do not need ontologies; they need answers. BEAR demonstrated this by
inverting the traditional engineering process—starting with the answer they needed rather than the
model required—we can deliver immediate strategic value while building toward a comprehensive
knowledge infrastructure. The question is no longer whether ontologies can support strategic decision
making, but whether we are willing to reorganize our engineering practices around the value they must
deliver.
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