CEUR-WS.org/Vol-4094/paper3.pdf

CEUR
E Workshop
Proceedings

published 2025-11-13

Graf von Data: A Knowledge Graph Question Answering
Agent for Organisational Usage

Rene Dorsch®*, Daniel Henselmann®* and Andreas Harth??

Fraunhofer IIS, Nordostpark 84, 90411 Nuremberg, Germany
2Friedrich-Alexander-Universitdit Erlangen-Niirnberg, Lange Gasse 20, 90403 Nuremberg, Germany

Abstract

Large Language Model-based (LLM) systems have advanced Knowledge Graph-based Question Answering
(KGQA) but overlook organisational demands for transparency, control, and flexible deployment. We present
Graf von Data (GvD), an LLM-augmented agent for KGQA, designed to meet key organisational demands. GvD
translates natural language questions into SPARQL queries by iteratively exploring the knowledge graph (KG)
using the ReAct framework and a set of three actions — search, describe, and query — requiring only a SPARQL
endpoint with text search capabilities. Unlike other approaches, GvD is graph-agnostic and uses an open-weight
LLM. We evaluate GvD in the Text2SPARQL challenge, demonstrating near state-of-the-art performance on the
Corporate KG benchmark. In addition to quantitative results, we conduct a qualitative comparison against the
challenge competitors, showing that GvD thrives under the organisational demands.

Keywords
Large Language Model, RDF, Knowledge Graph, Question Answering, Knowledge Graph Question Answering

1. Introduction

Connecting data across various sources is a crucial task for many organisations, enabling process
optimisation and informed decision-making. Industrial organisations [1, 2, 3], technology organisa-
tions [4], and government institutions [5] employ knowledge graphs (KGs) due to their flexible struc-
ture and schema to connect data, thereby simplifying data integration.

However, accessing and querying KGs remains challenging for non-technical users in organisa-
tions [6] due to the specialised expertise required for crafting SPARQL queries. For non-technical
users, Knowledge Graph Question Answering (KGQA) approaches have been developed to offer an
interface for natural language questions. Current approaches rely on Large Language Models (LLMs)
to interact with the user and retrieve answers from the KG.

Nevertheless, existing LLM-based approaches (see Section 2) for KGQA are not developed with the
demands of organisations in mind. The demands are [7, 8]:

« Transparent Answers Generation: Existing LLM-based approaches often lack transparency
in their generated answers, which is a concern for organisational applications where trustworthy
and verifiable information is necessary to support decision-making.

« Organizational Control: Current LLM-based approaches frequently rely on closed-weight
models of OpenAl, Anthropic, or Google. However, this may lead to vendor lock-in and/or
high operational costs, limiting an organisation’s autonomy and strategic control over technol-
ogy adoption and expenditure. Furthermore, it may lead to privacy concerns as data is sent to a
third party.

+ Flexible Deployment: Organisations often need solutions that can be served on-demand or
within the cloud and can be applied to various KGs without requiring excessive configuration or
complex infrastructure.

First International TEXT2SPARQL Challenge, Co-Located with Text2KG at ESWC25, June 01, 2025, Portoroz, Slovenia.
*Corresponding author.

& rene.dorsch@iis.fraunhofer.de (R. Dorsch); daniel henselmann@iis.fraunhofer.de (D. Henselmann);
andreas.harth@iis.fraunhofer.de (A. Harth)

@ 0000-0001-6857-7314 (R. Dorsch); 0000-0001-6701-0287 (D. Henselmann); 0000-0002-0702-510X (A. Harth)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
oy

mailto:rene.dorsch@iis.fraunhofer.de
mailto:daniel.henselmann@iis.fraunhofer.de
mailto:andreas.harth@iis.fraunhofer.de
https://orcid.org/0000-0001-6857-7314
https://orcid.org/0000-0001-6701-0287
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0/deed.en

To satisfy the additional demands of organisations, this paper introduces Graf von Data (GvD), an
LLM-augmented agent. Users can ask questions in natural language, which GvD uses to explore and
retrieve answers from the KG and then provide an answer. Users not only receive natural language
answers but also corresponding executable SPARQL queries, supporting transparency. GvD’s agent-
based approach enables iterative gathering and reasoning over KG information stored within a trace
that is available to users, thereby also enhancing the transparency of query generation. Furthermore,
GvD employs a KG-agnostic approach, requiring only a SPARQL endpoint and no prior assumption
about the KG. Thus, it supports flexible deployments. By prioritising medium-sized, open-weight mod-
els, GvD supports deployment within trusted environments (on-premise or in the cloud), reduces op-
erational costs, and avoids vendor lock-in.

GvD achieved the highest F; score (44.4%) for the Corporate KG benchmark in the quantitative
evaluation of the Text2SPARQL challenge'. A qualitative comparison with the competitors also shows
that GvD is the only competitor addressing all organisational demands.

The remainder of this paper is structured as follows. Section 2 presents related work on LLM-
augmented KGQA. Section 3 introduces GvD. Section 4 presents the experimental setup to evaluate
GvD within the Text2SPARQL challenge. Section 5 introduces the competitors of the Text2SPARQL
challenge. Section 6 discusses the results from the experiments and highlights differences between
our approach and the other participants of the Text2SPARQL challenge. Section 7 concludes the paper
with limitations and directions for future research.

2. Related Work

The emergence of LLMs significantly impacted KG question answering as LLM-augmented approaches
outperformed the results of prior approaches (e.g., [5]), becoming state-of-the-art. Multiple strategies
for LLM-augmented systems for KG question answering exist, which we distinguish in the following.
We consider approaches [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] that generate a SPARQL query
for a natural language question and find the question’s answer by executing the query, resulting in
comprehensible answers based on facts.

Fine-tuning trains an LLM on a specific KG, inherently adding its content to the LLM’s knowledge.
Approaches using fine-tuning [14, 19] require expensive resources to adjust the weights, are optimized
for individual KGs, and require fine-tuning after each update of the KG.

Approaches [14, 16, 17, 21, 22] implementing few-shot learning [23] provide example questions-
query pairs to the LLM.

Retrieval-Augmented Generation (RAG) [24] allows an LLM to consider (up-to-date) information
that is not inherent to the model by retrieving and considering additional resources after a question
is asked. Actions, often referred to as tools, can be used to incorporate various resources. An action
usually corresponds to an API call, providing information based on the question and receiving context
information from the KG. Actions that implement RAG retrieve context information from an external
knowledge source out of a given, finite set of information items. RAG actions in related work are
entity/relation linking (retrieving IDs out of all IDs in the KG) [9, 10, 11, 12, 13, 14, 15, 16, 20, 21,
22], subgraph retrieval for an entity (out of the entire KG) [10, 11, 12, 13, 20, 21], subgraph retrieval
specifically for a property (out of the entire KG) [10, 20], path discovery (out of all paths in the KG) [13],
and SPARQL query execution (retrieving a combination of entities/relations from the KG) [10, 11, 12].

Other actions return context information that is not retrieved from an external knowledge source but
instead generated based on the question’s information. Such actions in related work are entity/relation
extraction from the question [9, 14, 15, 16], shape generation [18], SPARQL query generation [9], and
SPARQL query validation [15, 16, 17, 22].

Besides actions, calling the LLM is a potential step in the question-answering process. In addition
to the task of generating the SPARQL query, intermediate tasks to translate the question [18, 21], ex-
tract entities/relations [18], identify relevant classes and properties from the KG [15], filter retrieved

!See https://text2spargl.aksw.org/

https://text2sparql.aksw.org/

subgraphs [10], and select the best SPARQL query among several candidates [9, 11] have been used.

Action and LLM calls may be combined in different ways. Figure 1 shows four strategies. Ap-
proaches [19] that find an answer directly execute a single LLM call (see Figure 1a) without considering
up-to-date context information from the KG. Workflow approaches [9, 11, 14, 15, 16, 17, 18, 21] execute
a predefined sequence of action and LLM calls (see Figure 1b). Plan-and-solve [25] approaches [22]
initially call the LLM to draft a planned sequence of then executed action/LLM calls (see Figure 1c). Re-
Act [26] approaches [10, 12, 13, 20] iteratively alternate between calling the LLM to select the next ac-
tion and executing the selected action, until the LLM decides to terminate, usually because the SPARQL
query was found (see Figure 1d).

Workflow KGQA

Direct-answer KGQA
generate query predeﬂned sequence

] SPARQL Act/ Act/ SPARQL
Ca” LM >|Query Q“es"°”|_ Call LLM >[37 CaIILLM Que

(a) Direct answer. (b) Workflow.

Plan-and-solve KGQA

r — planned sequence
. Act/ Act/ SPARQL
Question >[CallLLM]_ Call LLM >m7 Call LLM > Query
J

(

(c) Plan-and-solve [25].

ReAct KGQA

select action k o 4*
[continue]
Question Call LLM SPARQL
[termlnate] Que

(d) ReAct [26].

Figure 1: KG question answering (QA) strategies as UML 2.5 [27] activity diagram.

The current state-of-the-art for question answering on Wikidata is held by SPINACH [10] using a Re-
Act approach with actions for entity/relation linking, subgraph retrieval for an entity (enhanced with
an LLM call to filter retrieved subgraphs), subgraph retrieval specifically for a property, and SPARQL
query execution. SPINACH was developed explicitly for Wikidata, using three APIs provided by Wiki-
data and profiting from the LLM’s inherent knowledge on Wikidata entities from its training. In con-
trast, GvD requires only a SPARQL endpoint (with search extension) as API, supporting KG-agnostic
operation.

3. Graf von Data Architecture

We provide a high-level overview of the GvD system and a description of its behaviour based on an
example in Section 3.1. Afterwards, we provide a detailed description of the actions, prompts, and LLM
selection for the agent in Section 3.2.

3.1. High Level Overview

GvD operates within a structured environment composed of two elements (see Figure 2): the agent
and the environment. These components interact iteratively to process natural language questions
and produce answers based on knowledge graph data.

=3

/ \ User
N t
Y :
Prompt - Sensor | ><—% :
/\
o A
v [) :
4—,—‘ I Triple Store i
> g | ——— P2
LLM Z 2 i PE
] o : 1
= o3 i B
- o -}
2. Keyword Search -]
ﬂ g . Plugin P
Available Action: :
Search
Describe -- Actuator —)<>—>
Query
Success
Fail —
Answer

(SPARQL Queryand |}

Natural Language
K Answer) /

Figure 2: Graf von Data architecture.

« Agent: The agent orchestrates the question-answering process. It consists of three subcompo-
nents: (i) an LLM, which processes input to select actions; (ii) a sensor, which parses and appends
input data to the prompt; and (iii) an actuator, which executes the selected actions.

« Environment: The environment includes a User and a SPARQL endpoint. The SPARQL end-
point serves as the interface between the agent and the KG. The endpoint provides a standardised
access point to the triple store and the keyword search, enabling GvD to work with different KGs
without modification or additional infrastructure.

Figure 3 illustrates how GvD may handle a question of a procurement officer (User) that wants to
identify how many suppliers offer alternative compatible products for a specific part: the K367 Strain
Encoder. Thus, he asks GvD to retrieve the information within the KG for the following question:
“How many suppliers can deliver alternative compatible products for the K367 Strain Encoder?” The
GvD agent processes the question through the following iterative steps:

1. Initial Search (Step 1): The agent identifies the key term “K367 Strain Encoder” from the user
question. Afterwards, the agent calls the search action for the term to identify related URIs from
the KG.

2. Entity Expansion (Step 2-3): Once the relevant URIs are located, the agent re-
trieves their RDF description to identify compatible products and associated relationships
(ns2:compatibleProduct).

3. Intermediate Steps (Step ...): The agent extends the search using additional keywords and/or
explores connected entities to discover a solution path.

4. Final Query Step (Step n-1): After gathering all relevant data (compatible products and their
suppliers), the agent composes and executes a SPARQL query to count the number of unique
suppliers.

5. Completion step (Step n): The agent receives the final result (6 suppliers) and returns both
the SPARQL query and the natural language answer to the user, terminating.

3.2. Agent Implementation

The agent implements the ReAct framework to iteratively interact with its environment. Within each
interaction loop, the agent can execute multiple actions in parallel, allowing efficient and flexible graph
exploration. The agent consists of three components: the sensor, the actuator, and the LLM.

The sensor is responsible for perceiving and parsing all incoming information, either from the user’s
initial question or as feedback from the environment (search results, RDF descriptions, query outputs,

User: How many suppliers can deliver alternative compatible products for the K367 Strain Encoder?
IGraf von Data (Trace)
Step 1

Think: The user is asking for the number of suppliers that can deliver alternative compatible products for a specific item, the K367 Strain Encoder. The first step is to
Act: search("K367 Strain Encoder")

Observation: The search for K367 Strain Encoder returned the following matches.

http://Id.company.org/prod-instances/bom-part-9-K367-1320550 3.1478124

Step 2

Think: The search results include several URIs that seem related to the K367 Strain Encoder. The first URI, “http://Id.company.org/prod-instances/hw-K367-1320550",
appears to be the most relevant as it directly mentions the K367 Strain Encoder.

describe("http://ld.company.org/prod-instances/hw-K367-1320550")

Observation: The description of http://ld.company.org/prod-instances/hw-K367-1320550 is as follows:

@prefix ns1: <http://Id.company.org/prod-vocab/> .

@prefix ns2: <http://Id.company.org/prod-instances/> .

@prefix rdf: <http://www.w3.0rg/2000/01/22-rdf-syntax-ns> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

ns2:hw-K367-1320550 ns1:compatibleProduct ns2:hw-C119-5354812, ns2:hw-K845-4116844,
ns2:hw-Q248-7597886, ns2:hw-R658-8902629, ns2:hw-S271-9518696,

ns2:hw-T808-9704137 ;

ns1:depth_mm 16 ;

ns1:hasCategory ns2:prod-cat-Encoder, ns2:prod-cat-Strain ;

ns1:hasProductManager ns2:empl-Dietlinde.Boehme%2540company.org ;

ns1:hasSupplier ns2:suppl-7c4b3772-ee27-4915-8166-359d068db153 ;

ns1:height_ mm 62 ;

ns1:id "K367-1320550" ;

ns1:name "Strain Encoder" ;

ns1:price ns2:price-hw-K367-1320550-EUR ;

ns1:reliabilitylndex 0.929 ;

ns1:weight_g 8 ;

ns1:width_mm 27 ;0

rdf:type ns1:Hardware ;

rdfs:label "K367-1320550 - Strain Encoder" .

Step 3

Think: The description of the K367 Strain Encoder includes a list of compatible products. To find out how many suppliers can deliver these alternative compatible
products, | need to describe each of the compatible products to find their suppliers.

/Act: describe("http://Id.company.org/prod-instances/hw-C119-5354812") | describe("http:/ld.company.org/prod-instances/hw-K845-4116844")
Observation: ...

Step ...
Think: ...
Act: ...

Observation: ...

Step n-1

Think: Now that | have the descriptions of all the compatible products for the K367 Strain Encoder, | can see that each product has a *hasSupplier’ property that points to|
a specific supplier URI.

/Act: query("PREFIX ns1: <http://ld.company.org/prod-vocab/> SELECT (COUNT(DISTINCT ?supplier) AS ?numSuppliers) WHERE { <http://Id.company.org/prod-
instances/hw-K367-1320550> ns1:compatibleProduct ?compatibleProduct . 2compatibleProduct ns1:hasSupplier ?supplier . }")

Observation: The query "PREFIX ns1: <http:/ld.company.org/prod-vocab/> SELECT (COUNT(DISTINCT ?supplier) AS ?supplierCount) WHERE {
<http://Id.company.org/prod-instances/hw-K367-1320550> ns1:compatibleProduct ?compatibleProduct .

?compatibleProduct ns1:hasSupplier ?supplier . }" returned the following results:

[{'supplierCount': "'6"http://www.w3.0rg/2001/XMLSchematinteger'}]

Step n

Think: The query has confirmed that there are 6 unique suppliers that can deliver alternative compatible products for the K367 Strain Encoder. This matches the

information | gathered from the descriptions of the compatible products. | have now successfully determined the number of suppliers that can deliver alternative
compatible products for the K367 Strain Encoder.

Act: success("There are 6 suppliers that can deliver alternative compatible products for the K367 Strain Encoder.")

(Graf von Data (Answer)

User Response: For the question "How many suppliers can deliver alternative compatible products for the K367 Strain Encoder?" we used the following SPARQL
query:

PREFIX ns1: <http://Ild.company.org/prod-vocab/>

SELECT (COUNT(DISTINCT ?supplier) AS ?supplierCount)

WHERE {

<http://ld.company.org/prod-instances/hw-K367-1320550> ns1:compatibleProduct ?compatibleProduct .
?compatibleProduct ns1:hasSupplier ?supplier .

|land found that: There are 6 suppliers that can deliver alternative compatible products for the K367 Strain Encoder

Figure 3: Example of GvD answering a user question.

or error messages). The sensor transforms this information into structured text and appends it to the
prompt, extending the history. The updated prompt serves as the internal state for the LLM’s decision-
making.

The prompt is the primary mechanism to direct the LLM towards robust and efficient query gen-
eration. GvD implements a zero-shot prompt that only includes high-level instructions. The initial

prompt consists of the following five sections:

1.

Role Definition: This section instructs the model to act as an autonomous agent tasked with
answering user questions by exploring the KG and generating appropriate SPARQL queries.
Loop Definition: The loop definition outlines the strategy based on the ReAct framework, al-
lowing the agent to alternate between processing environmental feedback and taking actions,
facilitating controlled and explainable behaviour. The loop is composed of three components:
(i) Think to formulate the decision-making of the agent, (ii) Act, in which the agent selects and
executes the following action, and (iii) Observation to perceive data from the environment.
Actions: Each action is described in terms of its input requirements, its intended purpose, and
the expected output format. The actions are keyword search, entity description, SPARQL query
execution, and termination (success or failure). By explicitly defining these actions, the prompt
provides the agent with a clear operational vocabulary for interacting with the KG.

Stage Description: The stage description suggests an “explore and expand” approach, in which
the agent begins with a coarse-grained search and incrementally builds upon the results of pre-
vious actions.

. General Guidelines: The guidelines provide recommendations that support correct and effi-

cient system behaviour. For example, the agent is advised to avoid relying on known names-
paces (such as DBpedia), always to use fully expanded URIs when composing SPARQL queries,
and to be aware of the maximum number of interaction loops. The heuristics help the agent to
remain compatible with different KGs and prevent common failure modes.

The agent can interact with its environment through the actuator. The actuator parses the textual
action call and executes the action on the environment. The actuator has five actions available. Two
actions specify termination conditions (success and failure) to enable the agent to stop the query gen-
eration. The success condition allows the agent to signal a found query based on the information from
the graph. The fail condition indicates that the agent found either no or an unsatisfactory query. The
other three actions enable the agent to interact with any KG:

1.

Search action: Is an entity linking action that matches entity URIs from natural language key-
words by the similarity score of the keyword and entity textual descriptions. The action uses
keyword search plugins that are widely available for RDF triple stores?, to enable search based
on text similarity within the KG through a SPARQL SELECT query. The similarity score can be
specified on any literal. The search extension creates an index, such as a Lucene Index, using
the literals to facilitate faster retrieval.

. Describe action: Is a subgraph retrieval method that returns a subgraph for a provided entity

URI according to defined entity boundaries. The boundaries vary based on the entity’s type.
The specific boundaries for class entities [28] are shown in Figure 5 and expressed by a SPARQL
query with the union of the graph patterns in Listings 1, 3, 4, and 5 from Appendix A. The
specific boundaries for object property entities [28] are shown in Figure 6 and expressed by a
SPARQL query with the union of the graph patterns in Listings 1, 7, 8, and 6 from Appendix A.
The entity boundaries for all other entities are shown in Figure 4 and expressed by a SPARQL
query with the union of the graph patterns in Listings 1 and 2 from Appendix A. For all outgoing
(see Listing 1) and incoming (see Listing 2) triples, we prune property occurrences that exist over
ten times (i.e., remove additional triples with that property) to limit the total number of triples
in the subset.

. Query action: Executes a SPARQL query specified by the LLM. The results are returned as a

JSON result set.

*See e.g., for Apache Jena: http://loopasam.github.io/jena-doc/documentation/query/text-query.html, GraphDB: https:
//graphdb.ontotext.com/documentation/11.0/full-text-search.html, Blazegraph: https://github.com/blazegraph/database/
wiki/FullTextSearch

http://loopasam.github.io/jena-doc/documentation/query/text-query.html
https://graphdb.ontotext.com/documentation/11.0/full-text-search.html
https://graphdb.ontotext.com/documentation/11.0/full-text-search.html
https://github.com/blazegraph/database/wiki/FullTextSearch
https://github.com/blazegraph/database/wiki/FullTextSearch

?p ’p
?s ——» {uri} —» 7?0

Figure 4: Entity boundaries retrieved with the describe action [28]. Equivalent to a SPARQL query with the
union of the graph patterns in Listings 1 and 2 from Appendix A.

?label ?type
rdfs:lab& /df:type
?parentclass ?p_label ?p_type
A
rdfs:subClassOf rdfs:label rdf:type
’p
?0 [€ {uri} |<€ ?property
y rdfs:domain
rdfs:range .
rdfs:subClassOf r;?‘fc'jrj;%?n
?subclass ?class
rdfs:label rdf:type rdfs:label rdf:type
?label ?type ?c_label ?c_type

Figure 5: Specific class boundaries retrieved with the describe action [28]. Equivalent to a SPARQL query with
the union of the graph patterns in Listings 1, 3, 4, and 5 from Appendix A.

?p_label ?p_type ?c_label ?c_type
rdfs:label rdf:type rdfs:label rdf:type
?parentproperty > ?class
A rdfs:domain
rdfs:range
rdfs:subClassOf 2label
rdfs:label '
?p : -
2 |[€——— {uri} r‘:;‘;'s"_’g::'e” »| 2class
7y :
rdf:type ot
rdfs:subClassOf ftype
rdfs:domain
rdfs:range
?subproperty » “?class
rdfs:label rdf:type rdfs:label rdf:type
?p_label ?p_type ?c_label ?c_type

Figure 6: Specific object property boundaries retrieved with the describe action [28]. Equivalent to a SPARQL
query with the union of the graph patterns in Listings 1, 7, 8, and 6 from Appendix A.

The actuator executes actions (including termination conditions) selected by the LLM. A previous
study [29] found that selected actions should be evaluated before execution to prevent failures, unnec-
essary repetitions, and hallucinations. Thus, the actuator includes a function to validate each action
before execution and provides, in the case of a failure, feedback to the sensor. The control function
ensures that only syntactically valid and non-repeated actions are executed against the KG.

For the LLM selection, we prioritised different LLMs according to the organisational demands.Thus,
we evaluated different open-weight models considering three key metrics: performance, robustness,
and model size. We employed SupplyBench? for the evaluation of LLMs. SupplyBench is a benchmark
for enterprise-focused KGQA systems, featuring a KG with question/query pairs of varying complexity.
Our experimental findings revealed distinct performance patterns across model sizes. Small LLMs with
fewer than 10 billion parameters showed unstable agent loop behaviour. Large LLMs with more than
100 billion parameters showed higher performance but required prohibitively higher computational
resources. Medium-sized LLMs with approximately 70 billion parameters have achieved the optimal
balance between performance and efficiency. Specifically, current state-of-the-art medium-sized mod-
els, including Llama 3.3 70B Instruct and Qwen 2.5 72B Instruct, successfully managed the robustness
requirements for effective agent loops and parallel action planning. LLM-KG-Bench-3 [30] confirmed
our findings, as Llama 3.3 70B and Qwen 2.5 72B demonstrated strong performance across various
KG-specific tasks.

4. Experimental Setup

We participated in the Text2SPARQL challenge for the evaluation of GvD. For the Text2SPARQL chal-
lenge, GvD and the associated Text2SPARQL APIs were self-hosted among two Apache Jena Fuseki*
servers extended by Jena Full Text Search®. The two APIs provided the corporate and DBpedia SPARQL
endpoints to GvD. Jena Full Text Search used Lucene indexes based on rdfs:label values in the re-
spective KGs and the default analyser and tokeniser.

The configuration of GvD limited the number of interaction loops to eight and the response times
for the search action to 10 seconds, describe action to 20 seconds, and query action to 30 seconds.

We submitted two versions of GvD to the Text2SPARQL challenge, which differed only in the LLM
used. One used Llama 3.3 70B Instruct® and the other Qwen 2.5 72B Instruct’. We used both models
hosted at Chat AI® [31]. Regarding model parameters, the temperature (influencing the output creativ-
ity) was set to 0 (lowest creativity), and the top_p (influencing the output variety) was set to 1 (highest
variety).

All experiments were conducted with one run by the Text2SPARQL organizers. The organizers eval-
uated GvD with the metrics precision, recall, F{, and for SPARQL queries with sorted results, NDCG
(Normalised Discounted Cumulative Gain). The organizers did not differentiate between different
types of queries (e.g. ASK, SELECT). We were not able to reproduce the results from the organizers
with our experimental setup’. This may be caused by changed or unknown configuration parameters
of the organizers or Chat Al

5. Competitor Profiles

Nine groups participated in the Text2SPARQL challenge with twelve competing implementations.
Three competitors withdrew from the competition after the results were revealed. Therefore, we ex-
cluded them from the evaluation. Table 1 lists the remaining participants with their KGQA strategy.

*See https://github.com/wintechis/supplybench

*See https://jena.apache.org/documentation/fuseki2/index.html
5See https://jena.apache.org/documentation/query/text-query.html
¢See https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
’See https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

8See https://docs.hpc.gwdg.de/services/chat-ai/index.html
*https://github.com/AKSW/text2sparql.aksw.org/issues/101

https://github.com/wintechis/supplybench
https://jena.apache.org/documentation/fuseki2/index.html
https://jena.apache.org/documentation/query/text-query.html
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://docs.hpc.gwdg.de/services/chat-ai/index.html
https://github.com/AKSW/text2sparql.aksw.org/issues/101

Table 1
Text2SPARQL competitors that presented their approaches. Our approach is highlighted in bold.

Organisation KGQA Approach
Institute of Applied Informatics and Formal Description Methods (AIFB) [18] Workflow
Artificial Intelligence Research Institute (AIRI) [21] Workflow
DBpedia Group (DBpedia) [19] Direct
Fraunhofer IS (11S) ReAct

ETi @ Institute for Applied Informatics (InfAl) [20] ReAct

WSE Research Group @ Leipzig University of Applied Sciences (WSE) [22] Plan-and-Solve

The Institute of Applied Informations and Formal Description Methods (AIFB) of the Karlsruher
Institute of Technology developed a four-step workflow approach [18] involving language translation,
entity extraction, ShEx shape generation via shexer [32], and finally SPARQL generation.

The Artificial Intelligence Research Institute (AIRI) proposed Text-to-RDF Executor (TREx) [21], a
workflow-based approach that begins with language translation but then diverges into KG-specific
processing pipelines. The DBpedia KG pipeline includes additional steps for query rewriting, entity
linking through additional dependencies, and query refinement through question-query examples pro-
vided through the LCQuad'® and QALD-9'! datasets to improve question generation performance.

The DBpedia Group’s approaches [19] fine-tuned three open-weight models, CodeGen 2.5 350M [33]
(DBpedia-CG), StarCoder 1B [34] (DBpedia-SC), and CodeLlama 7b [35] (DBpedia-CL) using the NSpM
data set'? containing 8 million natural language question-SPARQL pairs.

The Institute for Applied Informatics (INFAI) developed a ReAct agent approach [20]. While sharing
GvD’s loop definition, the system relies on a vector database as an additional infrastructure. The
approach has access to six actions. It has three actions - entity search, property search and class search
- for entity and relation linking, two actions - property example and knowledge graph entry - for
subgraph retrieval and a query action.

The Web & Software Engineering (WSE) Research Group of the Leipzig University of Applied Sci-
ences developed the mKGQAgent [22]. The mKGQAgent is a plan-and-solve approach comprising both
offline and online phases. The offline phase creates an experience pool from training data to generate
successful sequences of actions, while the online phase uses this pool to guide question analysis and
step-by-step action execution with GPT-40. The experience pool is stored within a vector database,
using the multilingual e5 text embeddings [36] to store successful plans.

6. Results and Discussion

This section evaluates GvD‘s performance in three parts: a quantitative evaluation based on the
Text2SPARQL challenge (Sec. 6.1), a qualitative comparison with Text2SPARQL challenge competi-
tors regarding usability criteria in an organisational context, and a qualitative investigation of system
errors of GvD (Sec. 6.3).

6.1. Performance Evaluation

We evaluate GvD’s effectiveness through quantitative analysis of the Text2SPARQL challenge perfor-
mance results, examining results across the Corporate KG and DBpedia benchmarks to assess system
performance in SPARQL query generation from natural language questions.

Table 2 shows that the ReAct agent approaches achieve the best performance on the Corporate KG
benchmark. GvD with the Qwen 2.5 72b Instruct model (IIS-Q) achieved the highest recall (0.452) and
F;-score (0.444). The approach from INFAI achieved the highest performance in terms of NDCG score
(1.0) and precision (0.542).

https://github.com/AskNowQA/LC-QuAD
https://github.com/ag-sc/QALD/tree/master
2https://github.com/Liber A/NSpM/tree/master

https://github.com/AskNowQA/LC-QuAD
https://github.com/ag-sc/QALD/tree/master
https://github.com/LiberAI/NSpM/tree/master

Table 2

Text2SPARQL Corporate KG benchmark results. Our approach is highlighted in bold. 11S-L stands for the Llama,
11S-Q for the Qwen variant. The best values are highlighted in bold, the second best underlined. DBpedia did
not participate in the Corporate KG benchmark.

Competitors Precsion Recall F, NDCG Combined (F, and NDCG)
AIFB 0.000 0.000 0.000 0.000 0.000

IIS-L (=GvD) 0.365 0.428 0.374 0.261 0.371

11S-Q (=GvD) 0.522 0.452 0.444 0422 0443

INFAI 0.542 0436 0413 1.000 0.447

MIPT 0.218 0.228 0.219 0.315 0.219

WSE 0.315 0.343 0.321 0.429 0.322

GvD with the Llama 3.3 70b Instruct model (IIS-L) followed behind the other two competitors. While
individual metric leadership varies across approaches, the consistent dominance of ReAct agent ap-
proach over the other approaches suggests that flexible exploration capabilities provide advantages for
KGOQA applications without prior knowledge.

Table 3
Text2SPARQL DBpedia benchmark results. Our approach is highlighted in bold. 1IS-L stands for the Llama,
11S-Q for the Qwen variant. The best values are highlighted in bold, the second best underlined.

Competitors Precision Recall F, NDCG Combined (F; and NDCQ)
AIFB 0.443 0487 0451 0.820 0.456
DBpedia-CG 0.055 0.055 0.055 0.000 0.055
DBpedia-CL 0.492 0.053 0.051 0.000 0.050
DBpedia-SC 0.097 0.100 0.098 0.000 0.098
IIS-L (=GvD) 0.349 0.389 0.354 0.444 0.354
11IS-Q (=GvD) 0.375 0.348 0.339 0.424 0.340
INFAI 0.371 0.462 0.376 0.256 0.376
MIPT 0.412 0.418 0.407 0.194 0.406
WSE 0.544 0.555 0.530 0.570 0.531

Table 3 reveals decreased performance across all metrics on the DBpedia benchmark compared to
the Corporate KG benchmark. Both ReAct agent-based approaches (GvD and INFAI) showed worse
results.

Considering the benchmark results by language (see Table 4), the decrease could potentially be at-
tributed to the lack of language translation, which the other approaches besides DBpedia’s use. Table 4a
presents the results for Spanish questions in the DBpedia benchmark, while Table 4b displays the re-
sults for English questions. ReAct agent approaches without language translation preprocessing (both
GvD configurations and INFAI) experienced larger performance degradation when processing Span-
ish questions (30-60% decline). In contrast, the other approaches, using natural language translation
or multilingual embeddings, showed only minimal changes in terms of point and percentage differ-
ences. Furthermore, the evaluation also highlighted performance differences between GvD’s Qwen
2.5 and Llama 3.3 configurations, illustrating model-specific multilingual capabilities, with Qwen’s
more diverse multilingual training [37] contributing to reduced performance degradation. These find-
ings suggest that language translation preprocessing or multilingual model selection are relevant for
organisations operating in multilingual environments.

6.2. Comparison to Organisational Demands

To evaluate GvD’s suitability for organisational usage, we compare the Text2SPARQL challenge com-
petitors across three demands derived from organisational needs: transparent answer generation, or-
ganisational control, and flexible deployment. Table 5 summarises the evaluation of GvD and the
competitor systems.

Table 4
Text2SPARQL DBpedia benchmark results by language. Our approach is highlighted in bold. 1IS-L stands for
the Llama, 11S-Q for the Qwen variant. The best values are highlighted in bold, the second best underlined.

(a) Spanish questions (b) English questions
Competitors Precision Recall F, Competitors Precision Recall F,
AIFB 0.442 0.482 0.446 AIFB 0.453 0.491 0.457
DBPedia-CG 0.050 0.050 0.050 DBPedia-CG 0.060 0.060 0.060
DBPedia-CL 0.034 0.038 0.036 DBPedia-CL 0.064 0.068 0.064
DBPedia-SC 0.087 0.090 0.088 DBPedia-SC 0.107 0.110 0.108
lIS-L (=GvD) 0.285 0315 0.290 lIS-L (=GvD) 0.412 0463 0.417
11IS-Q (=GvD) 0.311 0339 0.302 11IS-Q (=GvD) 0.384 0411 0.377
INFAI 0.214 0.262 0.207 INFAI 0.527 0.661 0.546
MIPT 0.373 0.376 0.367 MIPT 0.452 0.461 0.447
WSE 0.562 0.556 0.537 WSE 0.527 0.554 0.522

Table 5
Comparison to Text2SPARQL competitors based on organisations’ demands for trustworthiness and approach
reusability. Our approach is highlighted in bold.

Organisation Transparent Answer Generation Organisational Control Flexible Deployment
AIFB medium low high

AIRI low low low

DBpedia Group low high low

IS (=GvD) high high high

INFAI medium low low

WSE high low medium

The AIFB team employed a modular four-step workflow that supports generalisation across KGs.
However, their dependence on the closed-weight GPT-40 model from OpenAl limits organisational
control and may introduce privacy concerns. Additionally, their use of ShEx shapes to provide schema
information about the KG during query construction may obscure how answers are generated, reduc-
ing transparency and making error analysis difficult for end users.

The AIRI group created specialised pipelines for each KG. This approach limits the flexibility to apply
the system easily in new domains and increases configuration overhead. Additionally, their reliance
on the closed-weight GPT-4 model further restricts organisational control and prevents on-premise
usage.

The DBpedia Group uses fine-tuned, open-weight models, which support organisational control
by enabling local hosting and avoiding third-party dependencies. However, the model operates in
a static inference mode solely based on training data rather than considering up-to-date information,
which limits the transparency of the answer generation. The reliance on small language models lowers
deployment demands, but enforces continuous retraining if the KG changes.

The mKGQAgent from the WSE group relies on a precomputed experience pool to support plan
generation. This offline component helps with generating more transparent answers, as plans are
composed of verifiable steps. However, the need for training data that resembles the target domain
reduces the system’s ability to generalise, thereby increasing deployment overhead. The usage of GPT-
40 again limits organisational control due to the reliance on a closed-weight LLM.

The INFAI system adopts a ReAct agent approach similar to GvD, but relies on a vector database for
resolving entity identifiers. This dependency increases the deployment effort, particularly for organisa-
tions aiming to reduce infrastructure complexity. The usage of OpenAI’s GPT-4.1 mini model reduces
organisational control, introducing external dependencies and may raise data privacy concerns. Trust-
worthiness was not explicitly reported, but the reasoning traces may be available, showing how the
agent came up with a result.

In contrast, GvD is explicitly designed to address all three organisational demands. It ensures trans-

parent answers by generating structured reasoning traces that show how a query was derived. It
supports full organisational control by using open-weight LLMs that can be deployed locally, avoiding
external dependencies and supporting data privacy. Furthermore, GvD has a high deployment flexibil-
ity, as it is not optimised for a specific KG or requires infrastructure beyond a SPARQL endpoint with
a keyword search plugin.

6.3. Error Analysis

We conducted an error analysis to identify current system limitations and opportunities for improve-
ment. We created a dataset of 40 problematic cases by examining the execution logs from questions
generating at least three errors. The error distribution revealed language and benchmark dependen-
cies. Only 3 (7.5%) cases were caused by the Corporate KG benchmark compared to 37 (92.5%) from
the DBpedia benchmark. Furthermore, 23 of 37 (62%) of the errors from the DBpedia benchmark were
caused by Spanish questions.

In the analysis of the errors, we made three observations:

« Data Parsing Failures: Unsupported formatting in SPARQL queries (through the query action)
and RDF responses (through the describe action) are in 95% (38/40) cases. These failures stem
from missing namespace definitions for standard vocabularies (e.g., missing rdfs: prefix) and
inadequate URI escaping (e.g., dbr:New_York_(City) vs. dbr:New_York_\(City\)).

« Function Repetition Errors: The LLM repeatedly tried to execute identical functions with
identical arguments in 77.5% of cases (31/40), suggesting currently insufficient feedback mecha-
nisms to prevent unproductive exploration loops.

« Stable Agentic Loop: We observed no case with a loss of the agentic loop control or failure to
execute a proper action call, indicating that ReAct agent approaches may be adequate for KGQA.

7. Conclusion

This paper tackles the accessibility and query challenges of KGs within organisations for non-technical
users. We introduced Graf von Data (GvD), an LLM-augmented agent that bridges this accessibility
gap by translating natural language questions into executable SPARQL queries while fulfilling organi-
sational usage demands.

GvD’s innovation lies in its knowledge graph-agnostic approach, which operates exclusively
through a SPARQL endpoints with keyword search plugin, enabling seamless integration across di-
verse KG environments without further customisation. This approach, combined with our use of open-
weight models, distinguishes GvD among the Text2SPARQL challenge competitors. Despite this focus
on organisational demands, GvD achieved the highest F;-score on the Corporate KG benchmark and
competitive results in the DBpedia benchmark.

An evaluation of error cases presents opportunities for future enhancement. Future research di-
rections may include expanding the actions of GvD through additional SPARQL interface mappings,
integrating specialised entity recognition capabilities, and exploring hybrid approaches combining key-
word search with embedding-based indexing for improved entity linking.

Acknowledgments

This work was partially funded by the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) through the Antrieb 4.0 project (Grant No. 13IK015B).

The authors gratefully acknowledge the scientific support and HPC resources provided by the Er-
langen National High Performance Computing Center (NHR@FAU). The hardware is funded by the
German Research Foundation (DFG).

Declaration on Generative Al

During the preparation of this work, the author(s) used Grammarly to: Grammar and spelling check.
After using these tool(s)/service(s), the authors reviewed and edited the content as needed and take
full responsibility for the publication’s content.

References

(1]

E. G. Kalaycy, I. Grangel Gonzalez, F. Losch, G. Xiao, A. ul-Mehdi, E. Kharlamov, D. Calvanese,
Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs, in: The
Semantic Web — ISWC 2020, volume 12507 of LNCS, Springer International Publishing, 2020, pp.
464-481. d0i:10.1007/978-3-030-62466-8_29.

T. Hubauer, S. Lamparter, P. Haase, D. Herzig, Use Cases of the Industrial Knowledge Graph at
Siemens, in: ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, Monterey,
USA, 2018.

T. Liebig, A. Maisenbacher, M. Opitz, J. R. Seyler, G. Sudra, J. Wissmann, Building a Knowledge
Graph for Products and Solutions in the Automation Industry, in: Joint Proceedings of the 1st
International Workshop on Knowledge Graph Building and 1st International Workshop on Large
Scale RDF Analytics co-located with 16th Extended Semantic Web Conference (ESWC 2019), 2019.
URL: https://ceur-ws.org/Vol-2489/paper2.pdf.

N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale Knowledge Graphs:
Lessons and Challenges, ACM Queue 17 (2019) 48-75. doi:10.1145/3329781.3332266.

D. Diefenbach, M. D. Wilde, S. Alipio, Wikibase as an Infrastructure for Knowledge Graphs: The
EU Knowledge Graph, in: The Semantic Web — ISWC 2021, volume 12922 of LNCS, Springer
International Publishing, 2021, pp. 631-647. doi:10.1007/978-3-030-88361-4_37.

E. Kaufmann, A. Bernstein, How Useful Are Natural Language Interfaces to the Semantic Web
for Casual End-Users?, in: The Semantic Web, volume 4825, Springer, 2007, pp. 281-294. doi:10 .
1007/978-3-540-76298-0_21.

T. Chen, M. Gasc6-Hernandez, M. Esteve, The Adoption and Implementation of Artificial Intelli-
gence Chatbots in Public Organizations: Evidence from U.S. State Governments, The American
Review of Public Administration 54 (2024) 255-270. doi:10.1177/02750740231200522.

T. Bruckhaus, RAG Does Not Work for Enterprises, 2024. doi:10.48550/arXiv.2406.04369.
arXiv:2406.04369.

D. M. Schmidt, M. F. Elahi, P. Cimiano, Lexicalization Is All You Need: Examining the Impact
of Lexical Knowledge in a Compositional QALD System, in: Knowledge Engineering and Knowl-
edge Management, Springer Nature, 2025, pp. 102-122. doi:10.1007/978-3-031-77792-9_7.
S. Liu, S. Semnani, H. Triedman, J. Xu, I. D. Zhao, M. Lam, SPINACH: SPARQL-Based Infor-
mation Navigation for Challenging Real-World Questions, in: Findings of the Association for
Computational Linguistics: EMNLP 2024, Association for Computational Linguistics, 2024, pp.
15977-16001. doi:10.18653/v1/2024.findings-emnlp.938.

C. V. S. Avila, M. A. Casanova, V. M. P. Vidal, A Framework for Question Answering on Knowl-
edge Graphs Using Large Language Models, in: The Semantic Web: ESWC 2024 Satellite Events,
volume 15344 of LNCS, Springer, 2025, pp. 168-172. doi:10.1007/978-3-031-78952-6_20.
G. Xiong, J. Bao, W. Zhao, Interactive-KBQA: Multi-Turn Interactions for Knowledge Base
Question Answering with Large Language Models, 2024. doi:10.48550/arXiv.2402.15131.
arXiv:2402.15131.

L. Sun, Z. Tao, Y. Li, H. Arakawa, ODA: Observation-Driven Agent for integrating LLMs and
Knowledge Graphs, 2024. doi:10.48550/arXiv.2404.07677. arXiv:2404.07677.

S. Xu, S. Liu, T. Culhane, E. Pertseva, M.-H. Wu, S. Semnani, M. Lam, Fine-tuned LLMs Know
More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata,
in: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-

http://dx.doi.org/10.1007/978-3-030-62466-8_29
https://ceur-ws.org/Vol-2489/paper2.pdf
http://dx.doi.org/10.1145/3329781.3332266
http://dx.doi.org/10.1007/978-3-030-88361-4_37
http://dx.doi.org/10.1007/978-3-540-76298-0_21
http://dx.doi.org/10.1007/978-3-540-76298-0_21
http://dx.doi.org/10.1177/02750740231200522
http://dx.doi.org/10.48550/arXiv.2406.04369
http://arxiv.org/abs/2406.04369
http://dx.doi.org/10.1007/978-3-031-77792-9_7
http://dx.doi.org/10.18653/v1/2024.findings-emnlp.938
http://dx.doi.org/10.1007/978-3-031-78952-6_20
http://dx.doi.org/10.48550/arXiv.2402.15131
http://arxiv.org/abs/2402.15131
http://dx.doi.org/10.48550/arXiv.2404.07677
http://arxiv.org/abs/2404.07677

ing, Association for Computational Linguistics, 2023, pp. 5778-5791. doi:10.18653/v1/2023 .
emnlp-main.353.

[15] G.Piao, M. Mountantonakis, P. Papadakos, P. Sonawane, A. OMahony, Toward Exploring Knowl-
edge Graphs with LLMs, in: Joint Proceedings of Posters, Demos, Workshops, and Tutorials of
the 20th International Conference on Semantic Systems (SEMANTICS 2024), volume Vol-3759,
CEUR-WS, Amsterdam, The Netherlands, 2024.

[16] H. M. Zahera, M. Ali, M. A. Sherif, D. Moussallem, A.-C. Ngonga Ngomo, Generating SPARQL
from Natural Language Using Chain-of-Thoughts Prompting, in: Knowledge Graphs in the Age
of Language Models and Neuro-Symbolic Al volume 60 of Studies on the Semantic Web, 10S Press,
Amsterdam, 2024, pp. 353-368. doi:10.3233/SSW240028.

[17] L. Kovriguina, R. Teucher, D. Radyush, D. Mouromtsev, SPARQLGEN: One-Shot Prompt-based
Approach for SPARQL Query Generation, in: Proceedings of the Posters and Demo Track of the
19th International Conference on Semantic Systems (SEMANTICS 2023), volume Vol-3526, CEUR,
Leipzig, Germany, 2023.

[18] J. Wardenga, T. Kafer, Challenge submission: AIFB, https://text2sparql.aksw.org/assets/talks/
2- ATFB-tobias-kaefer-kit.pdf, 2025. Accessed 2025-06-13.

[19] M. Shahinmoghadam, T. Soru, S. Josh, S. Tiwari, DBpedia Group at the 1st Text2SPARQL Chal-
lenge, https://text2sparql.aksw.org/assets/talks/3-DBPEDIA-tommaso-soru.pdf, 2025. Accessed
2025-06-13.

[20] D. Gerber, L. Bithmann, L.-P. Meyer, C. Stadler, Felix Brei, J. Frey, K. Bulert, ETi / InfAlL
Text2Sparql Agent, https://text2sparql.aksw.org/assets/talks/5-INFAI-lars-peter-meyer.pdf, 2025.
Accessed 2025-06-13.

[21] O. Somov, D. Berezin, R. Avdeev, TEXT2SPARQL: TREx (Text-to-RDF Executor), https:
//text2sparql.aksw.org/assets/talks/6-MIPT-oleg-somov-daniil-berezin-roman-avdeev-airi.pdf,
2025. Accessed 2025-06-13.

[22] A.Perevalov, A. Both, mKGQAgent: Multilingual Human-inspired Question Answering over Lan-
guage Graphs, https://text2sparql.aksw.org/assets/talks/7-WSE-andreas-both-htwk.mp4, 2025.
Accessed 2025-06-13.

[23] L. Fei-Fei, R. Fergus, P. Perona, One-shot learning of object categories, IEEE Transactions on
Pattern Analysis and Machine Intelligence 28 (2006) 594-611. doi:10.1109/TPAMI.2006.79.

[24] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kittler, M. Lewis, W.-t. Yih,
T. Rocktéschel, S. Riedel, D. Kiela, Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks, in: NIPS’20: Proceedings of the 34th International Conference on Neural Information
Processing Systems, Curran Associates Inc., Red Hook, NY, United States, 2020, pp. 9459-9474.

[25] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, E.-P. Lim, Plan-and-Solve Prompting: Im-
proving Zero-Shot Chain-of-Thought Reasoning by Large Language Models, in: Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics, 2023.

[26] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, Y. Cao, ReAct: Synergizing Reasoning
and Acting in Language Models, in: The Eleventh International Conference on Learning Repre-
sentations ICLR 2023, Kigali, Rwanda, 2023. doi:10.48550/arXiv.2210.03629.

[27] OMG Unified Modeling Language (OMG UML), Version 2.5.1, 2017.

(28] D. Henselmann, R. Dorsch, A. Harth, Impact of Knowledge Graph Representations on Ques-
tion Answering with Language Models, in: Advanced Information Systems Engineering
Workshops, volume 556 of LNBIP, Springer, Vienna, Austria, 2025, pp. 81-92. doi:10.1007/
978-3-031-94931-9_7.

[29] S.Schmid, M. Freund, A. Harth, Adaptive Planning on the Web: Using LLMs and Affordances for
Web Agents, in: Knowledge Graphs and Semantic Web, volume 15459 of LNCS, Springer Nature
Switzerland, 2025, pp. 93-108. doi:10.1007/978-3-031-81221-7_7.

[30] L.-P. Meyer, J. Frey, D. Heim, F. Brei, C. Stadler, K. Junghanns, M. Martin, LLM-KG-Bench 3.0:
A Compass for Semantic Technology Capabilities in the Ocean of LLMs, volume 15719 of LNCS,
2025, pp. 280-296. doi:10.1007/978-3-031-94578-6_16.

[31] A. Doosthosseini, J. Decker, H. Nolte, J. M. Kunkel, Chat Al: A Seamless Slurm-Native Solution

http://dx.doi.org/10.18653/v1/2023.emnlp-main.353
http://dx.doi.org/10.18653/v1/2023.emnlp-main.353
http://dx.doi.org/10.3233/SSW240028
https://text2sparql.aksw.org/assets/talks/2-AIFB-tobias-kaefer-kit.pdf
https://text2sparql.aksw.org/assets/talks/2-AIFB-tobias-kaefer-kit.pdf
https://text2sparql.aksw.org/assets/talks/3-DBPEDIA-tommaso-soru.pdf
https://text2sparql.aksw.org/assets/talks/5-INFAI-lars-peter-meyer.pdf
https://text2sparql.aksw.org/assets/talks/6-MIPT-oleg-somov-daniil-berezin-roman-avdeev-airi.pdf
https://text2sparql.aksw.org/assets/talks/6-MIPT-oleg-somov-daniil-berezin-roman-avdeev-airi.pdf
https://text2sparql.aksw.org/assets/talks/7-WSE-andreas-both-htwk.mp4
http://dx.doi.org/10.1109/TPAMI.2006.79
http://dx.doi.org/10.48550/arXiv.2210.03629
http://dx.doi.org/10.1007/978-3-031-94931-9_7
http://dx.doi.org/10.1007/978-3-031-94931-9_7
http://dx.doi.org/10.1007/978-3-031-81221-7_7
http://dx.doi.org/10.1007/978-3-031-94578-6_16

for HPC-Based Services, 2024. doi:10.48550/arXiv.2407.00110.

D. Fernandez-Alvarez, J. E. Labra-Gayo, D. Gayo-Avello, Automatic extraction of shapes using
sheXer, Knowledge-Based Systems 238 (2022). doi:10.1016/j.knosys.2021.107975.

E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, Y. Zhou, CodeGen2: Lessons for Training LLMs
on Programming and Natural Languages, 2023. doi:10.48550/arXiv.2305.02309.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim,
Q. Liu, E. Zheltonozhskii, T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Mon-
teiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K. Umapathi, J. Zhu, B. Lipkin,
M. Oblokulov, Z. Wang, R. Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey,
Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas, M. Kunakov,
F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao,
M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy, D. Fried,
D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra, H. de Vries,
StarCoder: May the source be with you!, 2023. doi:10.48550/arXiv.2305.06161.

B. Roziére, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adji, J. Liu, R. Sauvestre, T. Remez,
J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong,
A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, G. Synnaeve, Code
Llama: Open Foundation Models for Code, 2024. doi:10.48550/arXiv.2308.12950.

L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, F. Wei, Multilingual E5 Text Embeddings: A
Technical Report, 2024. doi:10.48550/arXiv.2402.05672.

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin, J. Yang,
J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li, M. Xue,
P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su, Y. Zhang,
Y. Wan, Y. Liu, Z. Cui, Z. Zhang, Z. Qiu, Qwen2.5 Technical Report, 2025. doi:10.48550/arXiv.
2412.15115.

A. Graph Patterns for Entity Boundaries

Listing 1: Graph pattern: Outgoing triples of the focal entity.

<{uri}> ?p ?o0 .

Listing 2: Graph pattern: Incoming triples of the focal entity.

?s ?7p <{uri}> .

Listing 3: Graph pattern: Subclasses of the focal class.

?subclass rdfs:subClassOf <{uri}> .
OPTIONAL { ?subclass rdf:type ?type . }
OPTIONAL { ?subclass rdfs:label ?label . }

Listing 4: Graph pattern: Parent classes of the focal class.

<{uri}> rdfs:subClassOf ?parentclass .
OPTIONAL { ?parentclass rdf:type ?type . }
OPTIONAL { ?parentclass rdfs:label ?label . }

Listing 5: Graph pattern: Properties having the focal class as domain or range plus classes in domain

or range of such properties.

?property ?domainrange <{uri}> .
FILTER (?domainrange IN (rdfs:domain , rdfs:range))
OPTIONAL { ?property rdf:type ?p_type . }

http://dx.doi.org/10.48550/arXiv.2407.00110
http://dx.doi.org/10.1016/j.knosys.2021.107975
http://dx.doi.org/10.48550/arXiv.2305.02309
http://dx.doi.org/10.48550/arXiv.2305.06161
http://dx.doi.org/10.48550/arXiv.2308.12950
http://dx.doi.org/10.48550/arXiv.2402.05672
http://dx.doi.org/10.48550/arXiv.2412.15115
http://dx.doi.org/10.48550/arXiv.2412.15115

OPTIONAL { ?property rdfs:label ?p_label . }
OPTIONAL {
?property ?rangedomain ?class .
FILTER (?rangedomain IN (rdfs:domain , rdfs:range))
OPTIONAL { ?class rdfs:label ?c_label . }
OPTIONAL { ?class rdf:type ?c_type . }

}

Listing 6: Graph pattern: Classes in domain or range of the focal object property.

<{uri}> ?domainrange ?class .

FILTER (?domainrange IN (rdfs:domain , rdfs:range))
OPTIONAL { ?class rdfs:label ?label . }

OPTIONAL { ?class rdf:type ?label . }

Listing 7: Graph pattern: Subproperties of the focal object property plus classes in domain or range of
subproperties.

?subproperty rdfs:subPropertyOf <{uri}> .
OPTIONAL { ?subproperty rdf:type ?p_type . }
OPTIONAL { ?subproperty rdfs:label ?p_label . }
OPTIONAL {
?subproperty ?rangedomain ?class .
FILTER (?rangedomain IN (rdfs:domain , rdfs:range))
OPTIONAL { ?class rdf:type ?c_type . }
OPTIONAL { ?class rdfs:label ?c_label . }

}

Listing 8: Graph pattern: Parent properties of the focal object property plus classes in domain or range
of parent properties.

<{uri}> rdfs:subPropertyOf ?parentproperty .
OPTIONAL { ?parentproperty rdf:type ?p_type . }
OPTIONAL { ?parentproperty rdfs:label ?p_label . }
OPTIONAL {
?parentproperty ?rangedomain ?class .
FILTER (?rangedomain IN (rdfs:domain , rdfs:range))
OPTIONAL { ?class rdf:type ?c_type . }
OPTIONAL { ?class rdfs:label ?c_label . }

}

	1 Introduction
	2 Related Work
	3 Graf von Data Architecture
	3.1 High Level Overview
	3.2 Agent Implementation

	4 Experimental Setup
	5 Competitor Profiles
	6 Results and Discussion
	6.1 Performance Evaluation
	6.2 Comparison to Organisational Demands
	6.3 Error Analysis

	7 Conclusion
	A Graph Patterns for Entity Boundaries

