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Abstract
This paper briefly introduces the solutions developed by our team, HFUT-VUT, for Remote Physiological Signal
Sensing in the 4th Vision-based Remote Physiological Signal Sensing (RePSS) Challenge hosted at IJCAI 2025.
Specifically, we present a diffusion-based model for remote physiological signal sensing, named DiffRePSS,
inspired by diffusion models’ noise distillation abilities. The proposed model takes the multi-scale temporal map
(MSTmap) and its temporal difference representation as input of an alternated spatial-temporal Transformer
backbone model to extract the rPPG signal from Gaussian noise using a diffusion process during training. The
model then refines it using a reverse diffusion process. To overcome the HR distribution imbalance, we propose
an effective data augmentation strategy that synthetically expands the HR distribution. As a result, our solutions
achieved a remarkable RMSE score of 11.89505 on the test set, securing the Champion of this challenge.
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1. Introduction

Remote physiological signal sensing (RePSS) [1, 2, 3, 4, 5, 6], particularly remote photoplethysmography
(rPPG), has attracted increasing attention in recent years due to its contactless and low-cost nature, with
broad applications in human-centric video understanding tasks [7, 8, 9, 10, 11, 12, 13, 14]. It enables
heart rate (HR) and other vital signs to be estimated from facial videos by capturing subtle changes
in skin color caused by blood volume variations. However, despite rapid advancements, robust and
accurate rPPG estimation under real-world conditions remains challenging due to various factors such
as head movement, illumination changes, and sensor noise.

Traditional hand-crafted algorithms [15, 16, 17, 18, 19] have attempted to suppress noise and isolate
pulse signals using signal decomposition, color space transformation, or skin subspace modeling. More
recently, deep learning-based approaches [20, 21, 22, 23, 5, 24, 25, 3, 26] have shown superior performance
by learning end-to-end mappings from raw facial videos to physiological signals. Nevertheless, many of
these models struggle to generalize in unconstrained environments, partly due to limited data diversity
and a lack of robustness to noise and distribution shifts. In this work, we proposeDiffRePSS, a diffusion-
based model for remote physiological signal sensing, motivated by the generative capability and noise
modeling strength of diffusion models. Specifically, we design a conditional diffusion framework to
progressively recover clean rPPG signals from noise, guided by physiological priors extracted from
facial videos. We introduce a multi-scale spatial-temporal map (MSTmap) and its temporal difference
representation as inputs to our alternated spatial-temporal Transformer-based denoiser, which jointly
models spatial and temporal dependencies in physiological features. Furthermore, to address the issue
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Figure 1: The overview of the proposed DiffRePSS.

of imbalanced HR distribution in existing datasets, we propose a novel HR distribution augmentation
strategy by temporally resampling MSTmaps to simulate diverse HR values. Our proposed approach
demonstrates strong performance on the challenging VIPL-HR and OBF datasets, achieving state-of-
the-art results and winning the 4th RePSS Challenge.
The key contributions of this work are summarized as follows:

• We propose a diffusion-based framework for rPPG signal estimation, leveraging the DDIM
mechanism for robust signal reconstruction.

• We introduce a temporal difference representation to capture fine-grained physiological dynamics.
• We introduce an alternated spatial-temporal Transformer denoiser to effectively model depen-
dencies across space and time.

• We propose a simple yet effective HR distribution augmentation strategy to improve model
generalization across HR ranges. The proposed method achieves state-of-the-art performance
and wins 1st place in the 4th RePSS Challenge.

2. Methodology

We consider the problem of estimating accurate rPPG signals from facial videos. Formally, given an input
facial video 𝑣 ∈ ℝ𝑇×𝐻×𝑊×3, our goal is to predict the one-dimensional quasi-periodic rPPG signal ̃𝑦 ∈ ℝ𝑇,
where 𝑇, 𝐻, and 𝑊 denote the frame number, height, and width of the video, respectively. As shown in
Figure 1, we first send the facial video into Physiological Condition Extractor to extract the multi-scale
spatial-temporal map (MSTmap) 𝑥 ∈ ℝ𝑇×𝑁×𝐶 and its temporal difference representation Δ𝑥 ∈ ℝ𝑇×𝑁×𝐶,
where 𝑁 and 𝐶 correspond to the number of facial ROIs and channel dimensions, respectively. In the
forward process, the ground truth rPPG signal 𝑦 ∈ ℝ𝑇 is corrupted by adding Gaussian noise, yielding
the noisy rPPG signal 𝑦𝑡 at the 𝑡-th timestep. During the reverse process, the Gaussian noises are fed to
Alternated Spatial-Temporal Denoiser, generating a denoised rPPG signal.

2.1. Physiological Condition Extractor

Since periodic pulse signals arise from subtle light reflections caused by blood volume changes in skin
regions, non-skin pixels and facial geometric structures are typically regarded as noise relative to skin
chrominance features. To suppress such noise and emphasize physiological signals, we transform raw
facial videos into Multi-scale Spatial-Temporal Maps (MSTmaps), which have been widely adopted in
prior works [23, 26, 3, 27]. MSTmaps effectively encode physiological spatial-temporal information from
videos. To further extract dynamic physiological variations, we compute frame-wise differences along
the temporal dimension of the MSTmap, thereby capturing temporal changes related to the pulsatile
signal. Given an input MSTmap 𝑥 ∈ ℝ𝑇×𝑁×𝐶, we compute the temporal difference as:

Δ𝑥𝑡 ,𝑛,𝑐 = 𝑥𝑡+1,𝑛,𝑐 − 𝑥𝑡 ,𝑛,𝑐, for 𝑡 = 0, … , 𝑇 − 2. (1)

To preserve the original dimensionality, we apply zero-padding or temporal interpolation toΔ𝑥, resulting
in a temporal difference representation 𝑥D ∈ ℝ𝑇×𝑁×𝐶. This representation accentuates the color
fluctuations induced by cardiovascular activity, providing a clearer physiological cue.



Finally, we concatenate the original MSTmap 𝑥 and the temporal difference representation Δ𝑥 along
the channel dimension, forming the complete physiological condition representation:

c𝑥 = Concat(𝑥, Δ𝑥) ∈ ℝ𝑇×𝑁×2𝐶. (2)

This fused physiological representation c𝑥 captures both the chrominance patterns and their dynamic
variations, serving as a robust input for subsequent physiological signal estimation.

2.2. RePSS via Diffusion Model

Forward Process. The Forward Process is an approximate posterior that follows the Markov chain
that gradually adds Gaussian noise𝒩 (0, 𝐼 ) to the original data 𝑦0. Followed by DDPM [28], the forward
process 𝑞 can be defined as:

𝑞(𝑦1∶𝐾|𝑦0) =
𝐾
∏
𝑘=1

𝑞(𝑦𝑘|𝑦𝑘−1), (3)

𝑞(𝑦𝑘|𝑦𝑘−1) = 𝒩(𝑦𝑘|√𝛼𝑘𝑦𝑘−1, (1 − 𝛼𝑘)𝐼), (4)

where the scalars 𝛼1∶𝐾 are either predefined or learned variances, s.t. 1 > 𝛼1 > 𝛼2 > … > 𝛼𝐾 > 0. To
simplify the training process, we sample 𝑦𝑘 arbitrarily:

𝑦𝑘 = √ ̄𝛼𝑘𝑦0 + √1 − ̄𝛼𝑘𝜖, (5)

where 𝜖 ∼ 𝒩 (0, 𝐼), ̄𝛼𝑘 = ∏𝑡
𝑖=1 𝛼𝑖, 𝛼𝑖 = 1 − 𝛽𝑖, 𝛽𝑖 is a noise schedule. We adopt the cosine-schedule, which

always increases as the sampling step 𝑘 increases.
Reverse Process. In the training stage, 𝑦𝑘 is sent to a denoiser 𝒟 conditioned on physiological
representation c𝑥 and timestep 𝑘 to refine the rPPG signal ̃𝑦0 without noise:

̃𝑦0 = 𝒟(𝑦𝑘, c𝑥, 𝑘), (6)

The entire framework is supervised by a standard Negative Pearson Correlation lossℒ𝑟𝑃𝑃𝐺 [26, 27]. At
the inference stage, we first obtain an initial rPPG signal 𝑦𝐾 by sampling noise from a unit Gaussian.
Then ̃𝑦0 is predicted by passing 𝑦𝐾 to the trained denoiser𝒟. Thereafter, ̃𝑦0 is used to generate the noisy
rPPG signal ̃𝑦𝑘′ as inputs to the denoiser for the next timestep via DDIM, which can be formulated as:

𝑦𝑘′ = √𝛼𝑘′ ⋅ ̃𝑦0 + √1 − 𝛼𝑘′ − 𝜎2𝑘 ⋅ 𝜖𝑘 + 𝜎𝑘𝜖, (7)

where 𝑘, 𝑘′ are the current and next timesteps, respectively. The initial 𝑘 = 𝐾. 𝜖 ∼ 𝒩 (0, I) is standard
Gaussian noise independent of 𝑦0 and

𝜖𝑘 = (𝑦𝑘 − √𝛼𝑘 ⋅ ̃𝑦0)/√1 − 𝛼𝑘, (8)

𝜎𝑘 = √(1 − 𝛼𝑘′)/(1 − 𝛼𝑘) ⋅ √1 − 𝛼𝑘/𝛼𝑘′ , (9)

where 𝜖𝑘 is the noise at timestep 𝑘. 𝜎𝑘 controls how stochastic the diffusion process is. Then, we can
regenerate ̃𝑦0 using 𝑦𝑘′ as inputs to the denoiser. This procedure will be iterated 𝑆 times. Since we start
from 𝐿 at the beginning, the timestep of each iteration can be written as 𝑘 = 𝐾 ⋅ (1 − 𝑠/𝑆), 𝑠 ∈ [0, 𝑆).
This process gradually adds noise to the data with high probability.

2.3. Alternated Spatial-Temporal Denoiser

Due to the promising information interaction and global aggregation capabilities of Transformers [29,
30, 31, 32, 33, 34, 35, 36], we implement the Alternated Spatial-Temporal Denoiser (ASTDenoiser) 𝒟
using a Transformer-like architecture. Specifically, assuming the input of 𝑙 𝑡ℎ layer is 𝑧 𝑙 ∈ ℝ𝑇×𝑁×𝐷. In



the spatial transformer, we obtain spatial relationship 𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ ℝ𝑇×𝑁× by directly applying multi-head
self-attention (MSA) to 𝐷 vectors of size 𝑁:

̂𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = LayerNorm(𝑧 𝑙 +MSA(𝑧 𝑙, 𝑧 𝑙, 𝑧 𝑙)), (10)

𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = LayerNorm( ̂𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + FeedForward( ̂𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙)), (11)

where ̂𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is intermediate variable. LayerNorm(⋅) denotes layer normalization, FeedForward denotes
a multi-layer feedforward network, MSA(Q, K, V) denotes the multi-head self-attention layer where
Q, K, V serve as queries, keys and values. In the temporal transformer, we obtain temporal relationship
𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∈ ℝ𝑁×𝑇×𝐷 by applying MSA to 𝐷 vectors of size 𝑇:

̂𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = LayerNorm((𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙)
T +MSA((𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙)

T, (𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙)
T, (𝑧 𝑙𝑠𝑝𝑎𝑡𝑖𝑎𝑙)

T)), (12)

𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = LayerNorm( ̂𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 + FeedForward( ̂𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)), (13)

where ̂𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 is intermediate variable. (⋅)T denotes the transposition of matrices. Finally, we obtain

the input of (𝑙 + 1)𝑡ℎ layer 𝑧 𝑙+1 = 𝑧 𝑙𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙. After 𝐿 layer of the denoiser loop, a linear regression head is

built to estimate the rPPG signal 𝑦 ∈ ℝ𝑇.

2.4. HR distribution Augmentation

Figure 2: The ground truth HR distribu-
tion of the VIPL-HR dataset.

Existing physiological measurement datasets are typi-
cally limited in scale and suffer from imbalanced HR
distributions, with most samples concentrated in [60, 90]
beats per minute (bpm). This results in models over-
fitting to this dominant HR range while neglecting the
tail ends of the HR range, particularly low and high HR
values. However, normal human HR varies from approx-
imately 40 to 180 bpm. To address this issue, we propose
an effective data augmentation strategy that syntheti-
cally expands the HR distribution by directly applying
upsampling and downsampling operations on MSTmaps.
Specifically, unlike traditional image-based data aug-

mentation conducted in the spatial domain, our method
leverages the fact that HR estimation depends on the
frequency of subtle color changes in facial videos. Therefore, we manipulate the temporal dimension of
the MSTmap by applying downsampling or upsampling to adjust the frequency of these color varia-
tions, effectively simulating higher or lower HRs compared to the original video, and generating new
MSTmaps for model training. As shown in Figure 2, we analyze the HR distribution in the large-scale
VIPL-HR dataset and observe that most ground-truth HRs fall between 60 and 90 bpm, with only a
small fraction of samples having HRs below 60 bpm or above 90 bpm.
Based on this observation, we perform the following operations to augment the original data. For

MSTmaps with ground-truth HR below 80 bpm, we create a copy and concatenate it with the original
along the temporal dimension, resulting in a 600-frame MSTmap. We then apply a downsampling
operation with a sampling rate of 0.5 along the temporal axis to generate a new 300-frame MSTmap.
This effectively doubles the HR, as the frequency of temporal variation is doubled HRaug = 2 × HRorig.
Following the same principle, for MSTmaps with ground-truth HR above 80 bpm, we first extract the
initial 150 frames, then apply an upsampling operation with a sampling rate of 2 along the temporal axis
to obtain a new 300-frame MSTmap. Consequently, the HR is halved HRaug = 0.5 × HRorig. This data
augmentation method enables us to construct a more diverse dataset with a broader HR distribution,
covering both low and high HR ranges, thereby balancing the overall HR distribution.



3. Experiments

3.1. Experimental Setup

Datasets. Following the challenge requirements, we adopt the VIPL-HR dataset [37] to train
and evaluate our model. VIPL-HR is a large-scale, multimodal, and challenging dataset for
rPPG estimation. It contains recordings of 107 subjects under nine different scenarios, in-
corporating diverse head movements (e.g., stable, talking, and motion) and lighting conditions
(e.g., lab, dark, bright), captured using three types of devices: Logitech C310 camera, Re-
alSense F200, and smartphones. The dataset includes 3,130 visible-light facial video clips.

Figure 3: Compared with the NIR video in the test
set, the video in the training set is much
darker, and even the facial contours are not
clear, making it very difficult to capture
physiological signals.

The test set comprises the VIPL-HR [37] and
OBF [2] datasets, each offering paired RGB-
NIR videos for 100 subjects not included in
the training set. For evaluation, the videos
are segmented into 10-second clips. VIPL-HR
captures a range of lighting conditions, while
OBF features subjects with diverse skin tones.
Evaluation Metric. The root mean squared
error (RMSE) is employed as the evaluation
metric to measure the discrepancy between
the predicted heart rate 𝑦pred and the ground-
truth heart rate 𝑦gt.

3.2. Implementation Details

During preprocessing, facial region-of-interest (ROI) areas are extracted using the landmark detection
module from OpenFace. Following the setup in [23], we generate MSTmaps using a sliding window of
300 frames (equivalent to 10 seconds) with a stride of 15 frames (0.5 seconds). For the alternated spatial-
temporal denoiser, we set the feature dimension 𝐷 to 128 and the number of layers 𝐿 to 6. The model is
trained using the Adam optimizer with a learning rate of 1×10−4 and a batch size of 16. Themaximum dif-
fusion step 𝐾 is set to 1000. The probability of applying heart rate distribution augmentation is set to 0.5.

Table 1: The impact of different training/validation
splits and video modalities on VIPL-HR.

Training Validation Modal RMSE↓ (bpm) Modal RMSE↓ (bpm)
Folds 2,3,4,5 Fold 1 RGB 12.21363 NIR 17.46341
Folds 1,3,4,5 Fold 2 RGB 12.44439 NIR 18.44521
Folds 1,2,4,5 Fold 3 RGB 12.40643 NIR 15.14771
Folds 1,2,3,5 Fold 4 RGB 12.17062 NIR 16.94501
Folds 1,2,3,4 Fold 5 RGB 11.89505 NIR 14.59949

During inference, the number of reverse diffu-
sion steps 𝑆 is set to 5. To estimate heart rate
from the predicted rPPG signal, we follow pre-
vious works [3, 4, 26] and apply a first-order
Butterworth bandpass filter with a cutoff fre-
quency range of [0.66Hz, 3.0Hz], correspond-
ing to a heart rate range of [40, 180] beats per
minute.

3.3. Experimental Results

We conducted experiments on the VIPL-HR dataset to evaluate different training/validation splits
and video modalities (RGB and NIR). As shown in Table 1, the best performance was achieved

Table 2: The HR estimation results of the
top-3 leaderboards on the test set
in the 4th RePSS.

Team Name Rank RMSE↓ (bpm)
HFUT-VUT (Ours) 1 11.89505

IST 2 12.31846
xjgroupscu 3 12.70790

using the training/validation split of Folds 1, 2, 3, 4 for
training and Fold 5 for validation. We observed that mod-
els trained on RGB videos consistently outperformed
those trained on NIR videos. To further investigate
this performance gap, we visualized representative NIR
videos from both the training and testing sets, as shown
in Figure 3. It is evident that the training NIR videos
are considerably darker than those in the test set, which
severely compromises the already weak rPPG signals and

https://www.kaggle.com/competitions/the-4th-repss-t1/leaderboard


ultimately degrades model performance. Due to the significant distributional discrepancy between the
training and testing NIR videos, we chose to utilize only the RGB modality for all experiments. As
shown in Table 2, we report the top-3 results on the test dataset in the 4th RePSS challenge. Compared
to other teams, we can see that our team achieves 1st place (RMSE of 11.89505 bpm), which is higher
than the 2nd place (RMSE of 12.31846 bpm) by 3.4%.

4. Conclusion

We presented DiffRePSS, a diffusion-based method for remote physiological signal sensing. By com-
bining a conditional diffusion framework with spatial-temporal representations and HR-aware augmen-
tation, our model achieves robust rPPG estimation under real-world conditions. The proposed approach
demonstrates state-of-the-art performance and ranked first in the 4th RePSS Challenge, highlighting
the effectiveness of diffusion models in this field.
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