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Abstract
In this work, we present a pipeline-based solution developed for the ESWC Text-To-SPARQL challenge. Our
approach addresses key challenges in knowledge graph question answering (KGQA), including multilingual input
processing, entity linking, ontology alignment, and SPARQL query generation. We detail each component of the
pipeline and evaluate its contribution through an ablation study. Our system demonstrates strong performance,
achieving 3rd place on the DBpedia Knowledge Graph and 5th place on the Corporate Knowledge Graph. The
source code for our solution is publicly available at: https://github.com/RomanAvdeev/T2SPARQL.

1. Introduction

Natural language interfaces to databases seek to make structured data more accessible by allowing
users to pose questions in natural language and receive precise answers. A common approach involves
translating these questions into executable formal queries. This paradigm has been widely explored in
two major domains: text-to-SQL for relational databases [1, 2, 3, 4], and text-to-SPARQL for querying
semantic knowledge graphs. While the underlying goal is shared, each domain presents distinct
challenges [5, 6, 7, 8, 9]. These differences have important implications for system design, evaluation
metrics, and the kinds of reasoning required by models. In particular, modern knowledge graphs
such as DBpedia [10] and Wikidata [11] encode rich, interconnected information using RDF triples,
which introduces additional complexity in terms of ambiguity, sparsity, and ontological reasoning.
These KG-specific difficulties compound broader challenges familiar from text-to-SQL research—such
as linguistic variability and distributional shift—making the development of accurate and generalizable
natural language interfaces especially demanding. To address these challenges, various approaches have
been explored, including rule-based pipelines, neural models, and more recently, LLM-based agents
[6, 12, 13].

In this paper, we introduce our pipeline-based solution, designed to address four core challenges of
Text-To-SPARQL. First, we tackle the issue of multilingual input by integrating GPT-based translation,
which significantly improves execution accuracy for non-English queries. Second, our hybrid entity
linking module combines DBpedia Spotlight [14] with a GPT-based fallback mechanism to resolve
entity ambiguities (e.g., distinguishing “Washington” as a city or state), resulting in improved entity
disambiguation and overall performance. Third, we address ontology alignment through two strategies:
nearest-neighbor search for DBpedia and Retrieval-Augmented Generation (RAG) [15] applied to turtle
files for corporate graphs, achieving improvement in query accuracy. Fourth, our adaptive prompt
engineering strategy leverages benchmark datasets such as LcQuad2.0 [16] and QALD-10 [17] to guide
SPARQL generation, yielding significant gains in execution accuracy. The query generation module also
incorporates SPARQL error-correction loop that automatically detects and repairs malformed queries.

In our work we present two tailored pipelines for completion KGs, its evaluation and ablation study.
Our hybrid architecture approach which combines large language models with KG-specific components
offers a flexible and competitive alternative to end-to-end and agentic approaches.
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2. Related Work

In the era of LLMs, KGQA systems have emerged as effective tools for enabling natural language
interaction with structured data. Query-based KGQA approaches leverage formal query languages
such as SPARQL to retrieve precise answers from knowledge graphs, combining the expressiveness of
natural language with the rigor of structured querying. The current landscape of KGQA systems can be
broadly categorized into three main paradigms: fine-tuning-based, pipeline-based, and agent-based
approaches.
Fine-tuning-based methods[18, 19, 6] involve training language models on a specific knowledge

graph using aligned question-query pairs. While these models achieve strong performance on in-domain
data, they tend to overfit to the training distribution and struggle to generalize under domain shift or
when deployed on unseen graphs.

Pipeline-based approaches [20, 21, 12] decompose the SPARQL generation task into modular
components—typically including entity recognition and linking, predicate classification, and query
construction. This design enables greater flexibility and adaptability to new knowledge graphs, as each
module can be independently developed or replaced. However, these systems are susceptible to error
propagation due to their sequential nature, where inaccuracies in earlier components can compound in
downstream stages.

Agent-based solutions [22, 13, 23] represent a more recent direction in KGQA. These systems use a
toolkit-based architecture, where an agent incrementally constructs a SPARQL query by interacting
with the knowledge graph through discrete tools or APIs. While promising in terms of interpretability
and adaptability, agent-based methods are still maturing and face challenges related to efficiency and
tool orchestration.

Our proposed solution adopts a pipeline-based architecture enhanced with LLM capabilities via
API integration. Each component can be independently optimized and extended—such as incorporating
DBpedia Spotlight [14] to improve entity linking. This modular design allows for efficient adaptation to
new domains and evolving toolsets. Our system achieved 3rd place on the DBpedia Knowledge Graph
[10] and 5th place on the Corporate Graph, demonstrating performance competitive with state-of-the-art
approaches1.

Table 1
The statistics of Text-To-SPARQL challenge datasets.

Metric DBpedia English DBpedia Spanish Corporate

Total questions-query pairs 100 100 50
Average question word count 9.69 9.84 12.36
Average query length 14.24 14.24 31.02
Median hops per query 3.0 3.0 3.0
ORDER BY proportion 0.06 0.06 0.32

3. Challenge objective

The ESWC 2025 Text2SPARQL challenge tasked participants with developing systems capable of
translating natural language questions into executable SPARQL queries over RDF knowledge graphs.
The competition featured two graphs: the general-purpose multilingual DBpedia, and a proprietary,
domain-specific Corporate KG. While the DBpedia evaluation set included questions in both English
and Spanish, the presence of multiple languages was not disclosed prior to the final evaluation. The
Corporate graph, in contrast, was entirely in English and designed to test generalization to low-resource

1In competition we took part under team name MIPT.



domains. As shown in Table 1, a significant portion of the questions in both datasets required multi-hop
reasoning, and the Corporate KG featured a notably higher number of ORDER BY clauses, emphasizing
the need for systems to handle ranked outputs. Evaluation was performed using Precision, Recall, F1
score, and NDCG, where the latter specifically assessed the quality of ranked results. These metrics
jointly measured the correctness, completeness, and relevance of the generated queries.

4. Main method

Our solution is implemented as a dual-branch pipeline, with separate configurations for the two target
knowledge graphs: DBpedia and the Corporate Knowledge Graph. Each branch is tailored to the
characteristics and constraints of its corresponding dataset, while sharing the same general architecture.

Figure 1: Overview of the DBpedia and Corporate KG Pipelines. The top part illustrates the DBpedia
pipeline, which includes translation, entity linking (via DBpedia Spotlight and GPT fallback), neighborhood
aggregation, and execution-guided SPARQL generation. The bottom part shows the simplified Corporate
pipeline, which uses retrieval-augmented generation (RAG) over turtle chunks instead of entity linking, followed
by prompt construction and query execution.

DBpedia Pipeline. For DBpedia, the pipeline begins with input translation to normalize multilingual
queries using a GPT-based translation module. Next, we perform query rewriting, where the question is
reformulated to explicitly highlight contextual information and disambiguate entities. Following this, we
apply entity recognition and linking to identify relevant entities in the question. For each linked entity,
we retrieve its 2-hop neighborhood from the DBpedia graph. This local subgraph structure—comprising
nearby entities and predicates—provides contextual grounding for accurate query generation. Then we
construct an LLM prompt containing the original question, the set of nearby entities and predicates,
and several few-shot examples retrieved from a pre-indexed dataset of known DBpedia question-query
pairs. This is achieved by using a Retrieval-Augmented Generation (RAG) approach, which ensures
that the LLM is guided by structurally and semantically similar examples. The composed prompt is
passed to OpenAI ChatGPT, which generates a candidate SPARQL query. To improve correctness, we
employ an execution-guided generation loop, in which the generated query is executed against the
DBpedia endpoint and revised if it fails or yields no results.

Corporate Graph Pipeline. For the Corporate Knowledge Graph, which is smaller and more domain-
specific, we simplify the pipeline by replacing separate NER, entity linking, and neighborhood retrieval
components with a lightweight RAGmodule over chunked turtle files. This allows us to retrieve relevant
entity and predicate context directly from the underlying ontology without pre-linking. The retrieved



context is used to construct a tailored prompt, which is then used in the same execution-guided query
generation process as in the DBpedia branch.

To evaluate our solution on the DBpedia Knowledge Graph and assess the contribution of individual
components, we use subsampled queries from the LcQuad2.0 and benchmark datasets. For the Corporate
Knowledge Graph, which lacks publicly available benchmarks, we conduct a manual evaluation to
validate system performance. In the following sections, we describe each component of the pipeline in
detail and present an ablation study for the DBpedia branch to quantify the impact of each module.

4.1. GPT translation

In the DBpedia track, the input questions were multilingual, requiring a consistent representation in
English for downstream processing. To address this, we employed ChatGPT for machine translation.
This approach offers greater control compared to traditional translation systems, allowing us to explicitly
specify constraints—such as preserving named entities and adapting terminology to the knowledge
graph domain. This ensures that critical elements of the question remain intact and contextually
appropriate for subsequent entity linking and query generation. The prompt for ChatGPT translation
is in Appendix A.

4.2. Query rewriting

After standardizing the input question by translating it into English, the next critical challenge is
addressing potential ambiguity in the interpretation of entities. Natural language questions often contain
words that can refer to multiple real-world entities, leading to incorrect SPARQL query generation.

To tackle this issue, our system employs a query rewriting step, where an additional request is sent to
GPT to clarify the intended meaning of ambiguous terms. For example, given the question “Washington
is the capital of what country?”, the system identifies that “Washington” could refer to either the U.S.
state or the capital city (Washington, D.C.). By prompting GPT to refine question based on the context
— e.g., explicitly specifying “Washington, D.C.” — we ensure the correct entity is linked to subsequent
stages. By resolving ambiguity, the system reduces errors in named entity recognition and entity linking,
leading to more precise SPARQL queries. The prompt for the query rewriting is in Appendix B.

4.2.1. DBpedia Spotlight

Following query translation and disambiguation, the next step in our pipeline involves precise entity
recognition and linking using DBpedia Spotlight [14], a specialized tool designed to identify and ground
named entities directly into the DBpedia knowledge graph. Given the refined natural language question,
Spotlight performs joint Named Entity Recognition and Entity Linking, returning not only the detected
entities but also their corresponding DBpedia URIs.

To ensure robustness to out-to-distribtuion, the pipeline includes a fallback mechanism: if Spotlight
fails (e.g., due to service unavailability or unrecognized entities), the system defaults to a GPT-based
query for entity resolution. This hybrid approach balances efficiency with reliability, ensuring uninter-
rupted processing even in edge cases. The ChatGPT prompt for fallback for entity recognition is in
Appendix C.

4.2.2. Nearest neighbors in DBpedia

To further refine the contextual understanding of identified entities, our pipeline retrieves the 2-hop
nearest neighbors for each entity from DBpedia’s knowledge graph. This step serves two critical
purposes. Ontology Alignment – by exposing the LLM to the local graph structure around each
entity, we compensate for its lack of inherent knowledge about the underlying KG’s schema, ensuring
generated SPARQL queries adhere to the actual relationships in DBpedia. Scope Narrowing – The
neighbors act as semantic constraints, additionally reducing ambiguity in query generation. Empirically,



this approach boosted execution accuracy, demonstrating its efficacy in bridging the gap between
natural language questions and structured KG queries.

4.2.3. Adaptive prompt

To improve the quality of generation, we used adaptive prompt. A RAG system was developed based
on pairs (question - query) collected from open datasets QALD-10 and LcQuad2.0. We find the top 5
questions closest in cosine measure to the original one, and add relevant pairs to the prompt. Thus,
if the input question implies an ASK query in SPARQL, the adaptive prompt will contain only those
question-query pairs in which the query has an ASK structure.

4.2.4. SPARQL generation

At the input stage of the ChatGPT-based SPARQL generation module, we provide the following compo-
nents: the original natural language question, the entity-annotated version of the question, a set of
matched entities with their corresponding DBpedia URIs, the Top-K nearest neighbors (entities and
predicates) retrieved from the DBpedia knowledge graph, and a few-shot prompt comprising manually
curated question–query pairs, as described in Section 4.2.3.

Using this context, ChatGPT is prompted to generate a corresponding SPARQL query. Given the
complexity of our system and the high precision requirements of SPARQL, the generated query is then
validated through execution against the DBpedia SPARQL endpoint. If the query execution fails (due
to syntax or empty results), we re-invoke the model with all prior inputs, now augmented with the
original query and a description of the execution error. The model is then asked to revise the query
accordingly. The full query generation prompt is provided in Appendix D.

4.3. Corporate Graph

For the Corporate Knowledge Graph, we adopt a simplified pipeline tailored to the smaller scale and
closed-domain nature of the data. Unlike the DBpedia pipeline, which relies on the nearest-neighbor
retrieval from a large graph structure, here we employ a RAG approach over pre-processed turtle file
chunks representing the corporate ontology.

Given a natural language question, we retrieve the top 10 most relevant turtle chunks based on
semantic similarity, same as in Section 4.2.3. This allows us to enrich the prompt with highly relevant,
context-specific knowledge, without the need to load the entire graph into LLM context. By selectively
incorporating only the most pertinent fragments, the model can generate informed and accurate SPARQL
queries while remaining computationally efficient. For query generation, we reuse the execution-guided
generation strategy described in Section 4.2.4, enabling the system to iteratively refine the SPARQL
output based on runtime feedback from the KG interface.

5. Results

We design a modular pipeline-based solution composed of distinct components, each addressing specific
challenges in KGQA. Table 2 presents a reverse ablation study that quantifies the contribution of each
component on our validation set. Starting from the complete system with all modules enabled, we
observe a consistent drop in execution match accuracy as components are removed. Notably, removing
the nearest neighbors aggregation module leads to the most significant decline (–12%), highlighting its
critical role in grounding the query generation process (see Section 4.2.2). Other components, such as
adaptive prompting with retrieval augmentation and the multilingual translation module, also provide
meaningful improvements, demonstrating the value of combining LLM capabilities with structured
knowledge graph features.



Table 2
Impact of Sequentially Removing Components on the Validation Set. The baseline corresponds to ChatGPT
prompted with few-shot exemplars only.

System Variant Execution Match

All components included 0.48
– Adaptive Prompt with RAG 0.42 (-0.06)
– Nearest neighbors aggregation 0.30 (-0.12)
– Query Rewriting & Entity Linking module 0.24 (-0.06)
– Translation to English 0.17 (-0.07)

Figure 2: Comparison of the AIRI team’s performance to the best scores in the competition across four datasets:
DBpedia English, DBpedia Spanish, DBpedia Overall, and Corporate. Each group contains bars for the four
evaluation metrics: F1, Recall, Precision, and NDCG. Colored dashed lines indicate the best score achieved in
the competition for each metric within that dataset. Light grey double-headed arrows visualize the performance
gap between the team results and the best competitor.

In Figure 2, we present our final evaluation results based on the official leaderboard published by
the organizers2. Our system ranked 4th on DBpedia overall, 3rd on DBpedia Spanish, 3rd on DBpedia
English, and 5th on the Corporate Knowledge Graph out of 12 participating teams.

The results indicate that our system is highly optimized for the DBpedia domain, but generalizes
less effectively to the Corporate KG setting. This performance discrepancy highlights a key limitation
of our dual-pipeline approach: while tailored components can boost performance in familiar or well-
understood domains, they may struggle to adapt to new or structurally different knowledge graphs. In
contrast, top-ranking systems employed agentic approaches that showed more consistent performance
across datasets, narrowing the gap between DBpedia and Corporate graphs. This suggests that while
our modular components (e.g., ontology alignment, adaptive prompting) are effective, integrating them
into more flexible or agent-driven frameworks may improve cross-domain generalization.

Additionally, our current system does not explicitly optimize for result ranking, which negatively
impacted our NDCG scores. One potential remedy would be to augment our RAG index with query-
response pairs that include ORDER BY clauses, enabling the model to better capture and generate
ranked outputs when necessary.

2https://github.com/AKSW/text2sparql.aksw.org/tree/develop/docs/results

https://github.com/AKSW/text2sparql.aksw.org/tree/develop/docs/results


6. Conclusion

We thoroughly enjoyed participating in the Text2SPARQL challenge Co-Located with Text2KG at
ESWC25. One of the key insights gained from this challenge is the clear advantage of agent-based
approaches for Knowledge Graph Question Answering (KGQA). Traditional pipeline-based meth-
ods—which include tasks such as entity linking and predicate classification—tend to impose rigid
constraints on user input and are often brittle in the face of the large scale and structural complexity of
real-world knowledge graphs. These hard-coded stages can reduce system robustness, especially when
adapting to new domains.

In contrast, agentic systems that dynamically explore the knowledge graph ontology and iteratively
refine their hypotheses exhibit behavior more closely aligned with how humans query unfamiliar
knowledge sources. Such flexibility is particularly important for domain adaptation and compositional
generalization. Another drawback of pipeline-based methods is their sequential structure, where errors
in early components propagate and accumulate through the pipeline, ultimately degrading final query
quality.

While agent-based systems appear more promising, they are not without fundamental challenges. As
shown in Figure 2, even the best-performing solution did not exceed an execution match of 90%, under-
scoring open problems in the field. These ones include planning effective graph exploration strategies,
acquiring a working understanding of new ontologies, managing long-context reasoning and memory,
and reliably generating complex queries. Furthermore, entity linking remains a persistent bottleneck:
although agents can issue multiple lookups, they still require strong commonsense knowledge and
contextual understanding to disambiguate and prioritize entities appropriately.

We thank the organizers of the challenge for an insightful and intellectually stimulating competition
that advanced our understanding of scalable and generalizable KGQA systems.

Large Language Models (LLMs) were used in this work as an assistive tool for polishing the text,
improving clarity, and suggesting alternative phrasings. They were not used for research ideation,
experimental design, analysis, or result generation. All scientific contributions, experiments, and
conclusions are the responsibility of the authors.
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A. Translation Prompt

The following prompt was used to translate multilingual inputs into English using ChatGPT:

You are a precise translation engine. Translate the input to English exactly, preserving:
1. All named entities (names, places, titles)
2. Technical terms
3. Input structure
Output ONLY the translation without commentary.
Translate this to English exactly:
[INPUT]

B. Query Rewriting Prompt

The following prompt was used to clarify ambiguous or incomplete user inputs before SPARQL query
generation:

Act as a SPARQL query pre-processor. Your task is to clarify ambiguous / incomplete user input
(written below) to ensure they can be accurately translated into a SPARQL query. Focus on
disambiguating place names, adding missing context, and correcting assumptions.
GIVEN INPUT: [INPUT]
Examples: 1) Input: ”Washington is the capital of what country?” Output: ”Washington DC is
the capital of what country?” (Clarify: Washington state vs. Washington DC)
2) Input: ”Apple revenue in 2020.” Output: ”What was Apple Inc.’s revenue in 2020?” (Clarify:
Apple the company vs. apple the fruit)
3) Input: ”USA President during WWII.” Output: ”Who was the president of the United States
during World War II?” (Clarify: country name + World War)

C. LLM Prompts for Entity Recognition and URI Generation

C.1. Entity Recognition Prompt (Simplified)

The following prompt was used to extract named entities and generate intermediate inputs. For the full
prompt and logic, refer to:
https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_
prompts.py

Entity Recognition Prompt

Let’s think step by step. In the input ”Input”, we are asked: ”...”.
So we need to identify: ....
The entities are: ....
So the intermediary input is: ”Rewritten input with entity tags”
Key Requirements: - Maintain EXACT output format including punctuation and spacing
- Use same entity tags as examples (<relativess>, <restingplace>, etc.)
- Keep original capitalization in entity names
- Never add additional explanations outside the template

C.2. URI Generation Prompt (Simplified)

The following prompt was used to map tagged elements from the intermediary input to DBpedia URIs.

https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_prompts.py
https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_prompts.py


URI Generation Prompt

Input:
Input: ”Original input”
Intermediary: ”Intermediary input with entity tags”
Output:
- <entity/class/property> : http://dbpedia.org/[ontology|property|resource]/...
Verification Checklist:
1. For resources: Check exact name matches on DBpedia
2. For classes: Use the most specific type available
3. For properties: Prefer ontology namespace over property
4. Special cases:
- Personal names with initials/middle names
- Geographic names with regional qualifiers
- Technical terms with special characters

D. Query Generation and Repair Prompts

D.1. Query Generation Prompt (Simplified)

The following prompt guides the model in generating SPARQL queries from tagged inputs and aligned
DBpedia URIs. For full logic and examples, see:
https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_
prompts.py

Query Generation Prompt

Input: Original Input: ”...”
Input with Entities: ”What is the <property> of <entity> ...”
DBpedia URIs:
- <entity> : http://dbpedia.org/resource/...
- <property> : http://dbpedia.org/ontology/...
Thought Process:
Let’s think step by step. Identify entity types, properties, filters, and logical structure.
Use variables (?x, ?uri) and connect conditions logically.
SPARQL:
SELECT ... WHERE
... triple patterns ...
FILTER clauses if needed

https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_prompts.py
https://github.com/RomanAvdeev/T2SPARQL/blob/main/text2sparqlAPI/app/t2sparql_dbpedia_prompts.py


D.2. Query Repair Prompt

This prompt is used when the generated SPARQL query fails due to syntax or execution errors.

Query Repair Prompt

Fix this SPARQL query based on the execution error while preserving intent. Return ONLY the
fixed SPARQL query.
Error Context: {ERROR}
Repair Strategies:
1. For empty results:
- Check entity existence
- Replace with broader properties or classes
2. For syntax errors:
- Fix SPARQL formatting issues
- Ensure valid prefix, variables, and nesting
3. URI Adjustments:
- Try alternate URIs or namespaces (dbo: vs. dbp:)
- Use superclasses if specific types fail
4. Always preserve original query intent
Input Query:
{ORIGINAL QUERY}
Context:
- Input: {ORIGINAL INPUT}
- Tagged: {TAGGED INPUT}
- URIs: {URIS}
Output: only the corrected SPARQL query, with no extra text.

D.3. Adaptive Prompt with Few-Shot Examples

To guide the model during query generation, we incorporate few-shot examples that demonstrate how
to convert an input with tagged entities into a complete SPARQL query. Each example includes the
original input, intermediate tagging, reasoning, and final query structure.

Few-Shot Examples for Adaptive Prompt

Example 1:
Original Input: ”Who wrote the book ’The God Delusion’?”
Tagged: ”Who are the <authors> of <The God Delusion>”
URIs:
- <The God Delusion> : http://dbpedia.org/resource/The_God_Delusion
- <authors> : http://dbpedia.org/ontology/author
Reasoning:
We need the author of a known resource. Direct property lookup suffices.
SPARQL:
SELECT DISTINCT ?author WHERE
<http://dbpedia.org/resource/The_God_Delusion><http://dbpedia.org/ontology/author> ?author
.
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