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Abstract

Accessing knowledge via multilingual natural-language interfaces is one of the emerging challenges in the field
of information retrieval and related ones. Structured knowledge stored in knowledge graphs can be queried via a
specific query language (e.g., SPARQL). Therefore, one needs to transform natural-language input into a query
to fulfill an information need. Prior approaches mostly focused on combining components (e.g., rule-based or
neural-based) that solve downstream tasks and come up with an answer at the end. We introduce mKGQAgent, a
human-inspired framework that breaks down the task of converting natural language questions into SPARQL
queries into modular, interpretable subtasks. By leveraging a coordinated LLM agent workflow for planning, entity
linking, and query refinement—guided by an experience pool for in-context learning—mKGQAgent efficiently
handles multilingual KGQA. Evaluated on the DBpedia- and Corporate-based KGQA benchmarks within the
Text2SPARQL challenge 2025, our approach took first place among the other participants. This work opens new
avenues for developing human-like reasoning systems in multilingual semantic parsing.
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1. Introduction

Previous approaches to multilingual knowledge graph question answering (KGQA), like Diefenbach et al.
[1], Turganbay et al. [2], have employed both rule-based and neural methods to address downstream
tasks (e.g., named entity recognition, relation detection, query template classification) necessary for
constructing structured queries (e.g., SPARQL queries). More recent methods (e.g., Srivastava et al. [3])
leverage Large Language Models (LLMs) to generate such structured queries directly from non-English
input. The application of newly introduced LLM agents (or augmented language models) to KGQA
has demonstrated significantly improved performance compared to LLMs that rely solely on standard
prompting techniques e.g., Jiang et al. [4], Huang et al. [5]). However, the multilingual aspect of these
systems remains largely unexplored within the research community. To the best of our knowledge,
there are no studies investigating the LLM agent architectures for KGQA in multilingual settings.

One of the key advantages of LLMs is that they enable developers and researchers to model human-
like reasoning processes via agentic workflows (cf. Li et al. [6]). When solving complex problems,
humans typically break them down into a series of simpler subtasks (cf. Diefenbach et al. [7], Correa
et al. [8]), effectively creating a step-by-step plan to arrive at a solution. While generating a SPARQL
query, this decomposition is essential: not only does one need to break down the task, but also look
up query language syntax, identify relevant entity identifiers in the target knowledge graph (KG), and
analyze feedback (e.g., from executing the SPARQL query candidate on the triplestore). To replicate this
human-like process, we introduce mKGQAgent-an LLM-based agent framework designed as a KGQA
system that follows a semantic-parsing approach. Specifically, given a user query (multiple languages

First International TEXT2SPARQL Challenge, Co-Located with Text2KG at ESWC25, June 01, 2025, Portoroz, Slovenia.
*Corresponding author.
Q& aleksandr.perevalov@htwk-leipzig.de (A. Perevalov); andreas.both@htwk-leipzig.de (A. Both)

4 https://perevalov.com (A. Perevalov); http://andreasboth.de (A. Both)
® 0000-0002-6803-3357 (A. Perevalov); 0000-0002-9177-5463 (A. Both)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).


mailto:aleksandr.perevalov@htwk-leipzig.de
mailto:andreas.both@htwk-leipzig.de
https://perevalov.com
http://andreasboth.de
https://orcid.org/0000-0002-6803-3357
https://orcid.org/0000-0002-9177-5463
https://creativecommons.org/licenses/by/4.0/deed.en

are supported), it generates a SPARQL query to fulfill the information need. Accordingly, this paper
aims to answer the following research questions:

RQO1 How do different LLM agent steps (e.g., plan, action, tool calling, feedback, etc.) impact the
generation of SPARQL queries from natural language?

RQO2 How efficient are these LLM agent steps in terms of computation time and the number of additional
calls required?

RO3 How does the quality of SPARQL query generation vary when prompting LLM agents in non-
English languages (especially low-resource ones)?

RQO4 How does translating non-English questions into English affect the quality of KGQA?

We conducted preliminary experiments on the widely used KGQA benchmark QALD-9-plus (in-
troduced in Perevalov et al. [9]) with multilingual support. We evaluate 10 languages, including
two classified as endangered. The experimental results on both proprietary and open-source LLMs
demonstrate the effectiveness of mKGQAgent’s architecture, achieving superior performance even
in non-English settings. During the final evaluation on the DBpedia- and Corporate-based KGQA
benchmarks within the Text2SPARQL challenge 2025, our approach took first place among the other
participants. The source code and the evaluation results are available in our GitHub repository’.

The paper is organized as follows. In the next section, an overview of the related work is presented.
The mKGQAgent architecture is described in Section 3. Section 4 is dedicated to the experimental setup.
The results are shown in Section 5 and discussed in Section 6. Section 7 concludes our paper.

2. Related Work

Recent KGQA research has included classical, rule-based, and neural approaches [10, 11]. Diefenbach
et al. [1] (QAnswer) and Punjani et al. [12] used query templates and rule indexes without language
models. Pellissier Tanon et al. [13] applied grammar rules for SPARQL query transformation. DeepPavlov
2023 employs a fine-tuned language model pipeline for query generation, cf. Turganbay et al. [2]. Omar
et al. [14] proposed KGQAN, which integrates answer type prediction and triple pattern generation.

Multilingual KGQA solutions including Zhou et al. [15], which fine-tune multilingual transformers
and leverage bilingual lexicon induction. Zhang et al. [16] address cross-lingual semantic parsing over
multiple meaning representations in XSemPLR, including SPARQL. Tan et al. [17] improve cross-lingual
reasoning, enhancing the Entity Alignment model performance in English, Chinese, and French in the
CLRN approach.

Zong et al. [18] employ the multi-role LLM agent architecture Triad for SPARQL query construction.
MSTS5 (Srivastava et al. [3]) fine-tunes mT5-XL for generating structured queries. Lehmann et al. [19]
enhances LLMs with external tools to mimic human-like reasoning. Jiang et al. [4] integrates a KG-based
executor (KG-Agent) and fine-tunes Llama2-7B for improved tool usage. QueryAgent (Huang et al.
[5]) mitigates hallucinations with ERASER-based self-correction, excelling on GrailQA and GraphQ.
Interactive-KBQA (Xiong et al. [20]) iteratively refines LLM outputs via direct KB interactions.

3. The mKGQAgent Architecture

The mKGQAgent workflow consists of several key steps (see Figure 1 for an overview). Our approach
follows the terminology established in recent survey articles on LLM agents, cf. Mialon et al. [21], Wang
et al. [22]. The framework operates in two main phases: the offline phase and the evaluation (online)
phase. The offline phase is essential for preparing the experience pool (see Section 3.1.4). During the
offline phase, we employ the simple agent (S.Agent) to gather intermediate processing steps for the
experience pool (see Figure 2).

'https://github.com/WSE-research/text2sparql-agent
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Figure 1: mKGQAgent workflow demonstration (online phase). In the evaluation phase, the mKGQAgent is
using the experience pool examples to improve planning, the in-context learning training examples to improve
SPARQL query generation awareness and the feedback to correct possible errors. The offline phase, which
is required for gathering experience pool. The evaluation or online phase — the routing of the mKGQAgent’s

components as well as their integral modules.
Experience
Pool

SELECT ?uri
WHERE/{... }

Stores chat history,
tool calls, generated
plan, and final answer

1. Identify named entities
2. Link named entities

3.

Natural language Plan step N. Generate SPARQL query

question

Successful (F1 =1) and
(F1<1)
answers

Action step

A 4

! is the single H
1 LLM instance reused in |

multiple steps

Plan steps
processing

Figure 2: SAgent workflow demonstration (offline phase). In the offline phase, the SAgent is used to gather
the experience pool of positive and negative answers over the train subsets.

S Agent uses the plan step (cf. Section 3.1.2) to generate a structured step-by-step plan and the action
step, that either calls the LLM or the named entity linking (NEL) tool (cf. Section 3.1.1) ultimately leading
to the SPARQL query generation. In the evaluation (online) phase, the mKGQAgent is using the plan
step and the action step with the experience pool and the NEL tool, and the feedback step that has
access to the triplestore.

The important feature of our framework is that it does not require supervised fine-tuning, which
significantly reduces the computation costs and preserves the generalizability of the original LLMs (cf.
catastrophic forgetting); see Luo et al. [23].

3.1. Offline Phase of the mKGQAgent
3.1.1. Named Entity Linking (NEL) Tool

Likewise, humans look up a resource identifier in a KG, and the NEL step interacts with the environment
(i.e., KG) and retrieves resource labels from there. Assuming the fact that an LLM was not given the
URI-label mappings of a particular resource, the SPARQL query generation would not be possible.
Importantly, while introducing the NEL tool, we do not propose a novel NEL algorithm. In contrast, we



demonstrate how to utilize an existing NEL service in the LLM agent workflow (see Algorithm 1).

Algorithm 1 NEL Tool

Require: Entity candidates F, Relation candidates R, NEL service NEL
Ensure: Dictionary with linked entities: linkedEntities

Ensure: Dictionary with linked relations: linkedRelations

: Initialize empty dictionaries linkedEntities and linkedRelations

2: for each entity e; € F do

3 eVR « NEL(e;)

4 if e/® is not empty then
5: linkedEntities[e;] < e
6

7

8

9

—_

URI
K2
end if
: end for
: for each relation r; € R do
rIR < NEL(e;)
10: if r;-JRI is not empty then
11 linkedEntities|r;] < r;JRI
12: end if
13: end for

14: return (linkedEntities, linkedRelations)

The entity and relation candidates are proposed by the backbone LLM within the tool calling process at
the action step (see Sections 3.1.3 and 3.2.2). Entity and relation linking is crucial for the text-to-SPARQL
process since the URIs representing resources in a KG may be done using random identifiers?®.

3.1.2. Plan step

The plan step leverages the backbone LLM to generate a step-by-step list of tasks to come up with a
SPARQL query given a question. The intuition behind the plan step is that it simplifies the task for
the model such that it does not need to handle the whole complexity at once. For example, such tasks
as entity recognition and linking, query refinement, etc. Thus, following the human-like behavior (cf.
Huys et al. [25], Correa et al. [8]), the plan step intends to break down the complex task of writing a
SPARQL query into a combination of simpler subtasks. Hence, the action step deals at one point in time
with a simple subtask having the results of the previous steps in its conversation history. For details
regarding the plan step (for details, see Algorithm 2).

Algorithm 2 Plan step without experience pool

Require: Natural language question g;, system prompt Spjan, model LLM

Ensure: Step-by-step plan p; > List of textual tasks
1 p; < LLM(Splan, ¢i) > Query LLM with system prompt and question
2: return p;

3.1.3. Action Step without Experience Pool

Once the plan is generated, the action step executes each of the plan tasks sequentially, leveraging the
NEL Tool for the entity linking (see Algorithm 3). This approach ensures that the agent follows the
structured plan, interacting with necessary tools to refine and complete the SPARQL query generation
process.

®e.g., in Wikidata [24], Q567 (https://www.wikidata.org/wiki/Q567) for “Angela Merkel”



Algorithm 3 Action Step without Experience Pool

Require: Step-by-step plan p;, model LLM, tool N E L, system prompt Saction
Ensure: Generated SPARQL query (j;Z
1: Bind NEL to LLM
2: Initialize empty chat history H;
3: for each step s; € p; do
4 hj < LLM (Saction 55) > LLM may call tool or just itself
5: Append h; to H;
6: end for
7. ¢; < lastElementOf(7;)
8: return éz

Algorithm 4 Add Example to the Experience Pool

Require: Training set example d; € Diyain, step-by-step plan p;, chat history H,;, Experience pool £,
Text embedding model EMB

Ensure: Updated experience pool &’

1 g, @ < d; > Unpack training example (question and ground truth SPARQL)
2. ¢; + lastElementOf(H) > Get the SPARQL generated by S Agent
3: F1; « Flgcore(¢s, ng) > Compute F1 score
4 vy, — EMB(q;) > Convert question to a vector
50 &« E+ {qi,vqi, &i, iy pis H,F1; }

6: return &’

3.1.4. Experience Pool Construction

During the offline phase, we utilize S.Agent to collect the experience pool. This involves evaluating
the correctness of the generated SPARQL queries (based on the ground truth data) and storing them
together with the intermediate steps (i.e., plan, chat history) in a vector database (see Algorithm 4).
Therefore, each natural language question from the train subset is converted into a vector representation
that is associated with metadata, including the corresponding plan, intermediate steps of the action
step, and the final results. The experience pool is a non-parametric memory of our agent that contains
both successful (F1 score = 1.0) and unsuccessful (F1 score < 1.0) SPARQL query generation attempts
based on a ground truth.

Therefore, the experience pool holds the information about the quality of the generated SPARQL
queries (F1;), the step-by-step plan (p;) that was used to generate this particular query, and other
metadata (e.g., ground truth SPARQL query).

3.2. Evaluation Phase of the mKGQAgent
3.2.1. Plan step with the Experience Pool

In the evaluation phase, the plan step leverages the experience pool to find relevant plan examples for
better planning quality. The plan examples are included in the system prompt Spja, (see Algorithm 5).

Hence, the plan step benefits from the prior successful planning examples while using them in the
system prompt for in-context learning.

3.2.2. Action step with the Experience Pool

Once the plan is generated, the action step executes each of the plan tasks sequentially, leveraging the
NEL Tool for the entity linking (see Algorithm 6). The usage of the experience pool ensures that the
LLM benefits from the in-context SPARQL query examples from the training subset. It is important



Algorithm 5 Plan step with Experience Pool

Require: Natural language question ¢;, system prompt Spja,, model LLM, experience pool £, text
embedding model EMB

Ensure: Step-by-step plan p; > List of textual tasks
1t Vg < EMB(ql)
2. P < findTopN Plans(&E,vy,) > Finds top-N similar plans with F1 = 1.0
3: S;T;If e o Splan —l— P > The plans are included to the prompt
4 p; — LLM (S;ﬁﬁe”eme, qi) > Query LLM with system prompt and question

5: return p;

Algorithm 6 Action Step with the Experience Pool

Require: Step-by-step plan p;, model LLM, tool N E L, system prompt Saction (See appendix), experi-
ence pool &, text embedding model EMB

Ensure: Generated SPARQL query (;§Z

1: Bind NEL to LLM

Initialize empty chat history #;

vgy + EMB(q)

P « findTopN Queries(E,vg,) > Finds top-N similar SPARQL queries

S :ngé;oenr lence o Saction + P > The queries are included to the prompt

for each step s; € p; do
hj < ﬁEM(S:g:;ience, 55) > LLM may call tool or just itself
Append h; to H;

end for

b; lastElementOf(H;)

: return ¢;

==
- O

Algorithm 7 Feedback Step

Require: Intermediate query ¢;, prompt template Steedpack (S€€ appendix), triplestore G
Ensure: Feedback prompt Sf, ..k

1 A + KG(¢) > Query the triplestore and get the response
2 Sfoedback < Steedback + Ai > Populate prompt with the response

3: return S{_ g0

to note that the plan p; can be populated with the result of the feedback step (in case the feedback is
triggered).

3.2.3. Feedback Step

The feedback executes the generated SPARQL query ¢ on a triplestore, collects the response, and
integrates it into a pre-defined prompt template for the action step. Once the first version of a SPARQL
query is generated (i.e., the result of the last planning step executed at the action step), it is redirected
to the feedback step. The feedback is formulated only once per input question, i.e., there are no multiple
feedback options intended to avoid infinite loops. The detailed feedback step workflow is defined in
Algorithm 7. After that, the feedback S},.q; .. 1S redirected to the action step. The action step executes
the feedback to refine the SPARQL query and delivers the final query as the result.



4. Experimental Setup

We conduct our experiments on the commonly used KGQA benchmark: QALD-9-plus (Perevalov et al.
[9]). QALD-9-plus contains 558 questions in multiple languages and queries over DBpedia [26] and
Wikidata cf. [27]. We consider all available languages from QALD-9-plus, in addition, we also take the
Spanish questions, which were contributed to this dataset later (Soruco et al. [28]). The structure of
QALD-9-plus includes question texts and the corresponding ground truth SPARQL queries that return
the expected answer to a question. For the evaluation of KGQA quality, we use the Macro F1 score [29].

4.1. Large Language Models and Text Embedding Models

In this work, we use both open-source and proprietary LLMs. The proprietary ones are provided by
OpenAl’, namely, GPT-3.5 (gpt-3.5-turbo-0125), and GPT-40 (gpt-40-2024-05-13). The models
are accessed via the official Python SDK* with temperature=0, and other hyperparameters are set to
default.

The open-source LLMs are: Qwen2.5 72B Instruct’ and Meta Llama 3.1 70B Instruct®. Both models
were used with the AWQ (Lin et al. [30]) quantization (4-bit) to fit into the memory. The models were
deployed via the vLLM framework (Kwon et al. [31]). The maximal context size of the models was set
to 16384 tokens to avoid out-of-memory exceptions. The other hyperparameters were set to default.
For the open-source LLMs, we used a server with two Nvidia L40S GPUs (each 48GB VRAM).

For creating text embeddings for the experience pool, we used a specific model trained for producing
high-quality text embeddings for multilingual input - multilingual e5 large’ (introduced by
Wang et al. [32]). According to the MTEB leaderboard® introduced by Muennighoff et al. [33], the model
is listed among the top-3 in different languages (we considered embedding models with a size smaller
than 1 billion parameters).

4.2. Implementation of mKGQAgent

The mKGQAgent architecture is implemented within the LangChain framework’ in Python. This
framework facilitates the integration of various components required for the agent’s functionality.

The entity linking within the NEL tool is implemented via Wikidata’s official public entity lookup
endpoint!'’. This endpoint is capable of handling input in multiple languages. The NEL tool also uses
an external relation linker, Falcon 2.0 (Sakor et al. [34]), for enhanced linking capabilities.

The routing between the plan, action, and feedback is implemented within the LangGraph frame-
work!!, which is part of the LangChain ecosystem.

The prompts used within the mKGQAgent are written in different languages, s.t., they match the
input question language. The prompts in English, German, and Russian were written by native speakers,
the other prompts were acquired via machine translation and further structure validation. We list the
prompts in Figure 3.

The SPARQL queries generated by the mKGQAgent are executed on the official Wikidata SPARQL
endpoint'?.

*https://platform.openai.com/docs/models
*https://github.com/openai/openai-python
*https://huggingface.co/Qwen/Qwen2-72B-Instruct- AWQ
Shttps://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct- AWQ-INT4
"https://huggingface.co/intfloat/multilingual-e5-large
$https://huggingface.co/spaces/mteb/leaderboard

*https://python.langchain.com
Phttps://www.wikidata.org/w/api.php?action=wbsearchentities
"https://langchain-ai.github.io/langgraph/
Phttps://query.wikidata.org/bigdata/namespace/wdq/sparql
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Figure 3: The English versions of the prompts used within the mKGQAgent. Placeholders are color-coded blue.
Comments are color-coded red. Important: We use language-specific prompts for every considered language. In
case of the evaluation within Text2SPARQL challenge, we used English prompts only despite the input language.

4.3. Baselines

To compare the performance of the mKGQAgent we select both “pre-LLM era” KGQA systems and
the ones that use different prompting techniques with LLMs. Also, the baselines were selected in a
way that they can generate SPARQL queries over Wikidata. In particular, the following approaches are
selected for comparison with ours: QAnswer, Platypus, DeepPavlov 2023, KGQAN, Triad, MST5, and
HOQA (cf. Section 2).

The selection of the baselines was also influenced by the results reported in the KGQA leaderboard by
Perevalov et al. [10]. We reuse the reported results in our paper for comparison with our mKGQAgent
approach.

4.4. Machine Translation of the Input

Following our research agenda [35, 36], we evaluate how well machine translation to English serves as
an alternative to processing non-English questions natively with the OPUS MT models; cf. Tiedemann
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Figure 4: Comparison between our mKGQAgent approach (teal) and the baselines (grey) on English questions
of QALD-9-plus.

Table 1

Evaluation results of mKGQAgent (our approach) compared to the baselines that support multiple
languages. They were conducted on the test subset of the QALD-9-plus. The best results per language
are highlighted in bold.

English German Spanish French Russian Belarusian Ukrainian Lithuanian Bashkir Armenian

QAnswer 44.59 31.71 16.8 23.00 21.43 N/A

Platypus 15.03 N/A 417 N/A

DeepPavlov 2023 37.16 N/A 31.17 N/A

MST5 41.87 41.26 N/A 41.67 37.61 29.07 34.67 31.15 18.42 N/A
mKGQAgent (GPT-3.5) 33.85 25.85 22.08 22.87 11.75 16.05 12.36 16.27 6.63 8.88
mKGQAgent (GPT-40) 54.83 43.08 38.28 22.76 31.67 31.56 28.54 25.54 40.48 9.09
mKGQAgent (Qwen 2.5 72B) 41.77 21.86 17.96 17.60 12.92 10.81 10.86 9.56 10.40 0.00
mKGQAgent (Llama 3.1 70B) 18.42 19.64 5.23 17.70 5.22 5.73 6.70 9.52 4.65 15.07

and Thottingal [37].

Our machine translation experiments are complementary to the main contribution and, therefore,
are limited to the German, Russian, and Spanish languages. We selected these languages as they all
represent different language branches—the Germanic, Slavic, and Romance, respectively.

5. Evaluation and Analysis

5.1. English-only Comparison with the Baselines

The results presented in Figure 4 illustrate a comparative analysis between our mKGQAgent approach
(highlighted in teal) and various baseline methods (depicted in grey) on the English questions from the
QALD-9-plus benchmark. Our mKGQAgent (GPT-40) achieves the highest F1 score of 54.83%, surpassing
all baselines, including HQA (GPT-4), which attains 50.00%. This demonstrates the effectiveness of our
approach in leveraging structured planning and retrieval mechanisms to enhance semantic parsing
performance.

Among the baselines, QAnswer (44.59%) and KGQAN (44.07%) show competitive results but still
fall short of our top-performing model. Interestingly, HQA (GPT-3.5) achieves 43.00%, indicating that
the transition to GPT-4 has significantly improved query generation capabilities. The performance
of mKGQAgent (Qwen 2.5 72B) (41.87%) and Triad (GPT-4) (41.77%) suggests that large models, even
with structured workflows, benefit from additional fine-tuning and experience pooling. Notably, our
mKGQAgent (GPT-3.5) variant scores just 37.16%, still outperforming several baselines but trailing
behind its GPT-40 counterpart.




Table 2
Evaluation results of the mKGQAgent (showing F1 score and percentages): A comparison between the quality of
original language questions and the same questions translated into English using machine translation (MT).

German Russian Spanish
Native MT Native MT Native MT
mKGQAgent (GPT-3.5) 25.85 28.23 11.75 27.93 22.08 27.67
mKGQAgent (GPT-40) 43.08 35.66 31.67 35.66 38.28 44.18

mKGQAgent (Qwen 2.5 72B) 21.86 30.95 1292 3297 1796  31.35
mKGQAgent (Llama 3.1 70B) 19.64 17.29 5.22 17.29 5.23 9.63

Table 3
A comparison between the MT performance against the native questions (original language in the header row).
We demonstrate the relative improvement when using MT (A) or deterioration (V) in terms of F1 score.

German Russian Spanish
mKGQAgent (GPT-3.5) +9.21% +137.69% +25.31%
mKGQAgent (GPT-40) -17.22% VvV +12.59% +15.42%

mKGQAgent (Qwen 2.5 72B)  +41.58% +155.21% +74.52%
mKGQAgent (Llama 3.1 70B) -11.97% V  +231.46% +84.03%

5.2. Multilingual Comparison with the Baselines

In Table 1, we present the evaluation results of our approach in comparison to the selected baselines
that support multiple languages (see Section 4.3).

The experimental results demonstrate mKGQAgent’s robust performance across multiple languages
on the QALD-9-plus benchmark. When implemented with GPT-4o, the system achieves state-of-the-art
results with the F1 scores of 54.83%, 43.08%, 38.28%, 31.56%, and 40.48%, respectively, for English, German,
Spanish, Belarusian, and Bashkir. The languages using Cyrillic-based scripts (Russian, Belarusian,
Ukrainian, and Bashkir) generally yield poorer results in comparison to the languages using Latin-based
scripts.

While comparing mKGQAgent to the other baselines, we see that QAnswer outperforms mKGQAgent
(GPT-3.5) on French; however, the difference is not substantial (23.00% vs 22.87%). The MST5 system
significantly outperforms mKGQAgent (GPT-40) on Russian (37.61% vs 31.67%), Ukrainian (34.67% vs
28.54%), and Lithuanian (25.54% vs 31.15%).

5.3. Machine Translation for non-English Questions

The evaluation compares the performance of the models on native-language questions and those
translated into English using machine translation (see Table 2). Across all models and languages, the
performance of mKGQAgent is generally higher for translated questions than for native-language
questions. This suggests that translating non-English questions into English before processing yields
better results.

The mKGQAgent based on GPT-40 achieves the highest performance across all settings, demonstrating
the superior comprehension and reasoning capabilities of this model. Qwen 2.5 72B exhibits strong
performance in translation-based settings but falls behind GPT-40. The variance in performance between
languages suggests that translation quality and linguistic characteristics play a role in how effectively
mKGQAgent can process and answer questions. In general, this comparison demonstrates that the
translation of non-English questions into English consistently improves the quality and underlines the
unequal quality distribution among the languages.

Table 3 presents a comparative evaluation of the performance of MT against questions in their native
language within the KGQA task. The results demonstrate that, for most models and languages MT
yields improvements over native-language question answering. This effect is particularly pronounced
in Russian and Spanish, where MT provides significant gains. GPT-4o, despite its strong overall
performance, exhibits slight performance degradation when using MT for German (-17.22%), suggesting



that this model may already be well optimized for handling German-language queries natively. Overall,
these findings highlight the advantages of translations in multilingual KGQA, even when objectively
strong LLMs are used.

5.4. LLM Calls and Costs

An important aspect of using LLM agent frameworks is the number of model calls within one task
solution, i.e., in our case, we report the number of calls per generated SPARQL query for an input
question. In addition, we report the estimated number of tokens per question and the underlying costs
of the LLMs’ usage.

5.4.1. Costs calculation for the OpenAl models

According to our calculations, nKGQAgent requires 13.03 LLM calls on average to generate a SPARQL
query for an input question (cf. Table 4). Consequently, every LLM call consumes 144 input and 199
output tokens on average. This includes chat history that gradually grows during agent execution. The
pricing strategy of OpenAl is based on token consumption. Therefore, we calculate the token-based
price (TBP) as in Equation 1.

TBP = [(nZ X pi) + (ne X po)} X Ne X Ny (1)

Where: n; represents the number of input tokens, p; represents the price per input token, n, represents
the number of output tokens, p, represents the price per output token, n. represents the number of LLM
calls per question, n, represents the number of questions. This results in USD 0.48 per 100 questions
for the GPT-3.5 and USD 3.06 per 100 questions for the GPT-4o, respectively (prices as of March 01,
2025). For the costs of the different S Agent configurations, see Table 4.

5.4.2. Costs calculation for the open source models

For the open-source LLMs, we use the same values regarding the average number of LLM calls to
generate a SPARQL query (13.03) and the average number of tokens per call-144 input tokens and 199
output tokens. The pricing of open source models relies on the GPU hours of cloud providers and the
model efficiency measured in tokens per second (tok/sec). Therefore, we calculate the GPU hours-based

price (GBP) as in Equation 2.

Ng X Ne X N
q c o
GBP = —————— X pPGpU/sec (2)
T'tok/sec

Where: 7k/sec Tepresents model efficiency rate (tok/sec), pgpussec price per GPU-second. We esti-
mated the market prices of our GPU experimental setup (2x Nvidia L40S GPU) according to one of
the well-known cloud providers'®. The model performance (tok/sec) was retrieved from the official
documentation of the respective models'* taking into account the usage of the vLLM framework for
deployment and the size of the context window — 16384 tokens. Hence, for processing 100 questions,
mKGQAgent requires 1.96 GPU hours when using the Qwen model and 0.97 GPU hours when using
the Llama model. Therefore, the prices per 100 questions are USD 4.05 and 2.01, respectively. For the
costs of the different S.Agent configurations, see Table 4.

5.5. Impact of Individual Components on the Quality (Ablation)

To understand the contribution of each architectural component to the overall system performance, we
conducted an ablation study using the English questions from the QALD-9-plus dataset. As our baseline
system, we consider the S.Agent with plan step and NEL tool components.

Bhttps://www.runpod.io/pricing
"Qwen: https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html,
Llama: https://artificialanalysis.ai/models/llama-3-1-instruct-70b



Table 4

Impact (regarding the baseline evaluation - S.Agent (Plan step + NEL tool) of individual components
on the QA quality (F1 score) measured on English questions of QALD-9-plus dataset. The strategy of
pricing calculation is described in Section 5.4. A — increases (the higher, the better), A — increases (the
higher the worse).

Backbone LLM ‘ F1 score, % ‘ Impact ‘ LLM calls ‘ Price per 100 questions ‘ Price impact
SAgent (Plan step + NEL tool)

GPT-3.5 23.15 USD 0.33

GPT-40 34.37 USD 2.08

Qwen 2.5 72B Instruct 24.87 N/A 8.87 (ave.) USD 2.75 N/A

Llama 3.1 70B Instruct 8.12 USD 1.37

SAgent + Experience Pool for Plan Step

GPT-35 31.17 +34.64% USD 0.36
GPT-40 46.48 +35.23% USD 2.28
Qwen 2.5 72B Instruct 29.45 +18.42% 971 (avg,) USD 3.02 +9.31% A (avg))
Llama 3.1 70B Instruct 17.06 +110.09% USD 1.49

S Agent + Experience Pool for Action Step

GPT-35 26.97 +16.50% USD 0.33
GPT-40 52.68 +53.27% USD 2.12
Qwen 2.5 72B Instruct 32.87 +32.17% 902 (avg) USD 2.80 +1.73% A (avg)
Llama 3.1 70B Instruct 15.58 +91.87% USD 1.39

SAgent + Feedback step

GPT-35 26.91 +16.24% USD 0.40
GPT-40 40.47 +17.74% USD 2.57
Qwen 2.5 72B Instruct 25.72 +3.42% 1093 (avg) USD 3.39 +22.65% A (avg,)
Llama 3.1 70B Instruct 9.48 +4.43% USD 1.68

mKGQAgent (Plan step + NEL tool + Experience Pool for Plan and Action + Feedback step)

GPT-35 33.85 +46.22% USD 0.48
GPT-40 54.83 +59.53% USD 3.06
Qwen 2.5 72B Instruct 41.77 +67.95% 13.03 (avg) USD 4.05 +46.62% A (avg)
Llama 3.1 70B Instruct 20.42 +151.47% USD 2.01

The integration of the experience pool for the plan step demonstrated substantial improvements
across all models. Notably, Llama exhibited the most substantial relative improvement of 110%.

The addition of the experience pool to the action step proved particularly effective, especially when
combined with GPT-4o, pushing the F1 score to 52.68% (a 53.27% improvement over baseline). This
component’s impact was consistently positive across all models.

The feedback step introduced more modest but still significant improvements. GPT-40’s performance
with this component reached 40.47%, representing a 17.74% increase over the baseline.

The full integration of all components in mKGQAgent yielded the most impressive results, with
GPT-40 achieving a peak F1 score of 54.83%, marking a 59.53% improvement over the baseline. This
comprehensive integration demonstrated synergistic effects across all models, with even the initially
lower-performing Llama showing a remarkable improvement of 151.47% (see Table 4). These results
strongly indicate that the combination of all components creates a more robust and effective KGQA
system.

6. Discussion, Research Questions and Limitations

R QAT The analysis reveals that the proposed agent architecture enables more accurate SPARQL query
generation. In particular, mKGQAgent achieved state-of-the-art results (54.83% F1 score) on
English and demonstrated superior quality on German, Spanish, Belarusian, and Bashkir.

RQO2 The evaluation indicates that the full nKGQAgent setup with all components achieved substan-
tially better quality but requires additional computational resources. For example, the S.Agent
requires 8.87 LLM calls on average to achieve the end goal, while the final mKGQAgent requires
13.03 LLM calls on average.

RA3 Our work indicates that multilingual SPARQL generation presents significant challenges even to
the state-of-the-art LLMs. In particular, even among European languages, the quality of SPARQL



query generation may degrade by more than a factor of three.

RQO4 Our results indicate that machine translation generally leads to higher KGQA performance
compared to processing questions in their native languages. However, the effectiveness of
translation-based approaches varies by language and model.

We acknowledge several limitations of our work. Since our evaluation relies on Wikidata-based
datasets, it may not fully capture the ability of LLMs to generalize or compose SPARQL queries for
previously unseen data. The issue of data memorization was not the primary focus of this study;
however, we address it in a separate publication [38].

7. Conclusion

The paper introduces a novel LLM agent framework called mKGQAgent for the multilingual Text-to-
SPARQL task. The experiments carried out have shown that each step of the mKGQAgent workflow
contributes positively to the quality of the results. The mKGQAgent substantially outperforms previous
systems in the English, German, Spanish, Belarusian, and Bashkir questions of the QALD-9-plus data
set.

We highlighted significant challenges when LLMs deal with non-English languages, especially low-
resource ones. The latter challenge can be partially covered by the use of MT techniques, which was
demonstrated by our experiments. However, the use of different translation techniques requires further
systematic study to identify settings where each of them performs best. Despite this, the mKGQAgent
framework demonstrates a promising approach to KGQA by adopting the LLM agent paradigm. While it
shows its ability to work with multiple languages having reasonably good quality, we also demonstrated
the trade-off between the quality and computational costs that increase with the agent paradigm
adoption.
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