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Abstract
In the Web of Things community, the SSN/SOSA ontology, a W3C recommendation, has established itself
as a foundational framework for representing semantic sensor networks, modeling sensors, observations,
and actuations. However, an explicit representation of message protocols is missing, which limits semantic
interoperability in machine-to-machine communication scenarios. To close this gap, we propose MQTT4SSN
as an extension to SSN/SOSA that semantically models the MQTT protocol. Furthermore, the ontology
addresses use cases without SSN/SOSA implementations by exclusively describing the MQTT messaging
protocol. MQTT4SSN represents MQTT entities such as brokers, clients, control packets, topics, and payload
metadata, linking them to SSN/SOSA concepts to enable end-to-end traceability between sensing semantics and
communication semantics. The ontology captures heterogeneous payload formats, encodings, and transport
metadata, enabling machine-interpretable description and integration of transmitted content. MQTT4SSN
represents an extensible and reusable resource that is accessible according to the FAIR principles and documented
as an Ontology Specification Draft.

Ontology: https://doernern.github.io/MQTT4SSNOntology/MQTT4SSN.owl
Documentation: https://doernern.github.io/MQTT4SSNOntology/documentation/index-en.html
WebVOWL: https://doernern.github.io/MQTT4SSNOntology/documentation/webvowl/index.html
OOPS!: https://doernern.github.io/MQTT4SSNOntology/documentation/OOPSevaluation/oopsEval.html
GitHub: https://github.com/doernern/MQTT4SSNOntology
License: CC BY-NC-SA 4.0
DOI: 10.5281/zenodo.16704302
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1. Introduction

In the Web of Things (WoT) community, the SSN/SOSA ontology, a W3C recommendation, has estab-
lished itself as a foundational framework for representing semantic sensor networks. However, while
SSN/SOSA considers modeling physical systems, sensor deployments, and observational and actuation
processes, it does not consider machine-to-machine (M2M) communication protocols [1]. In particular,
Message Queuing Telemetry Transport (MQTT) is a widely adopted message protocol in industrial and
Internet of Things (IoT) settings for its lightweight, publish-subscribe-based architecture [2, 3]. The
lack of the transport component motivates extending the SSN/SOSA framework with MQTT’s main
elements, enabling seamless alignment between observation and actuation process descriptions with
transport semantics. A further challenge arises from the various payload formats and encodings used
in MQTT message protocols. Payloads may contain plain text, comma-separated values, or structured
JSON as format, possibly encoded in various character sets [4, 5]. These heterogeneous payloads are
not clearly described to semantic systems unless an explicit annotation with metadata that describes
their format and structure is missing. Therefore, there is a need to model such payload metadata seman-
tically to enable parsing, interpretation, and integration of the transmitted content. Moreover, MQTT
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topics and payload structures are generally syntactically defined and application-specific. However, in
the context of semantic sensor networks, topic names and data structures could be derived from the
semantics of the observation [5, 6]. For instance, hierarchical topic paths could describe the associated
room, sensing device, sensor, observed property, and feature of interest. Likewise, the structure and
arrangement of payload content, such as the column order in CSV or key nesting JSON syntax, could
describe the made observation collection, for instance, with the associated room, sensor, and feature of
interest. The hierarchy of MQTT topic names and payload structures raises the question of whether
there is a relationship to the entities defined by SSN/SOSA.

To address these challenges, we initially defined the following three research questions (RQs):

• RQ1: How can the MQTT message protocol be semantically represented in a way that aligns
with an existing sensor network ontology, such as W3C SSN/SOSA?

• RQ2: How can heterogeneous payload formats and character encodings be represented in a
semantic model to enable machine-interpretable integration of the transmitted data?

• RQ3: To what extent can semantic MQTT topic names and structured payload representations
be derived from observation-related information, such as the observed feature of interest, the
used sensor, and the observed property?

The OASIS standardMQTT (Message Queuing Telemetry Transport) is a messaging protocol designed
for communication in M2M and IoT contexts [7]. It operates on a publish/subscribe model with four
main components: clients, which act as publishers and/or subscribers, and a central broker that manages
message routing. Clients publish messages to topics and subscribe to topic filters, which can include
wildcards to capture related topic streams dynamically. For communication, MQTT uses control packets,
which contain a fixed header in all control packets, and depending on the packet type, an optional
variable header and payload. The MQTT specification defines fourteen different types of control packets,
managing actions such as connection establishment (CONNECT, CONNACK), publishing (PUBLISH, PUBACK),
and subscription (SUBSCRIBE, SUBACK). The payload of the PUBLISH control packet contains application
data, such as sensor data, and can vary in format and encoding. MQTT delivers Application Messages
according to three different Quality of Service (QoS) levels to ensure reliability in message delivery.
There are additional header flags for transmission, such as the RETAIN and DUP flags. The MQTT
message protocol typically runs over the TCP/IP transport protocol.

OurMQTT4SSN ontology focuses on MQTT version 3.1.1[7] to ensure compatibility with established
systems and model the foundation. However, we designed the model to remain extensible for future
integration of MQTT 5.0 features. The newer MQTT Version 5.0[8] standard extends the protocol with
richer metadata, reason codes, user properties, and improved error handling, enhancing flexibility and
scalability for modern IoT applications [8]. There exists a draft from the OASIS group, the MQTT For
Sensor Networks (MQTT-SN)[9], which adapts MQTT for non-TCP/IP networks such as UDP, Zigbee,
or Bluetooth. It simplifies message headers and introduces topic IDs to support constrained devices in
wireless sensor networks (WSNs).

The remainder of this paper includes the following: Section 2 provides an overview of related ontolo-
gies and data models relevant to MQTT, IoT, and WoT. Section 3 explains the ontology engineering
process of MQTT4SSN, covering its core concepts 3.1, semantic relations 3.2, and applied design pat-
terns 3.3. Section 4 outlines the evaluation methodology and results, including ontology verification 4.1
and validation 4.2 based on predefined competency questions. Finally, Section 5 summarizes the paper
and highlights possible directions for future research.

2. Related Data Models

In the landscape of semantic data modeling for IoT and WoT, numerous ontologies such as the W3C
SSN/SOSA ontology have been developed that describe sensing and actuation devices, observation
procedures, and environments. However, despite the central role of communication protocols in IoT
infrastructures, very few of these ontologies explicitly address transport mechanisms such as MQTT.



To the best of our knowledge, the only dedicated effort toward semantic representation of MQTT is the
MQTT to RDF draft ontology defined in the W3C WoT Binding Templates. This fragmentation has
created a gap between the semantic modeling of observation processes and the underlying transport
layers that enable real-time M2M communication [10, 6].

The W3C SSN/SOSA ontology is the most widely adopted standard for modeling sensors, obser-
vations, actuators, and sampling activities in semantic IoT contexts. Originally published as a W3C
Recommendation in 2017[11], SOSA serves as a lightweight core, while SSN adds richer axioms for
more expressiveness. A new working draft further extends the model and enriches its interoperability
across domains [12]. Despite its complexity, SSN/SOSA does not specify how data is transmitted or
how protocols like MQTT interact with observation streams, leaving a crucial semantic gap.

The WoT MQTT to RDF ontology draft, developed as part of the W3C WoT Binding Templates,
provides, to the best of our knowledge, the only formal semantic representation of MQTT, especially
the description of the control packet structure, topic filters, and the network entities such as broker
and client [13]. This draft models protocol-level aspects of MQTT but neglects the modeling of sensing
systems, such as SSN/SOSA. Consequently, it cannot directly align MQTT messages with sensor
observations, features of interest, or platforms.

The QUDT (Quantities, Units, Dimensions, and Data Types) vocabulary is another essential compo-
nent for semantic IoT modeling. Frequently combined with SSN/SOSA, QUDT provides a rigorous
and extensible vocabulary for expressing physical units, scales, and quantity values [11, 14]. It enables
precise representation of observation results (e.g., temperature in degree Celsius, length in millimeters),
which is vital for machine interpretation and data integration [15].
Among the broader IoT ontologies, several have attempted to provide domain models for smart envi-
ronments and device interactions:

• SAREF (Smart Applications REFerence ontology), maintained by ETSI, focuses on linking different
domains. Its modular structure includes extensions for smart cities, buildings, and industry,
and it emphasizes interoperability across domains [16]. However, SAREF does not describe
communication transport, relying instead on linking to existing data representations.

• FIESTA-IoTwas developed in the context of IoT testbed federation and emphasizes cross-platform
interoperability. It builds heavily on SSN/SOSA and adds vocabularies for testbeds, datasets, and
experimental metadata [17, 18]. While it provides integration logic, it does not address message
protocols like MQTT.

• IoT-O is an ontology designed to support semantic interoperability across IoT domains. It models
devices, sensors, and platforms and explicitly reuses SSN/SOSA [19]. Although rich in device and
service descriptions, IoT-O lacks support for protocol semantics and dynamic message exchange.

• IoT-Lite is a lightweight ontology designed to enable semantic interoperability in resource-
constrained IoT environments. It simplifies the modeling of IoT devices and services to facilitate
implementation in low-power or embedded contexts [20]. However, the transport components
are neglected here.

• S3N (Semantic Smart Sensor Network) builds directly on top of SSN/SOSA and WoT Thing
Descriptions to describe smart sensors and their capabilities [21]. While it supports modular
modeling of sensor components and protocols, its MQTT handling is limited and not aligned
with the WoT MQTT to RDF effort.

In summary, although various ontologies exist for describing IoT devices and services, they often lack
a consistent or integrated model for communication transport. The MQTT to RDF ontology from the
WoT Binding Templates is, to the best of our knowledge, a unique attempt to model MQTT semantics,
but does not interlink with domain models like SSN/SOSA. Conversely, SSN/SOSA offers mature and
extensible semantics for observations but is agnostic to how these observations are communicated.



3. Ontology Development

In this work, we propose the MQTT4SSN extension, an ontology developed to provide a semantic
representation of the MQTTmessage protocol, including the structure of transmitted data. It extends the
well-established SSN/SOSA ontology by introducing MQTT-specific components such as the network
entities broker and client, control packet structures with their payloads, and their associated topics. The
ontology was designed to model automated process data captured and transmitted via MQTT packets
in the context of the EKI1 project. The development was guided by initially defined research questions
(RQs), a comprehensive set of competency questions (CQs), and a review of existing ontology design
patterns (ODPs). These elements shaped the ontology’s structure during design and implementation
and served as the basis for its evaluation.

Following best practice in ontology engineering, we analyzed existing ODPs regarding reusability
and interoperability. The W3C Web of Things (WoT) MQTT Binding Ontology draft, hereafter referred
to as MQV, was considered as a potential ODP. We used this ontology draft as a starting point for our
ontology design and adapted most of theMQV concepts into our ontology. Thereafter, we extend it with
further elements to fit our requirements on the MQTT side fully, but also enable the semantic relation
to SSN/SOSA. Special attention was paid to the representation of heterogeneous payload encoding,
enabling the ontology to handle structured data such as CSV or JSON. Furthermore, we integrated the
QUDT vocabulary in the traditional SSN/SOSA context and the MQTT4SSN extension.

To ensure that the ontology is Findable, Accessible, Interoperable, and Reusable (FAIR), MQTT4SSN
is made openly available on GitHub and permanently archived via Zenodo under a DOI, with complete
access to all files. We provide the ontology under an open license and richly annotated with labels,
comments, metadata, and documentation to promote adoption and reuse by the semantic web and
engineering community.

3.1. Core Concepts

From the outset, we designed MQTT4SSN, an extension of the well-established SSN/SOSA ontology
by incorporating a semantic representation of the MQTT message protocol. While SSN/SOSA provides
a solid foundation for modeling sensing systems, including sensors and actuators and their linkage to
observations, properties, and features of interest, MQTT4SSN complements this by explicitly modeling
the structure and metadata of the transmitted data. The key elements of MQTT, which are the network
entities broker and client, the different control packets with their payload, and their associated topics,
form the core of the ontology, along with their interrelations.

This integration enables seamless alignment between observation, actuation, and sampling seman-
tics and M2M communication semantics, thereby supporting end-to-end traceability and semantic
interoperability across distributed IoT systems.

To describe payloads in a meaningful andmachine-interpretable way, the ontology includes properties
for specifying the payload content type (MIME type) and character encoding. In addition, MQTT4SSN
considered transport-specific characteristics such as quality of service levels, retain and DUP flags to
allow for the traceability of message delivery. Despite the incompleteness of the MQV draft ontology,
we adapted core concepts in MQTT4SSN and established partial semantic mappings to align both
models for future interoperability.

3.2. Semantic Relations

At the core of this model are four major class clusters: the network infrastructure, the control packet
hierarchy, the topic with its relations to different payloads with the relation to SSN/SOSA, and the
topic subject alignment with SSN/SOSA sensing semantics.

Within the network infrastructure, depicted in figure 1, the ontology defines the entities client
and the broker as subtypes of network participants involved as actors in MQTT communication. A

1https://dtecbw.de/home/forschung/hsu/projekt-eki/, accessed: September 12, 2025
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broker has a host address and a port number, while a client has a client ID. The network participants’
interaction is mediated by the network connection class, which can be optionally encrypted with TLS
and is characterized by initiation and acceptance relations: the connection is initiated by the client and
accepted by the broker. The client also explicitly maintains a connection to a specific broker, forming
the foundation for message exchange.

Figure 1: Network Infrastructure relations

The Communication is described through the control packet hierarchy, depicted in figure 2. The
publish, subscribe, and unsubscribe packet types are modeled as subclasses of a general control packet
class. These packets contain structured fixed and variable headers as well as payloads. For example
(seen in figures 2, 3), a publish packet includes a fixed header, defining a quality of service level, retain
and DUP flag, a variable header which typically includes the topic, and a publish payload that carries
encoded observation data as content with certain content type, character encoding and perhaps a
content delimiter. Subscribe and unsubscribe packets follow a similar structural breakdown, with
specific headers and payload compositions. A variable header can have a packet identifier. All payloads
have a content-dependent size. Clients are linked to the control packets they send, while brokers can
receive and forward them, enabling the messaging pipeline, as seen in figure 1.

Topics and topic filters represent another essential part of MQTT communication, depicted in figure 3.
Sensors and actuators that a client hosts can observe or listen to topics. Topic filters, used during
subscription and unsubscription, specify patterns for selecting specific topics. The ontology captures
the relationship between topic filters and matched topics and supports modeling individual subscription
entries with specific quality of service levels. These filters are linked with the subscription payload
over the subscription entry or the unsubscription payload.

One goal of the MQTT4SSN ontology was the extension of SSN/SOSA, shown in figure 3. The client
class runs on a platform for hosting SOSA sensors or actuators, thus bridging MQTT infrastructure and
the physical sensing world. A sensor hosted by a client may publish data to a topic, while an actuator
may listen to a topic for actuation commands. On the SSN/SOSA side, both systems are hosted by a
platform, and on the MQTT side by a client. Another alignment shows figure 4, depicting a topic that



Figure 2: Control Packet hierarchy

can be related to one or more topic subjects, represented by SSN/SOSA entities. An observation or
actuation (possibly as a collection) can describe a topic name with an associated feature of interest and
property.

Further, the ontology relates MQTT topics and payloads to SOSA observations, also depicted in
figure 3. Each topic may describe a specific observation or a collection of observations, which are
modeled as being described by topics. Payloads of publish packets can encode single observations or
actuation collections of them.

Beyond the specification of conceptual axioms, logical constructs such as disjointness were incor-
porated to enforce explicit class separation, while inverse relationships were introduced to define
predicates in a bidirectional manner, thereby enhancing semantic rigor and ensuring consistency across
the ontology.



Figure 3: Topic and Payload relations

Figure 4: Topic

3.3. Design Patterns

The MQTT4SSN ontology integrates MQV vocabulary in the SOSA/SSN ontology stack to provide
a semantic layer for modeling sensor observations and actuator commands over MQTT-based infras-
tructures. This alignment bridges the gap between the low-level communication protocol MQTT and
high-level semantic descriptions of IoT systems via SSN/SOSA. We aligned our MQTT4SSN with the
lightweight core ontology SOSA, while also supporting integration with the more expressive SSN due to
the modular structure of SSN/SOSA. The MQTT4SSN and SSN/SOSA alignment is depicted in figures
3, 4, while neglecting detailed visualization of SSN/SOSA object properties due to space constraints.



To achieve this, key classes and properties from the MQV vocabulary were aligned with
newly defined or extended classes or properties within our MQTT namespace. Several core
classes were mapped directly to their MQV counterparts using owl:equivalentClass. For ex-
ample, mqtt:NetworkConnection ≡ mqv:NetworkConnection, mqtt:Broker ≡ mqv:Server, and
mqtt:Client ≡ mqv:Client. These equivalences ensure that MQTT network entities modeled in
MQTT4SSN are semantically consistent with the existing MQV definitions, allowing direct infer-
encing across both ontologies and enabling future interoperability. The alignment was also ap-
plied to messaging constructs, such as mqtt:Topic ≡ mqv:TopicName and mqtt:ControlPacket ≡
mqv:ControlPacket.

Beyond class equivalences, the ontology also maps various object properties using
owl:equivalentProperty. For instance, mqtt:sendsControlPacket ≡ mqv:sendsControlPacket,
mqtt:hasTopicName ≡ mqv:hasTopicName, and mqtt:hasPayload ≡ mqv:hasPayload ensure that
message composition and delivery semantics remain consistent regardless of whether they are
interpreted from the perspective of MQTT4SSN or MQV. These alignments allow for symmetric
entailment: for any triple using an aligned property in one ontology, a corresponding assertion in the
other ontology is logically entailed.

Beyond class and object property alignments, the ontology also defines a range of datatype prop-
erties that describe literal characteristics of MQTT communication entities such as clients, brokers,
payloads, and headers. Several of these properties are also explicitly aligned with their MQV counter-
parts using owl:equivalentProperty. For example, mqtt:isRetainedFlag ≡ mqv:hasRetainFlag
and mqtt:isDUPFlag ≡ mqv:hasDUPFlag ensure that control flags in MQTT publish messages are
semantically interchangeable between the two namespaces.

In contrast, other datatype properties deliberately avoid equivalence due to structural mismatches.
The most notable example mqtt:hasQosLevel, which expresses the Quality of Service level as a con-
strained integer datatype (with values between 0 and 2). While MQV models this concept using the
object property mqv:hasQoSFlag, the type mismatch between the datatype property and the object
property prevents a clean alignment. As such, no equivalence is declared, preserving semantic consis-
tency and avoiding reasoning errors caused by incompatible property types. We left a corresponding
comment on the definition of the datatype property.

We add datatype properties to describe essential identifiers and configuration details of net-
work components. For instance, mqtt:hasClientID, mqtt:hasHostAddress, mqtt:hasPortNumber,
and mqtt:usesTLS provide literal values such as client identifiers, broker addresses, and
encryption status, all of which are critical for modeling MQTT network behavior at the
protocol level that MQV did not implement. Similarly, payload-specific properties like
mqtt:hasPayloadContent, mqtt:hasPayloadContentType, mqtt:hasPayloadContentDelimiter,
and mqtt:hasPayloadEncoding describe the structure and format of transmitted data.

The ontology integrates the QUDT ontology to represent measurement results in a precise and
interoperable manner. Observation values and payload metadata are expressed as qudt:QuantityValue
instances, which represent a qudt:value annotated with standard units from the QUDT vocabulary
(e.g., qudt:hasUnit unit:MilliM, qudt:hasUnit unit:Byte). Using QUDT, we ensure that units
are machine-readable, semantically precise, and avoid ambiguity in data interpretation. QUDT enables
seamless integration with domain ontologies that rely on quantitative measurements and allows
consistent handling of observational and technical metadata, like payload sizes.

4. Evaluation

The ontology evaluation is divided into verification 4.1 and validation 4.2. Verification takes the
previously defined RQs and CQs as requirements and proves their presence in the ontology, represented
by entities and their relations. For validation, the modeled ontology is instantiated with real-world
individuals to determine whether it provides sufficient utility in the application. During development
and finally, we checked the ontology with the OntOlogy Pitfall Scanner! (OOPS!) [22], locally installed



with the latest Docker Image2. The final OOPS! evaluation detects only minor pitfalls, which warn about
unconnected ontology elements (P04), missing annotations (P08), and missing inverse relationships
(P13). The warnings P04 and P08 refer to imported ontologies, whereas we explicitly modeled the
identified relationships in P13 as non-inverse. The full OOPS! evaluation report3 is available in the
ontology documentation.

4.1. Ontology Verification

During the ontology engineering of MQTT4SSN, RQs and CQs were previously defined, representing
the ontology’s requirement profile. The RQs define the coverage of the general purpose in the application.
The CQs determine specific entities and their relations for the model design. Firstly, we identified
CQs to address essential components of the MQTT message protocol. Secondly, we determined CQs
to address the sensing and communication semantics gap. We categorized the CQs into six subjects
to structure them according to their common topics. The complete set of competency questions is
available on GitHub4. Table 1 shows an excerpt of one CQ per subject with entities that represent the
response.

Table 1
An excerpt of one CQ per topic and the corresponding entities they are answered by.

Subject CQ Question Entities
Network and Participants CQ1_03 Which MQTT participants

(Clients/Brokers) use which
MQTT NetworkConnections?

(Client - isInitiatedBy -
NetworkConnection -
isAcceptedBy - Broker)

Topics and Topic Filters CQ2_01 Which SOSA sensors publish to
which MQTT Topics
(observations)?

(Sensor - observesTopic - Topic -
has Subject - TopicSubject -
Observation)

Control Packets CQ3_01 Which MQTT Clients send
which MQTT Control Packets?

(Client - sendsControlPacket -
ControlPacket)

Header and Payloads CQ4_05 Which MQTT Control Packets
have which PacketIdentifier?

(ControlPacker -
hasVariableHeader -
VariableHeader -
hasPacketIdentifier -
unsignedShort)

Subscriptions CQ5_01 Which MQTT SUBSCRIBE
payloads contain which
SubscriptionEntries?

(SubscribePayload -
hasSubscriptions -
SubscriptionEntry)

Payload content CQ6_05 What is the size of a MQTT
payload?

(Payload - hasPayloadSize -
QuantityValue)

We can confirm that all our originally defined CQs are modeled in our ontology, which underlines
our conceptual completeness.

4.2. Ontology Validation

To fully validate MQTT4SSN for real-world applications, it is essential to instantiate the ontology
with individuals from a dataset, such as an industrial production process scenario using the MQTT
message protocol. The next step is to formulate SPARQL queries to test the ontology against the dataset
and execute them. The confirmation of expected answers validates the ontology with conceptual
completeness.

2https://hub.docker.com/r/mpovedavillalon/oops, accessed: September 12, 2025
3https://doernern.github.io/MQTT4SSNOntology/documentation/OOPSevaluation/oopsEval.html
4https://github.com/doernern/MQTT4SSN/blob/main/CQs/MQTT4SSN_CQs.txt

https://hub.docker.com/r/mpovedavillalon/oops
https://doernern.github.io/MQTT4SSNOntology/documentation/OOPSevaluation/oopsEval.html
https://github.com/doernern/MQTT4SSN/blob/main/CQs/MQTT4SSN_CQs.txt


We have neither acquired a dataset nor created individuals for validation yet. In the future, we plan
to investigate this in a Raspberry Pi simulation setup to generate test data and validate MQTT4SSN
with appropriate SPARQL queries.

5. Conclusion and Future Work

From the outset,MQTT4SSNwas conceived as an extension of the well-established SSN/SOSA ontology,
incorporating a semantic representation of the MQTT message protocol. While SSN/SOSA provides a
robust framework for modeling sensing systems, including sensors, actuators, and their relationships to
observations, properties, and features of interest,MQTT4SSN complements this foundation by explicitly
modeling the structure and metadata of transmitted data. The ontology captures the essential elements
of MQTT, such as the network entities broker and client, the various control packets and their payloads,
the topics that organize communication, and the interrelations between these components. This
integration bridges the gap between sensor semantics and M2M communication semantics, supporting
end-to-end traceability and semantic interoperability across distributed IoT systems.

In addition, MQTT4SSN describes a payload content with a specific content type and character
encoding, making payload descriptions meaningful and machine-interpretable. Transport-specific
features such as QoS levels and the retain flag are also incorporated to enable traceability of message
delivery. Despite the incompleteness of the MQV draft ontology, MQTT4SSN successfully adapts
selected concepts and establishes partial semantic mappings to facilitate compatibility and reuse.

Several promising directions are still open for further development of MQTT4SSN. In our work, we
focused exclusively on MQTT version 3.1.1. Future work could extend this scope to include the more
recent MQTT v5 specification, which introduces enhanced message properties, session control, and
user-defined metadata features. Furthermore, the MQTT-SN draft could extend the ontology, which
adapts MQTT for non-TCP/IP networks such as UDP, Zigbee, or Bluetooth.

Another promising direction is the automated derivation of topic names. WhileMQTT4SSN currently
supports modeling the relationships between topic naming and SOSA elements such as FeatureOfInter-
est, Property, Actuation, ActuationCollection, Observation, and ObservationCollection, an automated
method for deriving meaningful topic names from these linked semantic entities could significantly re-
duce configuration effort and improve consistency. Similarly, the PayloadContent could be semantically
derived from SOSA concepts. For instance, if the PayloadContentType is a specified application/json
type, its structure could be automatically inferred from a combination of the aforementioned SOSA
elements, enhancing semantic interoperability and reducing manual modeling.

We evaluate the ontology only to a limited extent. A valuable next step would be establishing a
simulation environment using Raspberry Pis to emulate processes in industrial automation scenarios
that communicate via MQTT to validate the proposed ontology comprehensively. This setup could be a
testbed for validating the integration and mappings between live MQTT traffic and the MQTT4SSN
ontology under realistic conditions.
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