
An Ontology Design Pattern for Representing Temporal
Indirection
Yulia Svetashova1

1Data Management Lab, Bloomberg, 3 Queen Victoria St, London EC4N 4TQ

Abstract
We present the Temporal Indirection Ontology Design Pattern, which models persistent identifiers whose referents
evolve over time according to deterministic rules. The pattern introduces core abstractions that separate identifier
persistence from time-dependent referent dynamics, enabling both stable referencing and precise historical
reconstruction. This approach addresses a significant gap in existing temporal ontologies, which typically
assume static identifier-referent relationships and therefore cannot capture scenarios where meaning evolves but
referential continuity must be preserved.

We validate the pattern through implementations in financial derivatives (e.g., generic identifiers such as
“CL1” for front-month oil futures) and air transportation (flight numbers with daily-changing assignments). Our
contributions include: (i) a reusable pattern grounded in foundational ontology concepts, (ii) competency question
coverage demonstrating support for resolution, audit, and analysis tasks, and (iii) cross-domain evidence of
applicability.

Keywords
Ontology Design Pattern, Temporal Indirection, Persistent Identifiers, Temporal Modeling

1. Introduction

Many information systems rely on identifiers that remain stable while the entities they reference change
systematically over time. This creates a fundamental challenge for knowledge representation: how
can we preserve referential stability while accurately tracking what an identifier denotes at any given
moment? Humans readily understand expressions like “the current president” or “the department
head” as stable references to roles whose occupants change. Capturing this logic in an ontology,
however, requires explicit modeling. We call this phenomenon temporal indirection—a situation where
a persistent identifier maintains constant identity while the referent changes systematically according
to deterministic rules.

Consider financial markets, where generic trading symbols like “CL1” serve as persistent identifiers
for front-month crude oil futures contracts. This identifier provides a paradigmatic example of temporal
indirection within financial information systems. A persistent identifier (CL1) serves as a stable referent
while dynamically resolving to the front-month crude oil futures contract, thereby ensuring continuity
across successive monthly contract rollovers. In January 2025, “CL1” refers to the February 2025 contract;
when that contract approaches expiration, “CL1” automatically transitions to reference the March
2025 contract. Real-time market attributes—such as last trade price, trading volume, and settlement
values—are bound to the current contract instance but exposed through the invariant identifier.

This design illustrates the separation of identifier persistence from referent volatility, a principle
central to data ontology and financial knowledge representation. Operational implementations of this
mechanism can be observed in public systems such as MarketWatch and TradingView, each of which
provides continuous charting and contract metadata under the “CL1” identifier despite the underlying
contract substitutions.

This pattern extends far beyond finance. Table 1 shows representative domains where temporal
indirection proves essential. Air transportation employs stable flight numbers (e.g., “UA001”) that map

16th Workshop on Ontology Design and Patterns (WOP 2025) at ISWC, November 02–06, 2025, Nara, Japan
" ysvetashova@bloomberg.net (Y. Svetashova)
~ https://github.com/YuliaS (Y. Svetashova)
� 0000-0003-1807-107X (Y. Svetashova)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-13

https://www.marketwatch.com/investing/future/cl.1
https://www.tradingview.com/chart/?symbol=CL1
mailto:ysvetashova@bloomberg.net
https://github.com/YuliaS
https://orcid.org/0000-0003-1807-107X
https://creativecommons.org/licenses/by/4.0/deed.en

to different aircraft and crews daily. Healthcare systems track roles like “primary oncologist on duty”
that persist while individual physicians rotate through shifts. In each case, the identifier provides
continuity for reporting and analysis, while precise resolution determines the actual entity at any point
in time.

Domain Persistent Identifier Changing Use Case
Referent

Healthcare Primary Oncologist Individual Treatment continuity versus
Ward 7 physicians per shift malpractice attribution

Environmental River Station 1 Physical sensors Regulatory compliance versus
Primary sensors calibration and tracking

Digital Payment API Latest Implementation Client stability versus
Services versions versions debugging and monitoring

Regulatory Current GDPR Specific rulings Compliance continuity versus
interpretation, guidance updates

Table 1
Representative examples of temporal indirection across domains

1.1. Limitations of Current Approaches

Existing temporal ontologies fail to capture this indirection pattern adequately. Standard approaches
like PROV-O [1] focus on entity provenance but assume identifiers maintain fixed semantics. OWL-
Time [2] provides temporal intervals but cannot model systematic referent evolution. The Financial
Industry Business Ontology (FIBO) [3, 4], despite its 2,300+ classes, lacks mechanisms for rolling contract
references. These limitations leave a critical gap: no existing pattern separates identifier persistence
from referent dynamics while maintaining complete temporal traceability.

1.2. Our Contribution

We address this gap through the Temporal Indirection Ontology Design Pattern, which provides:

• A formal separation between persistent identifiers and their time-dependent referents,
• Explicit representation of transition rules and resolution contexts,
• Support for dual attribution (observations linked to both identifier and specific referent),
• Complete audit trails of all referent transitions.

Figure 1 illustrates the pattern’s core structure: a two-level system where stable identifiers connect
to changing referents through time-dependent mappings.

1.3. Paper Organization

The remainder of this paper is structured as follows. Section 2 presents the Temporal Indirection Pattern’s
abstract structure, beginning with core concepts and progressing through relationships, constraints, and
competency questions. Section 3 demonstrates the pattern’s application to financial derivatives, showing
how abstract classes map to domain concepts. Section 4 validates the pattern through comprehensive
testing in both finance and aviation domains. Section 5 positions our contribution relative to existing
temporal modeling approaches. Finally, Section 6 discusses implications and future directions.

2. The Temporal Indirection Pattern

This section presents the Temporal Indirection Ontology Design Pattern as a reusable solution for mod-
eling persistent identifiers with evolving referents. We begin with the pattern’s conceptual foundations,
then detail its structure, constraints, and validation criteria.

ID

Time
𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5

𝑚(𝑡1)

Current

Stable Level
Identifier remains
constant over time

Dynamic Level
Referents change
according to rules

Figure 1: Temporal indirection model: The mapping function 𝑚(𝑡) determines which specific referent entity R
is bound to the persistent identifier ID at any given time point 𝑡.

2.1. Conceptual Foundations

The pattern addresses four fundamental requirements that emerge from temporal indirection scenarios:

1. Identifier Persistence: Identifiers must maintain stable identity across time, independent of
their referents.

2. Deterministic Resolution: At any time point, the mapping from identifier to referent must be
unambiguous.

3. Rule-Based Transitions: Referent changes must follow explicit, domain-specific rules.
4. Historical Traceability: All past mappings must be preserved for reconstruction and audit.

To satisfy these requirements, the pattern introduces a layered architecture that separates concerns:
persistent identifiers exist at a stable layer, referent entities exist at a dynamic layer, and temporal
bindings connect the two layers according to resolution rules.

2.2. Core Components

The pattern can be used independently or aligned with foundational ontologies. It comprises seven
core classes, each serving a specific role in the temporal indirection mechanism. Figure 2 illustrates
their relationships.

2.2.1. Persistent Identifier and Referent Entity

A Persistent Identifier represents a stable reference that maintains consistent semantics for external
systems. It exists independently of any particular referent and persists even during transition periods.
Examples include trading symbols (“CL1”), flight numbers (“UA001”), or role designations (“Primary
Oncologist, Ward 7”). When aligned with foundational ontologies, a persistent reference can be consid-
ered an information object (e.g., dul:InformationObject1 in the DOLCE+DnS Ultralite (DUL) [5]
ontology).

A Referent Entity is the actual entity that fulfills the persistent identifier at a given time. These
entities have independent lifecycles: they exist before becoming associated with an identifier and
continue after the association ends. In our financial example, specific futures contracts (e.g., “CLU25”
for January 2025 delivery) serve as referent entities. In foundational ontology terms, these align with
general entity concepts (e.g., dul:Entity).
1Throughout this paper, we use the following namespace prefixes:
: <http://ontologydesignpatterns.org/cp/owl/temporalindirection.owl#>,
fd: <http://example.org/financial-derivatives#>,
avo: <http://example.org/aviation-operations#>.
Standard prefixes (rdf:, rdfs:, owl:, xsd:, dul:) follow conventions as documented at https://prefix.cc/.

2.2.2. Temporal Binding

The Temporal Binding reifies the relationship between identifier and referent during a specific interval.
Rather than using simple properties, this reification enables:

• Precise temporal boundaries through start and end times
• Tracking of transition events that initiate and terminate the binding
• Validation of temporal integrity (no gaps or overlaps)

Each binding connects exactly one persistent identifier to exactly one referent entity for a well-defined
temporal interval2. Conceptually, it is a situation or context (cf. dul:Situation).

2.2.3. Transition Events and Rules

A Transition Event marks the moment when one binding ends and another begins. It captures:

• The outgoing referent (via :changesFrom)
• The incoming referent (via :changesTo)
• The precise timestamp of transition
• The rule that triggered the change (via :triggeredBy)

Transition Rules encode the domain logic governing when and how transitions occur. In financial
markets, these might specify “roll to next month’s contract on the 20th business day.” In aviation, they
might state “assign next available aircraft 2 hours before scheduled departure.”

2.2.4. Resolution Context and Conventions

The Resolution Context provides the interpretive framework for determining active referents. It
specifies which conventions apply, which rules are active, and how exceptions are handled. This concept
parallels descriptive or normative elements in foundational ontologies (e.g., dul:Description) but
functions independently as a rule specification.

Conventions represent domain-specific standards that govern temporal indirection. Examples
include exchange trading calendars, hospital shift schedules, or software deployment policies.

Observations about entities require special handling to maintain both referential stability and specific
attribution. An observation is linked to: 1) the persistent reference via :observedEntity (for continu-
ity), 2) the specific referent entity that was active at observation time via :observedReferentEntity
(for attribution), 3) observable properties that may apply to either the reference or the referent, 4) results
that must be contextualized by both levels of indirection. This dual attribution enables queries that
aggregate observations across all referents of a persistent reference while maintaining traceability to
specific entities.

2.3. Structural Constraints

The pattern enforces several constraints to ensure temporal integrity:
Completeness: Every persistent identifier must have at least one temporal binding and exactly one

resolution context. This prevents the creation of orphaned identifiers.
Determinism: Each temporal binding must connect to exactly one referent entity for a specific

interval. This ensures unambiguous resolution.
Traceability: Every transition event must specify both source and target referents, along with the

triggering rule. This enables complete audit trails.
2In our implementation, we did not explicitly reuse time:Interval or related properties from OWL-Time. Instead, we
introduced a custom :TemporalInterval class with :hasStartTime and :hasEndTime. In future iterations, we may
consider aligning with OWL-Time by reusing time:hasBeginning/time:hasEnd for intervals and time:Instant for
event timestamps, to leverage existing standards and improve interoperability.

dul:Event dul:Entity

dul:TimeInterval

dul:Situation dul:InformationObject dul:Description

dul:Normdul:Quality

:TransitionEvent :ReferentEntity :TemporalBinding :PersistentReference :ResolutionContext

:TemporalInterval :TransitionRule :Convention

:Result :Observation :ObservableProperty

bindsTo

:hasTemporalBinding

:hasTransition

:changes

:hasTransitionIn

:hasTransitionOut

:hasResolutionContext

:follow
s:d

ef
in

es:hasValidTime

:hasResult :observedProperty

:triggeredBy

:observedEntity

:observedR
eferentEntity

xsd:dateTime

xsd:string

:start/end

:observationTime
:hasU

niqueID

:hasUniqueID

Figure 2: Temporal Indirection Pattern structure showing core classes (yellow) and their alignment with
foundational ontology concepts (orange).

These constraints can be formalized in Description Logic as follows:

PersistentReference ⊑ ∃ hasTemporalBinding.TemporalBinding
⊓ (= 1 hasResolutionContext.⊤)

TemporalBinding ⊑ (= 1 bindsTo.ReferentEntity)

⊓ (= 1 hasValidTime.TemporalInterval)

TemporalBinding ⊑ ∃ hasTransitionIn.TransitionEvent
⊓ ∃ hasTransitionOut.TransitionEvent

TransitionEvent ⊑ (= 1 changesFrom.ReferentEntity)

⊓ (= 1 changesTo.ReferentEntity)

⊓ (= 1 triggeredBy.TransitionRule)

2.4. Competency Questions

To validate the pattern’s completeness, we define eight competency questions that any implementation
must answer:

ID Type Question
CQ1 Current Resolution Which entity does a persistent identifier currently

reference?
CQ2 Historical Resolution Which entity was referenced at a past timestamp?
CQ3 Transition Timing When did referent transitions occur?
CQ4 Attribution What observations are associated with specific

referents?
CQ5 Complete History What is the full sequence of referents over time?
CQ6 Rule Provenance Which rules triggered specific transitions?
CQ7 Temporal Integrity Are there gaps or overlaps in temporal bindings?
CQ8 Context Reconstruction Can complete context be rebuilt for any time

point?

Table 2
Competency questions for pattern validation

These questions ensure the pattern supports both real-time operations (CQ1) and historical analysis
(CQ2-5), while maintaining auditability (CQ6, CQ8) and data quality (CQ7).

3. Financial Derivatives Implementation

Having established the abstract pattern, we now demonstrate its application to financial derivatives,
where rolling futures contracts exemplify temporal indirection. This section shows how each pattern
component maps to financial concepts while preserving the pattern’s semantic integrity.

3.1. Domain Context

In commodity futures markets, traders rely on standardized symbols known as tickers to identify
contracts. These generic identifiers, such as “CL1” for the front-month crude oil contract, allow traders
to reference rolling positions without specifying which particular delivery month currently holds that
designation. This enables continuous market analysis: traders can chart “CL1” prices over years without
manually switching between individual contracts as they expire.

The challenge lies in maintaining this referential stability while ensuring precise attribution. When
a trader executes against “CL1,” the actual contract (e.g., “CLG25” for February 2025 delivery) must
be recorded for settlement. Similarly, historical analysis must reconstruct which specific contracts
comprised a spread relationship at any point in time.

3.2. Pattern Specialization

Figure 3 illustrates how the pattern’s abstract classes specialize for financial derivatives. Each core class
maps to exactly one financial concept:

• fd:GenericTicker ⊑ :PersistentReference — stable market symbols
• fd:FuturesContract ⊑ :ReferentEntity — specific dated contracts
• fd:ContractMapping ⊑ :TemporalBinding — active ticker-contract relationships
• fd:ContractRoll ⊑ :TransitionEvent — monthly roll events
• fd:RollSchedule ⊑ :ResolutionContext — exchange-specific rules

This one-to-one mapping ensures, domain experts can understand the model while preserving the
pattern’s temporal reasoning capabilities.

:TransitionEvent :ReferentEntity

:TemporalInterval

:TemporalBinding :PersistentReference :ResolutionContext

:TransitionRule:ObservableProperty :Convention

fd:ContractRoll fd:FuturesContract fd:ContractMapping fd:GenericTicker fd:RollSchedule

fd:TradingPeriod fd:RollRule

fd:ExchangeConvention:Result :Observation fd:Price

bindsTo

:hasTemporalBinding

:hasTransition

:rollsFrom|rollsTo

:hasTransitionIn

:hasTransitionOut

:hasResolutionContext

:follow
s

:d
ef

in
es:hasValidTime

:hasResult :observedProperty

:triggeredBy

:observedEntity

:observedR
eferentEntity

xsd:dateTime

xsd:string

:start/end

:observationTime

:h
as

U
ni

qu
eI

D

:hasUniqueID

Figure 3: Financial derivatives specialization of the Temporal Indirection Pattern. Core pattern classes (yellow)
are subclassed by financial concepts (blue).

3.3. Domain Extensions

Beyond core specializations, the financial implementation adds domain-specific elements:
Market Infrastructure: Classes for fd:Commodity, fd:ContractMonth provide context without

modifying pattern semantics.
Trading Relationships: fd:Spread captures price differentials between contracts, inheriting

temporal indirection behavior from constituent tickers.
Specialized Properties: fd:rollsFrom and fd:rollsTo extend the generic :changes property

to express contract succession explicitly.
These extensions demonstrate that domain complexity can be added without compromising the core

temporal indirection mechanism. The modular architecture ensures that domain-specific extensions
can be added without modifying the core pattern abstractions, preserving both pattern integrity and
domain expressiveness.

Section 4 validates this approach through implementations in multiple domains, demonstrating
how the same instantiation methodology yields robust temporal indirection models regardless of the
application context.

4. Validation and Use Cases

This section validates the Temporal Indirection Pattern through implementation and testing in two
domains: financial derivatives and air transportation. We demonstrate query execution, measure
competency question coverage, and analyze cross-domain applicability in a dedicated GitHub project at
https://github.com/YuliaS/temporal_indirection.git.

4.1. Validation Methodology

Our validation approach comprises:

1. Reference Implementation: Open-source repository [6] with pattern definition, domain on-
tologies, and test data

2. Competency Questions: SPARQL queries for all competency questions in each domain
3. Data Coverage: Three-month temporal spans of instance data

• All datasets used in this validation were synthetically generated to avoid reliance on pro-
prietary or copyrighted materials. We specified initial value ranges (e.g., plausible price
intervals for futures contracts, typical aircraft capacities, and operational time windows)
and provided descriptive metadata to guide generation.

• Instance data was then produced automatically by applying domain-inspired rules and
randomized sampling within these ranges. Specific identifiers were fabricated to resemble
real-world formats while remaining entirely artificial. This approach ensured that the
validation environment reflected realistic conditions while maintaining full compliance with
copyright and licensing requirements.

4. Integrity Validation: Automated checks for all competency questions, especially gaps, overlaps,
and consistency

The companion repository provides a pure-Python reference implementation that loads the pattern
ontologies and synthetic datasets, executes the SPARQL competency-question suite, and performs
integrity checks using small test harnesses over an in-memory RDFLib graph. Experiments were run
with CPython 3.11 (Linux, x86_64) and RDFLib 7.0.0; SPARQL evaluation uses RDFLib’s built-in 1.1
engine. Dependencies are limited to RDFLib plus optional utilities (SPARQLWrapper, pandas, tabulate).
Reproduction consists of creating a virtual environment, installing requirements.txt, and running
the domain test scripts. Semantically, we model temporal intervals as half-open [start, end), so “current
referent” resolution selects the unique binding with start ≤ t < end—operationalizing the mapping

https://github.com/YuliaS/temporal_indirection.git

m(t) in Figure 1, aligning with the structural constraints in Figure 2.3, and verified by the competency
questions in Tables 3 and 4.

4.2. Financial Derivatives Validation

Table 3 shows how generic competency questions specialize for derivatives trading.

Generic CQ Financial Specialization
CQ1: Current referent Which contract does CL1 currently reference?
CQ2: Historical resolution Which contract did CL1 reference on 2024-01-15?
CQ3: Transition timing When do monthly contract rolls occur?
CQ4: Attribution What prices are recorded for contract CLG25?
CQ5: Complete history Show CL1’s contract sequence for Q1 2024
CQ6: Rule provenance Which exchange rules govern CL rolls?
CQ7: Temporal integrity Verify no gaps in CL1 contract mappings
CQ8: Context reconstruction Reconstruct spread relationships for date X

Table 3
Financial derivatives competency questions

Key SPARQL queries demonstrate pattern capabilities.
Current Referent Resolution (CQ1):

SELECT ? c o n t r a c t WHERE {
ex : CL1 : hasTempora lB ind ing ? b i n d i n g .
? b i n d i n g : b indsTo ? c o n t r a c t ;

: hasVa l idT ime / : h a s S t a r t T i m e ? s t a r t ;
: hasVa l idT ime / : hasEndTime ? end .

FILTER (NOW() >= ? s t a r t && NOW() < ? end)
}

Transition Tracking (CQ3):
SELECT ? t imestamp ? from ? t o ? r u l e WHERE {

? r o l l a f d : C o n t r a c t R o l l ;
: hasTimestamp ? t imestamp ;
f d : r o l l s F r o m ? from ;
f d : r o l l s T o ? t o ;
: t r i g g e r e d B y ? r u l e .

} ORDER BY ? t imestamp

4.3. Air Transportation Validation

Table 4 shows how generic competency questions specialize for the air transportation use case.

Generic CQ Air Transportation Specialization
CQ1: Current referent Which aircraft/crew operates UA001 today?
CQ2: Historical resolution Which aircraft operated UA001 on date X?
CQ3: Transition timing When do daily aircraft assignments change?
CQ4: Observation attribution What metrics exist for aircraft N12345?
CQ5: Complete history What is UA001’s aircraft rotation history?
CQ6: Rule provenance Which scheduling rules govern assignments?
CQ7: Temporal integrity Do flight assignments have scheduling conflicts?
CQ8: Context reconstruction Can incident context be fully reconstructed?
CQ9: Maintenance tracking What maintenance history exists for assigned aircraft?
CQ10: Crew patterns How do crew rotations align with flights?

Table 4
Specialization of competency questions for air transportation.

The aviation domain adds safety-critical requirements beyond generic competency questions:

• CQ9: Track maintenance history for aircraft assigned to flight numbers
• CQ10: Analyze crew rotation patterns across flights

These domain-specific extensions validate the pattern’s extensibility without modifying core struc-
tures.

Key SPARQL queries illustrate validation in this domain.
Context reconstruction (CQ8):

SELECT ? a i r c r a f t ? c a p t a i n ? p a s s e n g e r s ? s e v e r i t y
WHERE {

? i n c i d e n t a avo : S a f e t y I n c i d e n t ;
avo : r e p o r t e d F o r ? o p e r a t i o n ;
avo : h a s S e v e r i t y ? s e v e r i t y .
? o p e r a t i o n avo : h a s A i r c r a f t ? a i r c r a f t ;
avo : hasCrew / avo : hasMember ? c a p t a i n .
? c a p t a i n avo : h a s R o l e ex : C a p t a i n R o l e .

OPTIONAL { ? m e t r i c : o b s e r v e d R e f e r e n t E n t i t y ? o p e r a t i o n ;
avo : hasPassengerCount ? p a s s e n g e r s } }

Maintenance tracking (CQ9):
SELECT DISTINCT ? a i r c r a f t ? maintType ? maintTime
WHERE {

ex : UA001 : hasTempora lB ind ing / : b indsTo ? o p e r a t i o n .
? o p e r a t i o n avo : h a s A i r c r a f t ? a i r c r a f t .
? maint avo : i n v o l v e s A i r c r a f t ? a i r c r a f t ;
avo : hasMaintenanceType ? maintType ;
: hasObserva t ionT ime ? maintTime .
} ORDER BY ? a i r c r a f t ? maintTime

4.4. Results Summary

Testing across both domains achieved:

• 100% Coverage: All competency questions answered correctly
• Temporal Integrity: No gaps or overlaps detected in the transitions
• Extensibility: Domain-specific questions handled without pattern modification

These results confirm the pattern’s effectiveness for temporal indirection across heterogeneous
domains.

5. Related Work

Having validated our pattern, we now position it relative to existing temporal modeling approaches to
clarify our contribution.

5.1. Temporal Qualification vs. Temporal Indirection

Existing temporal approaches can be grouped into four main categories, each revealing the same
limitation: they assume identifier-referent relationships remain static within temporal boundaries.
Time-indexed relations built on OWL-Time [2] and the Time-indexed Value in Context pattern [7] excel
at qualifying when relationships hold but cannot update identifier semantics over time. Situation-based
patterns from DOLCE [8] and event models [9] contextualize occurrences but focus on modeling events
themselves, rather than the evolution of what an identifier denotes. Fluents and 4D approaches [10]
represent entities as temporally extended, emphasizing property changes, but do not address identifier

continuity with changing referents. Recent enhancements including RDF-star capabilities in RDF 1.2 [11]
enable fine-grained annotation of triples, including temporal metadata, but stop short of providing
higher-level patterns for rule-driven reference evolution. In all cases, temporal validity is represented,
but the semantics of identifier–referent mapping are assumed to be fixed during any interval, leaving
the indirection phenomenon unaddressed.

5.2. Recurring Events vs. Persistent References

The Recurrent Situation Series pattern [12] addresses collections of recurring situations with shared
properties. While this pattern successfully models periodicity and series membership, it differs from
temporal indirection in key respects: 1) recurrent situations are discrete occurrences rather than
continuous reference evolution; 2) each situation maintains its own identity, rather than being accessed
through a persistent identifier, 3) the pattern focuses on collection membership, not identifier resolution.
Work on calendar-based temporal patterns [13] and periodic events [14] provides mechanisms for
expressing complex recurrence rules. These approaches inform our modeling of roll conventions but
don’t address the identifier-referent indirection layer.

5.3. Domain Ontologies (FIBO) Limitations

The Financial Industry Business Ontology (FIBO)[3, 4], despite containing 2,300+ classes with dedicated
derivatives and market data domains, lacks explicit handling of rolling contract mechanisms. While FIBO
does include a ReassignableIdentifier class that appears relevant to rolling contracts, its axiomatization
fundamentally misaligns with the temporal indirection requirements.

The reassignable identifier is defined as “an identifier that uniquely identifies something for a
given time period, and that may be reused to identify something else at a different point in time,”
with properties hasAssignmentTerminationDate and hasInitialAssignmentDate that apply
directly to the identifier itself. This models scenarios where identifiers are recycled after periods of
non-use (like vanity license plates transferred between vehicles), creating temporal gaps between
assignments. However, rolling generic tickers like “CL1” exhibit fundamentally different semantics: the
identifier maintains continuous existence without assignment/termination dates, while the referent
contracts transition seamlessly according to exchange rules. The reassignable identifier’s cardinality
constraints (max 1 for both assignment dates) enforce discrete reuse periods rather than continuous
rule-based transitions.

Furthermore, the class lacks mechanisms to specify transition rules, maintain historical binding
sequences, or support the dual attribution required for market observations. The Temporal Indirection
Pattern addresses these limitations by separating the persistent identifier (which has no temporal
bounds) from temporal bindings (which manage the time-dependent referent relationships), enabling
the continuous, rule-governed referent evolution that characterizes financial rolling contracts.

Our pattern fills this gap by explicitly separating identifier persistence from referent dynamics while
maintaining complete temporal traceability.

6. Conclusion and Future Work

6.1. Summary of Contributions

This paper presented the Temporal Indirection Ontology Design Pattern, addressing a previously
unrecognized gap in temporal knowledge representation. Our contributions include:

• Conceptual Framework: Formal separation of persistent identifiers from evolving referents
through temporal bindings

• Reusable Pattern: Domain-independent abstractions validated across finance and aviation
• Competency Questions: Support for current referent resolution, historical reconstruction, and

audit trails

https://spec.edmcouncil.org/fibo/ontology/FND/Arrangements/IdentifiersAndIndices/ReassignableIdentifier

• Open Implementation: Reference ontologies and validation suites for community adoption

The pattern’s success in modeling both financial derivatives and safety-critical aviation operations
demonstrates its broad cross-domain applicability.

6.2. Implications

Temporal indirection appears wherever systems require stable references to evolving entities. Beyond
our validated domains, potential applications include:

• Healthcare: Clinical roles, on-call assignments, equipment allocation
• Government: Organizational positions, regulatory interpretations, policy versions
• Technology: API versions, service endpoints, deployment configurations

6.3. Future Directions

Future work will extend the foundation by (a) developing a full axiomatization in Description Logic
with temporal semantics, supported by reasoning complexity analysis and integration with temporal
logic frameworks, (b) conducting performance and scalability benchmarks with large datasets, and (c)
exploring template-based instantiation with Reasonable Ontology Templates (OTTR) [15] to streamline
adoption by domain experts. We also plan to explore comparative testing of triplestore implementations,
characterizing query behavior and identifying optimizations that can support more efficient resolution
in temporal indirection scenarios.

In the financial domain, we plan to engage with the Fintech Open Source Foundation (FINOS) [16] to
align the pattern with ongoing standards, such as the Common Domain Model (CDM) [17]. In addition,
we will seek to support and validate a broader range of financial use cases to further demonstrate the
applicability and robustness of the pattern.

Establishing this pattern could benefit ontology engineering efforts across finance, government,
healthcare, and other domains, enabling consistent modeling of roles, identifiers, and evolving entities.
In conclusion, the Temporal Indirection Ontology Design Pattern provides a principled solution to
representing temporal indirection in ontologies—a previously missing element in the ontology design
patterns toolkit.

Declaration on Generative AI

During the preparation of this work, the author used ChatGPT in order to: Grammar and spelling check,
Paraphrase and reword. After using this tool, the author reviewed and edited the content as needed and
takes full responsibility for the publication’s content.

References

[1] T. Lebo, S. Sahoo, D. McGuinness, PROV-O: The PROV Ontology, W3C Recommendation (2013).
URL: http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[2] S. Cox, C. Little, Time Ontology in OWL, W3C Candidate Recommendation Draft (2022). URL:
https://www.w3.org/TR/owl-time/.

[3] M. Bennett, The Financial Industry Business Ontology: Best practice for big data, Journal of
Banking Regulation 14 (2013) 255–268.

[4] Enterprise Data Management Council, Financial industry business ontology (FIBO), https://github.
com/edmcouncil/fibo, 2025. Accessed: 2025-09-22.

[5] V. Presutti, A. Gangemi, Dolce+ d&s ultralite and its main ontology design patterns, in: Ontology
Engineering with Ontology Design Patterns, IOS Press, 2016, pp. 81–103.

http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/owl-time/
https://github.com/edmcouncil/fibo
https://github.com/edmcouncil/fibo

[6] Y. Svetashova, Temporal indirection pattern: An ontology design pattern, 2025. URL: https://github.
com/YuliaS/temporal_indirection. doi:10.5281/zenodo.16914828.

[7] S. Peroni, D. Shotton, F. Vitali, Scholarly publishing and linked data: describing roles, statuses,
temporal and contextual extents, in: Proceedings of the 8th International Conference on Semantic
Systems, 2012, pp. 9–16.

[8] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino, C. Masolo, D. Porello, E. M. Sanfilippo, L. Vieu,
DOLCE: A descriptive ontology for linguistic and cognitive engineering, Applied ontology 17
(2022) 45–69.

[9] W. R. Van Hage, V. Malaisé, R. Segers, L. Hollink, G. Schreiber, Design and use of the simple event
model (SEM), Journal of Web Semantics 9 (2011) 128–136.

[10] C. Welty, R. Fikes, S. Makarios, A reusable ontology for fluents in OWL, in: FOIS, volume 150,
2006, pp. 226–236.

[11] O. Hartig, P.-A. Champin, G. Kellogg, A. Seaborne, RDF 1.2 concepts and abstract syntax, W3C
Working Draft (2025). URL: https://www.w3.org/TR/rdf12-concepts/.

[12] V. A. Carriero, A. Gangemi, A. G. Nuzzolese, V. Presutti, An ontology design pattern for representing
recurrent situations, in: Advances in pattern-based ontology engineering, IOS Press, 2021, pp.
166–182.

[13] H. J. Ohlbach, Calendrical calculations with time partitionings and fuzzy time intervals, in:
International Workshop on Principles and Practice of Semantic Web Reasoning, Springer, 2004, pp.
118–133.

[14] A. Tuzhilin, J. Clifford, On periodicity in temporal databases, Information Systems 20 (1995)
619–639.

[15] M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, J. W. Klüwer, Ottr: Formal templates for pattern-based
ontology engineering, in: Advances in Pattern-Based Ontology Engineering, IOS Press, 2021, pp.
349–377.

[16] FINOS, The Fintech Open Source Foundation, About FINOS, https://www.finos.org/about-us, 2025.
Accessed: 2025-09-22.

[17] FINOS, The Fintech Open Source Foundation, Common Domain Model (CDM), https://github.
com/finos/common-domain-model, 2025. Accessed: 2025-09-22.

https://github.com/YuliaS/temporal_indirection
https://github.com/YuliaS/temporal_indirection
http://dx.doi.org/10.5281/zenodo.16914828
https://www.w3.org/TR/rdf12-concepts/
https://www.finos.org/about-us
https://github.com/finos/common-domain-model
https://github.com/finos/common-domain-model

	1 Introduction
	1.1 Limitations of Current Approaches
	1.2 Our Contribution
	1.3 Paper Organization

	2 The Temporal Indirection Pattern
	2.1 Conceptual Foundations
	2.2 Core Components
	2.2.1 Persistent Identifier and Referent Entity
	2.2.2 Temporal Binding
	2.2.3 Transition Events and Rules
	2.2.4 Resolution Context and Conventions

	2.3 Structural Constraints
	2.4 Competency Questions

	3 Financial Derivatives Implementation
	3.1 Domain Context
	3.2 Pattern Specialization
	3.3 Domain Extensions

	4 Validation and Use Cases
	4.1 Validation Methodology
	4.2 Financial Derivatives Validation
	4.3 Air Transportation Validation
	4.4 Results Summary

	5 Related Work
	5.1 Temporal Qualification vs. Temporal Indirection
	5.2 Recurring Events vs. Persistent References
	5.3 Domain Ontologies (FIBO) Limitations

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.2 Implications
	6.3 Future Directions

