
Text-to-SPARQL Goes Beyond English: Multilingual
Question Answering Over Knowledge Graphs through
Human-Inspired Reasoning
Aleksandr Perevalov1,2,*, Andreas Both1

1WSE Research Group, Leipzig University of Applied Sciences, Karl-Liebknecht-Straße 132, 04277, Leipzig, Germany
2DICE Research Group, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany

Abstract
Accessing knowledge via multilingual natural-language interfaces is one of the emerging challenges in the field
of information retrieval and related ones. Structured knowledge stored in knowledge graphs can be queried via a
specific query language (e.g., SPARQL). Therefore, one needs to transform natural-language input into a query
to fulfill an information need. Prior approaches mostly focused on combining components (e.g., rule-based or
neural-based) that solve downstream tasks and come up with an answer at the end. We introduce mKGQAgent, a
human-inspired framework that breaks down the task of converting natural language questions into SPARQL
queries into modular, interpretable subtasks. By leveraging a coordinated LLM agent workflow for planning, entity
linking, and query refinement—guided by an experience pool for in-context learning—mKGQAgent efficiently
handles multilingual KGQA. Evaluated on the DBpedia- and Corporate-based KGQA benchmarks within the
Text2SPARQL challenge 2025, our approach took first place among the other participants. This work opens new
avenues for developing human-like reasoning systems in multilingual semantic parsing.

Keywords
LLM Agents, Text2SPARQL, Knowledge Graph Question Answering, Semantic Parsing

1. Introduction

Previous approaches to multilingual knowledge graph question answering (KGQA), like Diefenbach et al.
[1], Turganbay et al. [2], have employed both rule-based and neural methods to address downstream
tasks (e.g., named entity recognition, relation detection, query template classification) necessary for
constructing structured queries (e.g., SPARQL queries). More recent methods (e.g., Srivastava et al. [3])
leverage Large Language Models (LLMs) to generate such structured queries directly from non-English
input. The application of newly introduced LLM agents (or augmented language models) to KGQA
has demonstrated significantly improved performance compared to LLMs that rely solely on standard
prompting techniques e.g., Jiang et al. [4], Huang et al. [5]). However, the multilingual aspect of these
systems remains largely unexplored within the research community. To the best of our knowledge,
there are no studies investigating the LLM agent architectures for KGQA in multilingual settings.

One of the key advantages of LLMs is that they enable developers and researchers to model human-
like reasoning processes via agentic workflows (cf. Li et al. [6]). When solving complex problems,
humans typically break them down into a series of simpler subtasks (cf. Diefenbach et al. [7], Correa
et al. [8]), effectively creating a step-by-step plan to arrive at a solution. While generating a SPARQL
query, this decomposition is essential: not only does one need to break down the task, but also look
up query language syntax, identify relevant entity identifiers in the target knowledge graph (KG), and
analyze feedback (e.g., from executing the SPARQL query candidate on the triplestore). To replicate this
human-like process, we introduce mKGQAgent–an LLM-based agent framework designed as a KGQA
system that follows a semantic-parsing approach. Specifically, given a user query (multiple languages

First International TEXT2SPARQL Challenge, Co-Located with Text2KG at ESWC25, June 01, 2025, Portorož, Slovenia.
*Corresponding author.
$ aleksandr.perevalov@htwk-leipzig.de (A. Perevalov); andreas.both@htwk-leipzig.de (A. Both)
� https://perevalov.com (A. Perevalov); http://andreasboth.de (A. Both)
� 0000-0002-6803-3357 (A. Perevalov); 0000-0002-9177-5463 (A. Both)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-13

mailto:aleksandr.perevalov@htwk-leipzig.de
mailto:andreas.both@htwk-leipzig.de
https://perevalov.com
http://andreasboth.de
https://orcid.org/0000-0002-6803-3357
https://orcid.org/0000-0002-9177-5463
https://creativecommons.org/licenses/by/4.0/deed.en

are supported), it generates a SPARQL query to fulfill the information need. Accordingly, this paper
aims to answer the following research questions:

ℛ𝒬1 How do different LLM agent steps (e.g., plan, action, tool calling, feedback, etc.) impact the
generation of SPARQL queries from natural language?

ℛ𝒬2 How efficient are these LLM agent steps in terms of computation time and the number of additional
calls required?

ℛ𝒬3 How does the quality of SPARQL query generation vary when prompting LLM agents in non-
English languages (especially low-resource ones)?

ℛ𝒬4 How does translating non-English questions into English affect the quality of KGQA?

We conducted preliminary experiments on the widely used KGQA benchmark QALD-9-plus (in-
troduced in Perevalov et al. [9]) with multilingual support. We evaluate 10 languages, including
two classified as endangered. The experimental results on both proprietary and open-source LLMs
demonstrate the effectiveness of mKGQAgent’s architecture, achieving superior performance even
in non-English settings. During the final evaluation on the DBpedia- and Corporate-based KGQA
benchmarks within the Text2SPARQL challenge 2025, our approach took first place among the other
participants. The source code and the evaluation results are available in our GitHub repository1.

The paper is organized as follows. In the next section, an overview of the related work is presented.
The mKGQAgent architecture is described in Section 3. Section 4 is dedicated to the experimental setup.
The results are shown in Section 5 and discussed in Section 6. Section 7 concludes our paper.

2. Related Work

Recent KGQA research has included classical, rule-based, and neural approaches [10, 11]. Diefenbach
et al. [1] (QAnswer) and Punjani et al. [12] used query templates and rule indexes without language
models. Pellissier Tanon et al. [13] applied grammar rules for SPARQL query transformation. DeepPavlov
2023 employs a fine-tuned language model pipeline for query generation, cf. Turganbay et al. [2]. Omar
et al. [14] proposed KGQAN, which integrates answer type prediction and triple pattern generation.

Multilingual KGQA solutions including Zhou et al. [15], which fine-tune multilingual transformers
and leverage bilingual lexicon induction. Zhang et al. [16] address cross-lingual semantic parsing over
multiple meaning representations in XSemPLR, including SPARQL. Tan et al. [17] improve cross-lingual
reasoning, enhancing the Entity Alignment model performance in English, Chinese, and French in the
CLRN approach.

Zong et al. [18] employ the multi-role LLM agent architecture Triad for SPARQL query construction.
MST5 (Srivastava et al. [3]) fine-tunes mT5-XL for generating structured queries. Lehmann et al. [19]
enhances LLMs with external tools to mimic human-like reasoning. Jiang et al. [4] integrates a KG-based
executor (KG-Agent) and fine-tunes Llama2-7B for improved tool usage. QueryAgent (Huang et al.
[5]) mitigates hallucinations with ERASER-based self-correction, excelling on GrailQA and GraphQ.
Interactive-KBQA (Xiong et al. [20]) iteratively refines LLM outputs via direct KB interactions.

3. The mKGQAgent Architecture

The mKGQAgent workflow consists of several key steps (see Figure 1 for an overview). Our approach
follows the terminology established in recent survey articles on LLM agents, cf. Mialon et al. [21], Wang
et al. [22]. The framework operates in two main phases: the offline phase and the evaluation (online)
phase. The offline phase is essential for preparing the experience pool (see Section 3.1.4). During the
offline phase, we employ the simple agent (𝒮𝒜𝑔𝑒𝑛𝑡) to gather intermediate processing steps for the
experience pool (see Figure 2).
1https://github.com/WSE-research/text2sparql-agent

https://github.com/WSE-research/text2sparql-agent

Plan step

Experience
Pool

LLM

Action step

LLM

NEL Tool

SELECT ?uri
WHERE { ... }

1. Identify named entities
2. Link named entities
3. ...
N. Generate SPARQL queryNatural language

question

Plan steps
processing

LLM
is the single

instance reused in
multiple steps

Retrieve
successful plan
examples from
the past

Training data
subset

Retrieve question-​
query pairs for In-​
Context Learning
(ICL)

Feedback
step

TriplestoreFeedback triggered
only once

Final query

Intermediate
 query

Feedback on intermediate query

feedback path
arrow

Figure 1: mKGQAgent workflow demonstration (online phase). In the evaluation phase, the mKGQAgent is
using the experience pool examples to improve planning, the in-context learning training examples to improve
SPARQL query generation awareness and the feedback to correct possible errors. The offline phase, which
is required for gathering experience pool. The evaluation or online phase – the routing of the mKGQAgent’s
components as well as their integral modules.

Plan step

Experience
Pool

Successful (F1 = 1) and
unsuccessful (F1 < 1)

answers

Stores chat history,
tool calls, generated

plan, and final answer

LLM

Action step

LLM

NEL Tool

SELECT ?uri
WHERE { ... }

1. Identify named entities
2. Link named entities
3. ...
N. Generate SPARQL queryNatural language

question

Plan steps
processing

LLM
is the single

instance reused in
multiple steps

Figure 2: 𝒮𝒜𝑔𝑒𝑛𝑡 workflow demonstration (offline phase). In the offline phase, the 𝒮𝒜𝑔𝑒𝑛𝑡 is used to gather
the experience pool of positive and negative answers over the train subsets.

𝒮𝒜𝑔𝑒𝑛𝑡 uses the plan step (cf. Section 3.1.2) to generate a structured step-by-step plan and the action
step, that either calls the LLM or the named entity linking (NEL) tool (cf. Section 3.1.1) ultimately leading
to the SPARQL query generation. In the evaluation (online) phase, the mKGQAgent is using the plan
step and the action step with the experience pool and the NEL tool, and the feedback step that has
access to the triplestore.

The important feature of our framework is that it does not require supervised fine-tuning, which
significantly reduces the computation costs and preserves the generalizability of the original LLMs (cf.
catastrophic forgetting); see Luo et al. [23].

3.1. Offline Phase of the mKGQAgent

3.1.1. Named Entity Linking (NEL) Tool

Likewise, humans look up a resource identifier in a KG, and the NEL step interacts with the environment
(i.e., KG) and retrieves resource labels from there. Assuming the fact that an LLM was not given the
URI-label mappings of a particular resource, the SPARQL query generation would not be possible.
Importantly, while introducing the NEL tool, we do not propose a novel NEL algorithm. In contrast, we

demonstrate how to utilize an existing NEL service in the LLM agent workflow (see Algorithm 1).

Algorithm 1 NEL Tool

Require: Entity candidates 𝐸, Relation candidates 𝑅, NEL service 𝒩ℰℒ
Ensure: Dictionary with linked entities: linkedEntities
Ensure: Dictionary with linked relations: linkedRelations

1: Initialize empty dictionaries linkedEntities and linkedRelations
2: for each entity 𝑒𝑖 ∈ 𝐸 do
3: 𝑒URI

𝑖 ← 𝒩ℰℒ(𝑒𝑖)
4: if 𝑒URI

𝑖 is not empty then
5: linkedEntities[𝑒𝑖]← 𝑒URI

𝑖

6: end if
7: end for
8: for each relation 𝑟𝑗 ∈ 𝑅 do
9: 𝑟URI

𝑗 ← 𝒩ℰℒ(𝑒𝑗)
10: if 𝑟URI

𝑗 is not empty then
11: linkedEntities[𝑟𝑗]← 𝑟URI

𝑗

12: end if
13: end for
14: return (linkedEntities, linkedRelations)

The entity and relation candidates are proposed by the backbone LLM within the tool calling process at
the action step (see Sections 3.1.3 and 3.2.2). Entity and relation linking is crucial for the text-to-SPARQL
process since the URIs representing resources in a KG may be done using random identifiers2.

3.1.2. Plan step

The plan step leverages the backbone LLM to generate a step-by-step list of tasks to come up with a
SPARQL query given a question. The intuition behind the plan step is that it simplifies the task for
the model such that it does not need to handle the whole complexity at once. For example, such tasks
as entity recognition and linking, query refinement, etc. Thus, following the human-like behavior (cf.
Huys et al. [25], Correa et al. [8]), the plan step intends to break down the complex task of writing a
SPARQL query into a combination of simpler subtasks. Hence, the action step deals at one point in time
with a simple subtask having the results of the previous steps in its conversation history. For details
regarding the plan step (for details, see Algorithm 2).

Algorithm 2 Plan step without experience pool

Require: Natural language question 𝑞𝑖, system prompt 𝑆plan, model ℒℒℳ
Ensure: Step-by-step plan 𝑝𝑖 ◁ List of textual tasks

1: 𝑝𝑖 ← ℒℒℳ(𝑆plan, 𝑞𝑖) ◁ Query LLM with system prompt and question
2: return 𝑝𝑖

3.1.3. Action Step without Experience Pool

Once the plan is generated, the action step executes each of the plan tasks sequentially, leveraging the
NEL Tool for the entity linking (see Algorithm 3). This approach ensures that the agent follows the
structured plan, interacting with necessary tools to refine and complete the SPARQL query generation
process.

2e.g., in Wikidata [24], Q567 (https://www.wikidata.org/wiki/Q567) for “Angela Merkel”

Algorithm 3 Action Step without Experience Pool

Require: Step-by-step plan 𝑝𝑖, model ℒℒℳ, tool 𝑁𝐸𝐿, system prompt 𝑆action

Ensure: Generated SPARQL query 𝜑𝑖̂

1: Bind 𝑁𝐸𝐿 to ℒℒℳ
2: Initialize empty chat historyℋ𝑖

3: for each step 𝑠𝑗 ∈ 𝑝𝑖 do
4: ℎ𝑗 ← ℒℒℳ(𝑆action, 𝑠𝑗) ◁ LLM may call tool or just itself
5: Append ℎ𝑗 toℋ𝑖

6: end for
7: 𝜑𝑖̂ ← lastElementOf(ℋ𝑖)
8: return 𝜑𝑖̂

Algorithm 4 Add Example to the Experience Pool

Require: Training set example 𝑑𝑖 ∈ 𝒟train, step-by-step plan 𝑝𝑖, chat historyℋ𝑖, Experience pool ℰ ,
Text embedding model ℰℳℬ

Ensure: Updated experience pool ℰ ′
1: 𝑞𝑖, 𝜑𝑖 ← 𝑑𝑖 ◁ Unpack training example (question and ground truth SPARQL)
2: 𝜑𝑖̂ ← lastElementOf(ℋ) ◁ Get the SPARQL generated by 𝒮𝒜𝑔𝑒𝑛𝑡
3: F1𝑖 ← 𝐹1score(𝜑𝑖, 𝜑𝑖̂) ◁ Compute F1 score
4: 𝑣𝑞𝑖 ← ℰℳℬ(𝑞𝑖) ◁ Convert question to a vector
5: ℰ ′ ← ℰ + {𝑞𝑖, 𝑣𝑞𝑖 , 𝜑𝑖, 𝜑𝑖̂, 𝑝𝑖,ℋ, F1𝑖}
6: return ℰ ′

3.1.4. Experience Pool Construction

During the offline phase, we utilize 𝒮𝒜𝑔𝑒𝑛𝑡 to collect the experience pool. This involves evaluating
the correctness of the generated SPARQL queries (based on the ground truth data) and storing them
together with the intermediate steps (i.e., plan, chat history) in a vector database (see Algorithm 4).
Therefore, each natural language question from the train subset is converted into a vector representation
that is associated with metadata, including the corresponding plan, intermediate steps of the action
step, and the final results. The experience pool is a non-parametric memory of our agent that contains
both successful (F1 score = 1.0) and unsuccessful (F1 score < 1.0) SPARQL query generation attempts
based on a ground truth.

Therefore, the experience pool holds the information about the quality of the generated SPARQL
queries (F1𝑖), the step-by-step plan (𝑝𝑖) that was used to generate this particular query, and other
metadata (e.g., ground truth SPARQL query).

3.2. Evaluation Phase of the mKGQAgent

3.2.1. Plan step with the Experience Pool

In the evaluation phase, the plan step leverages the experience pool to find relevant plan examples for
better planning quality. The plan examples are included in the system prompt 𝑆plan (see Algorithm 5).

Hence, the plan step benefits from the prior successful planning examples while using them in the
system prompt for in-context learning.

3.2.2. Action step with the Experience Pool

Once the plan is generated, the action step executes each of the plan tasks sequentially, leveraging the
NEL Tool for the entity linking (see Algorithm 6). The usage of the experience pool ensures that the
LLM benefits from the in-context SPARQL query examples from the training subset. It is important

Algorithm 5 Plan step with Experience Pool

Require: Natural language question 𝑞𝑖, system prompt 𝑆plan, model ℒℒℳ, experience pool ℰ , text
embedding model ℰℳℬ

Ensure: Step-by-step plan 𝑝𝑖 ◁ List of textual tasks
1: 𝑣𝑞𝑖 ← ℰℳℬ(𝑞𝑖)
2: 𝑃 ← 𝑓𝑖𝑛𝑑𝑇𝑜𝑝𝑁𝑃𝑙𝑎𝑛𝑠(ℰ , 𝑣𝑞𝑖) ◁ Finds top-N similar plans with F1 = 1.0

3: 𝑆
experience
plan ← 𝑆plan + 𝑃 ◁ The plans are included to the prompt

4: 𝑝𝑖 ← ℒℒℳ(𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒
plan , 𝑞𝑖) ◁ Query LLM with system prompt and question

5: return 𝑝𝑖

Algorithm 6 Action Step with the Experience Pool

Require: Step-by-step plan 𝑝𝑖, model ℒℒℳ, tool 𝑁𝐸𝐿, system prompt 𝑆action (see appendix), experi-
ence pool ℰ , text embedding model ℰℳℬ

Ensure: Generated SPARQL query 𝜑𝑖̂

1: Bind 𝑁𝐸𝐿 to ℒℒℳ
2: Initialize empty chat historyℋ𝑖

3: 𝑣𝑞𝑖 ← ℰℳℬ(𝑞𝑖)
4: 𝑃 ← 𝑓𝑖𝑛𝑑𝑇𝑜𝑝𝑁𝑄𝑢𝑒𝑟𝑖𝑒𝑠(ℰ , 𝑣𝑞𝑖) ◁ Finds top-N similar SPARQL queries
5: 𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

action ← 𝑆action + 𝑃 ◁ The queries are included to the prompt
6: for each step 𝑠𝑗 ∈ 𝑝𝑖 do
7: ℎ𝑗 ← ℒℒℳ(𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

action , 𝑠𝑗) ◁ LLM may call tool or just itself
8: Append ℎ𝑗 toℋ𝑖

9: end for
10: 𝜑𝑖̂ ← lastElementOf(ℋ𝑖)
11: return 𝜑𝑖̂

Algorithm 7 Feedback Step

Require: Intermediate query 𝜑𝑖, prompt template 𝑆feedback (see appendix), triplestore 𝒦𝒢
Ensure: Feedback prompt 𝑆′

feedback
1: 𝒜𝑖 ← 𝒦𝒢(𝜑𝑖) ◁ Query the triplestore and get the response
2: 𝑆′

feedback ← 𝑆feedback +𝒜𝑖 ◁ Populate prompt with the response
3: return 𝑆′

feedback

to note that the plan 𝑝𝑖 can be populated with the result of the feedback step (in case the feedback is
triggered).

3.2.3. Feedback Step

The feedback executes the generated SPARQL query 𝜑 on a triplestore, collects the response, and
integrates it into a pre-defined prompt template for the action step. Once the first version of a SPARQL
query is generated (i.e., the result of the last planning step executed at the action step), it is redirected
to the feedback step. The feedback is formulated only once per input question, i.e., there are no multiple
feedback options intended to avoid infinite loops. The detailed feedback step workflow is defined in
Algorithm 7. After that, the feedback 𝑆′

feedback is redirected to the action step. The action step executes
the feedback to refine the SPARQL query and delivers the final query as the result.

4. Experimental Setup

We conduct our experiments on the commonly used KGQA benchmark: QALD-9-plus (Perevalov et al.
[9]). QALD-9-plus contains 558 questions in multiple languages and queries over DBpedia [26] and
Wikidata cf. [27]. We consider all available languages from QALD-9-plus, in addition, we also take the
Spanish questions, which were contributed to this dataset later (Soruco et al. [28]). The structure of
QALD-9-plus includes question texts and the corresponding ground truth SPARQL queries that return
the expected answer to a question. For the evaluation of KGQA quality, we use the Macro F1 score [29].

4.1. Large Language Models and Text Embedding Models

In this work, we use both open-source and proprietary LLMs. The proprietary ones are provided by
OpenAI3, namely, GPT-3.5 (gpt-3.5-turbo-0125), and GPT-4o (gpt-4o-2024-05-13). The models
are accessed via the official Python SDK4 with temperature=0, and other hyperparameters are set to
default.

The open-source LLMs are: Qwen2.5 72B Instruct5 and Meta Llama 3.1 70B Instruct6. Both models
were used with the AWQ (Lin et al. [30]) quantization (4-bit) to fit into the memory. The models were
deployed via the vLLM framework (Kwon et al. [31]). The maximal context size of the models was set
to 16384 tokens to avoid out-of-memory exceptions. The other hyperparameters were set to default.
For the open-source LLMs, we used a server with two Nvidia L40S GPUs (each 48GB VRAM).

For creating text embeddings for the experience pool, we used a specific model trained for producing
high-quality text embeddings for multilingual input – multilingual e5 large7 (introduced by
Wang et al. [32]). According to the MTEB leaderboard8 introduced by Muennighoff et al. [33], the model
is listed among the top-3 in different languages (we considered embedding models with a size smaller
than 1 billion parameters).

4.2. Implementation of mKGQAgent

The mKGQAgent architecture is implemented within the LangChain framework9 in Python. This
framework facilitates the integration of various components required for the agent’s functionality.

The entity linking within the NEL tool is implemented via Wikidata’s official public entity lookup
endpoint10. This endpoint is capable of handling input in multiple languages. The NEL tool also uses
an external relation linker, Falcon 2.0 (Sakor et al. [34]), for enhanced linking capabilities.

The routing between the plan, action, and feedback is implemented within the LangGraph frame-
work11, which is part of the LangChain ecosystem.

The prompts used within the mKGQAgent are written in different languages, s.t., they match the
input question language. The prompts in English, German, and Russian were written by native speakers,
the other prompts were acquired via machine translation and further structure validation. We list the
prompts in Figure 3.

The SPARQL queries generated by the mKGQAgent are executed on the official Wikidata SPARQL
endpoint12.

3https://platform.openai.com/docs/models
4https://github.com/openai/openai-python
5https://huggingface.co/Qwen/Qwen2-72B-Instruct-AWQ
6https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
7https://huggingface.co/intfloat/multilingual-e5-large
8https://huggingface.co/spaces/mteb/leaderboard
9https://python.langchain.com
10https://www.wikidata.org/w/api.php?action=wbsearchentities
11https://langchain-ai.github.io/langgraph/
12https://query.wikidata.org/bigdata/namespace/wdq/sparql

You are an intelligent Knowledge Graph-based Question Answering system.

You can use the tools to help yourself only if you \
DON’t have this information in chat history:
- ’wikidata_el’ for named entity linking \
(e.g. "Person name" -> "URI" or "is child of" -> "URI")
to determine URIs in the Wikidata KG

{QUESTION_QUERY_EXAMPLE} # comes from the experience pool

(a) The system prompt (𝑆experience
𝑎𝑐𝑡𝑖𝑜𝑛) for the action step with the usage of the experience pool ℰ

For the given objective, come up with a simple step by step plan to write a SPARQL query.
This plan should involve individual tasks (e.g., named entity linking, relation linking,
expected answer type classification), that if executed correctly \
will yield the correct SPARQL.
Do not add any superfluous steps.
The result of the final step should be the final SPARQL query.
Don’t propose to execute the query.
At the end step you MUST output exactly **ONE** SPARQL query string \
without extra text or markdown.

{USER_QUESTION}
{PLAN_EXPERIENCE_EXAMPLE} # comes from the experience pool

(b) The planning prompt (𝑆experience
plan) for the plan step with the usage of the experience pool ℰ

This is feedback to your generated SPARQL query produced by executing it on a triplestore.
Please rework your query if neccessary.

Initial question: {USER_QUESTION}
Your query: {GENERATED_SPARQL}# intermediate SPARQL query

--- Start triplestore response ---
{FEEDBACK}# comes from the query execution on a triplestore
--- End triplestore response ---

Make sure that the query is formatted correctly.
No extra text. No markdown. Just plain SPARQL.
Determine whether to output a URI (SELECT ?uri), number (COUNT), date, \
boolean (ASK), string (SELECT ?label).
DON’T USE "SERVICE wikibase:label"

(c) The feedback prompt (𝑆feedback) for the feedback step

Figure 3: The English versions of the prompts used within the mKGQAgent. Placeholders are color-coded blue.
Comments are color-coded red. Important: We use language-specific prompts for every considered language. In
case of the evaluation within Text2SPARQL challenge, we used English prompts only despite the input language.

4.3. Baselines

To compare the performance of the mKGQAgent we select both “pre-LLM era” KGQA systems and
the ones that use different prompting techniques with LLMs. Also, the baselines were selected in a
way that they can generate SPARQL queries over Wikidata. In particular, the following approaches are
selected for comparison with ours: QAnswer, Platypus, DeepPavlov 2023, KGQAN, Triad, MST5, and
HQA (cf. Section 2).

The selection of the baselines was also influenced by the results reported in the KGQA leaderboard by
Perevalov et al. [10]. We reuse the reported results in our paper for comparison with our mKGQAgent
approach.

4.4. Machine Translation of the Input

Following our research agenda [35, 36], we evaluate how well machine translation to English serves as
an alternative to processing non-English questions natively with the OPUS MT models; cf. Tiedemann

mKGQAge
nt (G

PT-4
o)

HQA
(G

PT-4
)

QAnsw
er

KGQAN

HQA
(G

PT-3
.5)

M
ST

5

mKGQAge
nt (Q

wen
2.5

72
B)

Tr
iad

(G
PT-4

)

Dee
pP

av
lov

20
23

mKGQAge
nt (G

PT-3
.5)

Tr
iad

(G
PT-3

.5)

mKGQAge
nt (Ll

am
a 3.1

70
B)

Plat
yp

us0

10

20

30

40

50

60 54.8

50.0

44.6 44.1 43.0 41.9 41.8 41.6

37.2
33.9

29.7

18.4
15.0

F1
sc

or
e,

%

Figure 4: Comparison between our mKGQAgent approach (teal) and the baselines (grey) on English questions
of QALD-9-plus.

Table 1
Evaluation results of mKGQAgent (our approach) compared to the baselines that support multiple
languages. They were conducted on the test subset of the QALD-9-plus. The best results per language
are highlighted in bold.

English German Spanish French Russian Belarusian Ukrainian Lithuanian Bashkir Armenian

QAnswer 44.59 31.71 16.8 23.00 21.43 N/A
Platypus 15.03 N/A 4.17 N/A
DeepPavlov 2023 37.16 N/A 31.17 N/A
MST5 41.87 41.26 N/A 41.67 37.61 29.07 34.67 31.15 18.42 N/A

mKGQAgent (GPT-3.5) 33.85 25.85 22.08 22.87 11.75 16.05 12.36 16.27 6.63 8.88
mKGQAgent (GPT-4o) 54.83 43.08 38.28 22.76 31.67 31.56 28.54 25.54 40.48 9.09
mKGQAgent (Qwen 2.5 72B) 41.77 21.86 17.96 17.60 12.92 10.81 10.86 9.56 10.40 0.00
mKGQAgent (Llama 3.1 70B) 18.42 19.64 5.23 17.70 5.22 5.73 6.70 9.52 4.65 15.07

and Thottingal [37].
Our machine translation experiments are complementary to the main contribution and, therefore,

are limited to the German, Russian, and Spanish languages. We selected these languages as they all
represent different language branches—the Germanic, Slavic, and Romance, respectively.

5. Evaluation and Analysis

5.1. English-only Comparison with the Baselines

The results presented in Figure 4 illustrate a comparative analysis between our mKGQAgent approach
(highlighted in teal) and various baseline methods (depicted in grey) on the English questions from the
QALD-9-plus benchmark. Our mKGQAgent (GPT-4o) achieves the highest F1 score of 54.83%, surpassing
all baselines, including HQA (GPT-4), which attains 50.00%. This demonstrates the effectiveness of our
approach in leveraging structured planning and retrieval mechanisms to enhance semantic parsing
performance.

Among the baselines, QAnswer (44.59%) and KGQAN (44.07%) show competitive results but still
fall short of our top-performing model. Interestingly, HQA (GPT-3.5) achieves 43.00%, indicating that
the transition to GPT-4 has significantly improved query generation capabilities. The performance
of mKGQAgent (Qwen 2.5 72B) (41.87%) and Triad (GPT-4) (41.77%) suggests that large models, even
with structured workflows, benefit from additional fine-tuning and experience pooling. Notably, our
mKGQAgent (GPT-3.5) variant scores just 37.16%, still outperforming several baselines but trailing
behind its GPT-4o counterpart.

Table 2
Evaluation results of the mKGQAgent (showing F1 score and percentages): A comparison between the quality of
original language questions and the same questions translated into English using machine translation (MT).

German Russian Spanish

Native MT Native MT Native MT

mKGQAgent (GPT-3.5) 25.85 28.23 11.75 27.93 22.08 27.67
mKGQAgent (GPT-4o) 43.08 35.66 31.67 35.66 38.28 44.18
mKGQAgent (Qwen 2.5 72B) 21.86 30.95 12.92 32.97 17.96 31.35
mKGQAgent (Llama 3.1 70B) 19.64 17.29 5.22 17.29 5.23 9.63

Table 3
A comparison between the MT performance against the native questions (original language in the header row).
We demonstrate the relative improvement when using MT (▲) or deterioration (▼) in terms of F1 score.

German Russian Spanish

mKGQAgent (GPT-3.5) +9.21% ▲ +137.69% ▲ +25.31% ▲
mKGQAgent (GPT-4o) -17.22% ▼ +12.59% ▲ +15.42% ▲
mKGQAgent (Qwen 2.5 72B) +41.58% ▲ +155.21% ▲ +74.52% ▲
mKGQAgent (Llama 3.1 70B) -11.97% ▼ +231.46% ▲ +84.03% ▲

5.2. Multilingual Comparison with the Baselines

In Table 1, we present the evaluation results of our approach in comparison to the selected baselines
that support multiple languages (see Section 4.3).

The experimental results demonstrate mKGQAgent’s robust performance across multiple languages
on the QALD-9-plus benchmark. When implemented with GPT-4o, the system achieves state-of-the-art
results with the F1 scores of 54.83%, 43.08%, 38.28%, 31.56%, and 40.48%, respectively, for English, German,
Spanish, Belarusian, and Bashkir. The languages using Cyrillic-based scripts (Russian, Belarusian,
Ukrainian, and Bashkir) generally yield poorer results in comparison to the languages using Latin-based
scripts.

While comparing mKGQAgent to the other baselines, we see that QAnswer outperforms mKGQAgent
(GPT-3.5) on French; however, the difference is not substantial (23.00% vs 22.87%). The MST5 system
significantly outperforms mKGQAgent (GPT-4o) on Russian (37.61% vs 31.67%), Ukrainian (34.67% vs
28.54%), and Lithuanian (25.54% vs 31.15%).

5.3. Machine Translation for non-English Questions

The evaluation compares the performance of the models on native-language questions and those
translated into English using machine translation (see Table 2). Across all models and languages, the
performance of mKGQAgent is generally higher for translated questions than for native-language
questions. This suggests that translating non-English questions into English before processing yields
better results.

The mKGQAgent based on GPT-4o achieves the highest performance across all settings, demonstrating
the superior comprehension and reasoning capabilities of this model. Qwen 2.5 72B exhibits strong
performance in translation-based settings but falls behind GPT-4o. The variance in performance between
languages suggests that translation quality and linguistic characteristics play a role in how effectively
mKGQAgent can process and answer questions. In general, this comparison demonstrates that the
translation of non-English questions into English consistently improves the quality and underlines the
unequal quality distribution among the languages.

Table 3 presents a comparative evaluation of the performance of MT against questions in their native
language within the KGQA task. The results demonstrate that, for most models and languages MT
yields improvements over native-language question answering. This effect is particularly pronounced
in Russian and Spanish, where MT provides significant gains. GPT-4o, despite its strong overall
performance, exhibits slight performance degradation when using MT for German (-17.22%), suggesting

that this model may already be well optimized for handling German-language queries natively. Overall,
these findings highlight the advantages of translations in multilingual KGQA, even when objectively
strong LLMs are used.

5.4. LLM Calls and Costs

An important aspect of using LLM agent frameworks is the number of model calls within one task
solution, i.e., in our case, we report the number of calls per generated SPARQL query for an input
question. In addition, we report the estimated number of tokens per question and the underlying costs
of the LLMs’ usage.

5.4.1. Costs calculation for the OpenAI models

According to our calculations, mKGQAgent requires 13.03 LLM calls on average to generate a SPARQL
query for an input question (cf. Table 4). Consequently, every LLM call consumes 144 input and 199
output tokens on average. This includes chat history that gradually grows during agent execution. The
pricing strategy of OpenAI is based on token consumption. Therefore, we calculate the token-based
price (TBP) as in Equation 1.

TBP =
[︀
(𝑛𝑖 × 𝑝𝑖) + (𝑛𝑜 × 𝑝𝑜)

]︀
× 𝑛𝑐 × 𝑛𝑞 (1)

Where: 𝑛𝑖 represents the number of input tokens, 𝑝𝑖 represents the price per input token, 𝑛𝑜 represents
the number of output tokens, 𝑝𝑜 represents the price per output token, 𝑛𝑐 represents the number of LLM
calls per question, 𝑛𝑞 represents the number of questions. This results in USD 0.48 per 100 questions
for the GPT-3.5 and USD 3.06 per 100 questions for the GPT-4o, respectively (prices as of March 01,
2025). For the costs of the different 𝒮𝒜𝑔𝑒𝑛𝑡 configurations, see Table 4.

5.4.2. Costs calculation for the open source models

For the open-source LLMs, we use the same values regarding the average number of LLM calls to
generate a SPARQL query (13.03) and the average number of tokens per call–144 input tokens and 199
output tokens. The pricing of open source models relies on the GPU hours of cloud providers and the
model efficiency measured in tokens per second (tok/sec). Therefore, we calculate the GPU hours-based
price (GBP) as in Equation 2.

GBP =
𝑛𝑞 × 𝑛𝑐 × 𝑛𝑜

𝑟tok/sec
× 𝑝GPU/sec (2)

Where: 𝑟tok/sec represents model efficiency rate (tok/sec), 𝑝GPU/sec price per GPU-second. We esti-
mated the market prices of our GPU experimental setup (2x Nvidia L40S GPU) according to one of
the well-known cloud providers13. The model performance (tok/sec) was retrieved from the official
documentation of the respective models14 taking into account the usage of the vLLM framework for
deployment and the size of the context window – 16384 tokens. Hence, for processing 100 questions,
mKGQAgent requires 1.96 GPU hours when using the Qwen model and 0.97 GPU hours when using
the Llama model. Therefore, the prices per 100 questions are USD 4.05 and 2.01, respectively. For the
costs of the different 𝒮𝒜𝑔𝑒𝑛𝑡 configurations, see Table 4.

5.5. Impact of Individual Components on the Quality (Ablation)

To understand the contribution of each architectural component to the overall system performance, we
conducted an ablation study using the English questions from the QALD-9-plus dataset. As our baseline
system, we consider the 𝒮𝒜𝑔𝑒𝑛𝑡 with plan step and NEL tool components.

13https://www.runpod.io/pricing
14Qwen: https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html,

Llama: https://artificialanalysis.ai/models/llama-3-1-instruct-70b

Table 4
Impact (regarding the baseline evaluation – 𝒮𝒜𝑔𝑒𝑛𝑡 (Plan step + NEL tool) of individual components
on the QA quality (F1 score) measured on English questions of QALD-9-plus dataset. The strategy of
pricing calculation is described in Section 5.4. ▲ – increases (the higher, the better), ▲ – increases (the
higher the worse).

Backbone LLM F1 score, % Impact LLM calls Price per 100 questions Price impact

𝒮𝒜𝑔𝑒𝑛𝑡 (Plan step + NEL tool)

GPT-3.5 23.15

N/A 8.87 (avg.)

USD 0.33

N/A
GPT-4o 34.37 USD 2.08
Qwen 2.5 72B Instruct 24.87 USD 2.75
Llama 3.1 70B Instruct 8.12 USD 1.37

𝒮𝒜𝑔𝑒𝑛𝑡 + Experience Pool for Plan Step

GPT-3.5 31.17 +34.64% ▲

9.71 (avg.)

USD 0.36

+9.31% ▲ (avg.)
GPT-4o 46.48 +35.23% ▲ USD 2.28
Qwen 2.5 72B Instruct 29.45 +18.42% ▲ USD 3.02
Llama 3.1 70B Instruct 17.06 +110.09% ▲ USD 1.49

𝒮𝒜𝑔𝑒𝑛𝑡 + Experience Pool for Action Step

GPT-3.5 26.97 +16.50% ▲

9.02 (avg.)

USD 0.33

+1.73% ▲ (avg.)
GPT-4o 52.68 +53.27% ▲ USD 2.12
Qwen 2.5 72B Instruct 32.87 +32.17% ▲ USD 2.80
Llama 3.1 70B Instruct 15.58 +91.87% ▲ USD 1.39

𝒮𝒜𝑔𝑒𝑛𝑡 + Feedback step

GPT-3.5 26.91 +16.24% ▲

10.93 (avg.)

USD 0.40

+22.65% ▲ (avg.)
GPT-4o 40.47 +17.74% ▲ USD 2.57
Qwen 2.5 72B Instruct 25.72 +3.42% ▲ USD 3.39
Llama 3.1 70B Instruct 9.48 +4.43% ▲ USD 1.68

mKGQAgent (Plan step + NEL tool + Experience Pool for Plan and Action + Feedback step)

GPT-3.5 33.85 +46.22% ▲

13.03 (avg.)

USD 0.48

+46.62% ▲ (avg.)
GPT-4o 54.83 +59.53% ▲ USD 3.06
Qwen 2.5 72B Instruct 41.77 +67.95% ▲ USD 4.05
Llama 3.1 70B Instruct 20.42 +151.47% ▲ USD 2.01

The integration of the experience pool for the plan step demonstrated substantial improvements
across all models. Notably, Llama exhibited the most substantial relative improvement of 110%.

The addition of the experience pool to the action step proved particularly effective, especially when
combined with GPT-4o, pushing the F1 score to 52.68% (a 53.27% improvement over baseline). This
component’s impact was consistently positive across all models.

The feedback step introduced more modest but still significant improvements. GPT-4o’s performance
with this component reached 40.47%, representing a 17.74% increase over the baseline.

The full integration of all components in mKGQAgent yielded the most impressive results, with
GPT-4o achieving a peak F1 score of 54.83%, marking a 59.53% improvement over the baseline. This
comprehensive integration demonstrated synergistic effects across all models, with even the initially
lower-performing Llama showing a remarkable improvement of 151.47% (see Table 4). These results
strongly indicate that the combination of all components creates a more robust and effective KGQA
system.

6. Discussion, Research Questions and Limitations

ℛ𝒬1 The analysis reveals that the proposed agent architecture enables more accurate SPARQL query
generation. In particular, mKGQAgent achieved state-of-the-art results (54.83% F1 score) on
English and demonstrated superior quality on German, Spanish, Belarusian, and Bashkir.

ℛ𝒬2 The evaluation indicates that the full mKGQAgent setup with all components achieved substan-
tially better quality but requires additional computational resources. For example, the 𝒮𝒜𝑔𝑒𝑛𝑡
requires 8.87 LLM calls on average to achieve the end goal, while the final mKGQAgent requires
13.03 LLM calls on average.

ℛ𝒬3 Our work indicates that multilingual SPARQL generation presents significant challenges even to
the state-of-the-art LLMs. In particular, even among European languages, the quality of SPARQL

query generation may degrade by more than a factor of three.

ℛ𝒬4 Our results indicate that machine translation generally leads to higher KGQA performance
compared to processing questions in their native languages. However, the effectiveness of
translation-based approaches varies by language and model.

We acknowledge several limitations of our work. Since our evaluation relies on Wikidata-based
datasets, it may not fully capture the ability of LLMs to generalize or compose SPARQL queries for
previously unseen data. The issue of data memorization was not the primary focus of this study;
however, we address it in a separate publication [38].

7. Conclusion

The paper introduces a novel LLM agent framework called mKGQAgent for the multilingual Text-to-
SPARQL task. The experiments carried out have shown that each step of the mKGQAgent workflow
contributes positively to the quality of the results. The mKGQAgent substantially outperforms previous
systems in the English, German, Spanish, Belarusian, and Bashkir questions of the QALD-9-plus data
set.

We highlighted significant challenges when LLMs deal with non-English languages, especially low-
resource ones. The latter challenge can be partially covered by the use of MT techniques, which was
demonstrated by our experiments. However, the use of different translation techniques requires further
systematic study to identify settings where each of them performs best. Despite this, the mKGQAgent
framework demonstrates a promising approach to KGQA by adopting the LLM agent paradigm. While it
shows its ability to work with multiple languages having reasonably good quality, we also demonstrated
the trade-off between the quality and computational costs that increase with the agent paradigm
adoption.

Acknowledgments

This work has been partially supported by grants for the ITZBund15-funded research project “QA4CB—
Entwicklung von Question-Answering-Komponenten zur Erweiterung des Chatbot-Frameworks” at the
Leipzig University of Applied Sciences in Leipzig (Germany).

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT by OpenAI in order to: Grammar and
spelling check. After using this service, the authors reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.

References

[1] D. Diefenbach, P. H. Migliatti, O. Qawasmeh, V. Lully, K. Singh, P. Maret, QAnswer: A question
answering prototype bridging the gap between a considerable part of the lod cloud and end-users,
in: The World Wide Web Conference, WWW ’19, Association for Computing Machinery, New
York, NY, USA, 2019, p. 3507–3510. doi:10.1145/3308558.3314124.

[2] R. Turganbay, V. Surkov, D. Evseev, M. Drobyshevskiy, Generative question answering sys-
tems over knowledge graphs and text, volume 22, 2023, pp. 1112–1126. doi:10.28995/
2075-7182-2023-22-1112-1126.

[3] N. Srivastava, M. Ma, D. Vollmers, H. Zahera, D. Moussallem, A.-C. N. Ngomo, MST5–multilingual
question answering over knowledge graphs, arXiv preprint arXiv:2407.06041 (2024).

15https://www.itzbund.de/

[4] J. Jiang, K. Zhou, W. X. Zhao, Y. Song, C. Zhu, H. Zhu, J.-R. Wen, KG-Agent: An efficient
autonomous agent framework for complex reasoning over knowledge graph, arXiv preprint
arXiv:2402.11163 (2024).

[5] X. Huang, S. Cheng, S. Huang, J. Shen, Y. Xu, C. Zhang, Y. Qu, QueryAgent: A reliable and
efficient reasoning framework with environmental feedback based self-correction, arXiv preprint
arXiv:2403.11886 (2024).

[6] Y. Li, Y. Zhang, L. Sun, MetaAgents: Simulating interactions of human behaviors for LLM-based
task-oriented coordination via collaborative generative agents, CoRR abs/2310.06500 (2023).
doi:10.48550/ARXIV.2310.06500. arXiv:2310.06500.

[7] D. Diefenbach, K. Singh, A. Both, D. Cherix, C. Lange, S. Auer, The Qanary ecosystem: Getting
new insights by composing question answering pipelines, in: J. Cabot, R. De Virgilio, R. Torlone
(Eds.), Web Engineering, Springer International Publishing, Cham, 2017, pp. 171–189.

[8] C. G. Correa, M. K. Ho, F. Callaway, T. L. Griffiths, Resource-rational task decomposition to
minimize planning costs, in: Proceedings of the 42th Annual Meeting of the Cognitive Science
Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual,
July 29 - August 1, 2020, cognitivesciencesociety.org, 2020. URL: https://cogsci.mindmodeling.org/
2020/papers/0746/index.html.

[9] A. Perevalov, D. Diefenbach, R. Usbeck, A. Both, QALD-9-plus: A multilingual dataset for ques-
tion answering over DBpedia and Wikidata translated by native speakers, in: 2022 IEEE 16th
International Conference on Semantic Computing (ICSC), IEEE, 2022, pp. 229–234.

[10] A. Perevalov, X. Yan, L. Kovriguina, L. Jiang, A. Both, R. Usbeck, Knowledge graph question
answering leaderboard: A community resource to prevent a replication crisis, in: Proceedings of
the Language Resources and Evaluation Conference, European Language Resources Association,
Marseille, France, 2022, pp. 2998–3007. URL: https://aclanthology.org/2022.lrec-1.321.

[11] A. Perevalov, A. Both, A.-C. Ngonga Ngomo, Multilingual question answering systems for
knowledge graphs—a survey, Semantic Web 15 (2024) 2089–2124.

[12] D. Punjani, K. Singh, A. Both, M. Koubarakis, I. Angelidis, K. Bereta, T. Beris, D. Bilidas, T. Ioannidis,
N. Karalis, C. Lange, D. Pantazi, C. Papaloukas, G. Stamoulis, Template-based question answering
over linked geospatial data, in: Proceedings of the 12th Workshop on Geographic Information
Retrieval, GIR’18, Association for Computing Machinery, New York, NY, USA, 2018. URL: https:
//doi.org/10.1145/3281354.3281362. doi:10.1145/3281354.3281362.

[13] T. Pellissier Tanon, M. D. de Assunção, E. Caron, F. M. Suchanek, Demoing Platypus – a multilingual
question answering platform for Wikidata, in: A. Gangemi, A. L. Gentile, A. G. Nuzzolese,
S. Rudolph, M. Maleshkova, H. Paulheim, J. Z. Pan, M. Alam (Eds.), The Semantic Web: ESWC
2018 Satellite Events, Springer International Publishing, Cham, 2018, pp. 111–116.

[14] R. Omar, I. Dhall, P. Kalnis, E. Mansour, A universal question-answering platform for knowledge
graphs, Proceedings of the ACM on Management of Data 1 (2023) 1–25.

[15] Y. Zhou, X. Geng, T. Shen, W. Zhang, D. Jiang, Improving zero-shot cross-lingual transfer
for multilingual question answering over knowledge graph, in: K. Toutanova, A. Rumshisky,
L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, Y. Zhou
(Eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Association for Computational
Linguistics, Online, 2021, pp. 5822–5834. URL: https://aclanthology.org/2021.naacl-main.465/.
doi:10.18653/v1/2021.naacl-main.465.

[16] Y. Zhang, J. Wang, Z. Wang, R. Zhang, XSemPLR: Cross-lingual semantic parsing in multiple
natural languages and meaning representations, in: Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, Toronto, Canada, 2023, pp. 15918–15947. URL: https://aclanthology.org/2023.acl-long.
887.

[17] Y. Tan, X. Zhang, Y. Chen, Z. Ali, Y. Hua, G. Qi, CLRN: A reasoning network for multi-relation
question answering over cross-lingual knowledge graphs, Expert Systems with Applications
231 (2023) 120721. URL: https://www.sciencedirect.com/science/article/pii/S095741742301223X.

doi:https://doi.org/10.1016/j.eswa.2023.120721.
[18] C. Zong, Y. Yan, W. Lu, J. Shao, Y. Huang, H. Chang, Y. Zhuang, Triad: A framework leveraging a

multi-role LLM-based agent to solve knowledge base question answering, in: Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, 2024, pp. 1698–1710.

[19] J. Lehmann, D. Bhandiwad, P. Gattogi, S. Vahdati, Beyond boundaries: A human-like approach for
question answering over structured and unstructured information sources, Transactions of the
Association for Computational Linguistics 12 (2024) 786–802.

[20] G. Xiong, J. Bao, W. Zhao, Interactive-KBQA: Multi-turn interactions for knowledge base question
answering with large language models, CoRR abs/2402.15131 (2024). doi:10.48550/ARXIV.2402.
15131.

[21] G. Mialon, R. Dessi, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Roziere, T. Schick,
J. Dwivedi-Yu, A. Celikyilmaz, et al., Augmented language models: a survey, Transactions on
Machine Learning Research (2023).

[22] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin, et al., A
survey on large language model based autonomous agents, Frontiers of Computer Science 18
(2024) 186345. doi:10.1007/s11704-024-40231-1.

[23] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, Y. Zhang, An empirical study of catastrophic forgetting in
large language models during continual fine-tuning, arXiv preprint arXiv:2308.08747 (2023).

[24] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Communications of the
ACM 57 (2014) 78–85. doi:10.1145/2629489.

[25] Q. J. Huys, N. Lally, P. Faulkner, N. Eshel, E. Seifritz, S. J. Gershman, P. Dayan, J. P. Roiser, Interplay
of approximate planning strategies, Proceedings of the National Academy of Sciences 112 (2015)
3098–3103. doi:10.1073/pnas.1414219112.

[26] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: A nucleus for a web of
open data, in: The semantic web, Springer, 2007, pp. 722–735.

[27] D. Vrandečić, M. Krötzsch, Wikidata: A free collaborative knowledgebase, Commun. ACM 57
(2014) 78–85. doi:10.1145/2629489.

[28] J. Soruco, D. Collarana, A. Both, R. Usbeck, QALD-9-ES: A Spanish dataset for question answering
systems, in: Knowledge Graphs: Semantics, Machine Learning, and Languages, IOS Press, 2023,
pp. 38–52.

[29] R. Usbeck, M. Röder, M. Hoffmann, F. Conrads, J. Huthmann, A.-C. Ngonga-Ngomo, C. Demmler,
C. Unger, Benchmarking question answering systems, Semantic Web 10 (2019) 293–304.

[30] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, S. Han,
AWQ: Activation-aware weight quantization for on-device LLM compression and acceleration,
in: P. Gibbons, G. Pekhimenko, C. D. Sa (Eds.), Proceedings of Machine Learning and Sys-
tems, volume 6, 2024, pp. 87–100. URL: https://proceedings.mlsys.org/paper_files/paper/2024/
file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf.

[31] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, I. Stoica, Efficient
memory management for large language model serving with pagedattention, in: Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023.

[32] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, F. Wei, Multilingual E5 text embeddings: A
technical report, arXiv preprint arXiv:2402.05672 (2024).

[33] N. Muennighoff, N. Tazi, L. Magne, N. Reimers, MTEB: Massive text embedding benchmark, arXiv
preprint arXiv:2210.07316 (2022).

[34] A. Sakor, K. Singh, A. Patel, M.-E. Vidal, Falcon 2.0: An entity and relation linking tool over
Wikidata, in: Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, CIKM ’20, Association for Computing Machinery, New York, NY, USA, 2020, p.
3141–3148. doi:10.1145/3340531.3412777.

[35] A. Perevalov, A. Both, D. Diefenbach, A.-C. Ngonga Ngomo, Can machine translation be a
reasonable alternative for multilingual question answering systems over knowledge graphs?, in:
Proceedings of the ACM Web Conference 2022, WWW ’22, Association for Computing Machinery,
New York, NY, USA, 2022, p. 977–986. URL: https://doi.org/10.1145/3485447.3511940. doi:10.1145/

3485447.3511940.
[36] N. Srivastava, A. Perevalov, D. Kuchelev, D. Moussallem, A.-C. Ngonga Ngomo, A. Both, Lingua

franca – entity-aware machine translation approach for question answering over knowledge
graphs, in: Proceedings of the 12th Knowledge Capture Conference 2023, K-CAP ’23, Association
for Computing Machinery, New York, NY, USA, 2023, p. 122–130. URL: https://doi.org/10.1145/
3587259.3627567. doi:10.1145/3587259.3627567.

[37] J. Tiedemann, S. Thottingal, OPUS-MT — Building open translation services for the World, in:
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
(EAMT), Lisbon, Portugal, 2020.

[38] A. Gashkov, A. Perevalov, M. Eltsova, A. Both, Sparql query generation with llms: Measuring the
impact of training data memorization and knowledge injection, 2025. URL: https://arxiv.org/abs/
2507.13859. arXiv:2507.13859.

	1 Introduction
	1 Introduction
	1 Introduction
	1 Introduction
	2 Related Work
	3 The mKGQAgent Architecture
	3.1 Offline Phase of the mKGQAgent
	3.1.1 Named Entity Linking (NEL) Tool
	3.1.2 Plan step
	3.1.3 Action Step without Experience Pool
	3.1.4 Experience Pool Construction

	3.2 Evaluation Phase of the mKGQAgent
	3.2.1 Plan step with the Experience Pool
	3.2.2 Action step with the Experience Pool
	3.2.3 Feedback Step

	4 Experimental Setup
	4.1 Large Language Models and Text Embedding Models
	4.2 Implementation of mKGQAgent
	4.3 Baselines
	4.4 Machine Translation of the Input

	5 Evaluation and Analysis
	5.1 English-only Comparison with the Baselines
	5.2 Multilingual Comparison with the Baselines
	5.3 Machine Translation for non-English Questions
	5.4 LLM Calls and Costs
	5.4.1 Costs calculation for the OpenAI models
	5.4.2 Costs calculation for the open source models

	5.5 Impact of Individual Components on the Quality (Ablation)

	6 Discussion, Research Questions and Limitations
	7 Conclusion

