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Abstract

With the advancement of remote photoplethysmography (rPPG), video-based physiological signal measurement
has emerged as a convenient and contactless method for heart rate (HR) estimation. Most existing video-based
rPPG methods rely on either RGB or NIR imaging, each with distinct advantages and limitations. RGB-based
methods demonstrate higher accuracy but are sensitive to lighting and skin tone, while NIR-based methods
are more robust to such variations but less responsive to blood volume changes, leading to lower accuracy.
Therefore, we propose a temporal difference transformer (TDT)-based multimodal fusion framework for robust
HR estimation. We employ separate 3D convolutional encoders to independently extract modality-specific
spatio-temporal representations from RGB and NIR input streams. Subsequently, the TDT module enhances
quasi-periodic features while adaptively aligning and fusing RGB and NIR representations. Additionally, a
composite loss function is introduced to provide simultaneous supervision across temporal and spectral domains.
In the 4th RePSS Challenge, the proposed method achieved second place with the root mean square error (RMSE)
of 12.32 bpm on the official test set, demonstrating strong performance in multimodal HR estimation.
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1. Introduction

Heart rate (HR) is a crucial physiological indicator for assessing health and emotional states [1]. While
traditional contact-based methods can cause discomfort, remote photoplethysmography (rPPG) has
emerged as a promising non-contact alternative. By analyzing subtle color variations in facial videos
caused by blood volume changes with each cardiac pulse, rPPG enables HR estimation without physical
contact. With the rapid advancement of deep learning techniques [2], video-based rPPG methods
have made significant progress [3, 4]. Numerous studies have adopted convolutional neural networks
(CNNs) [5] and transformer-based architectures [6, 7] to model spatio-temporal features of facial blood
flow. These learning frameworks have demonstrated promising performance across various public
datasets.

Despite the success of RGB-based deep learning methods for HR estimation, they still face considerable
challenges in real-world scenarios. In low-light conditions, limited visible light reduces the signal-
to-noise ratio of rPPG signals [8]. Illumination changes introduce color shifts that can obscure true
physiological rhythms. Skin tone differences also affect reflectance: darker skin absorbs more light,
leading to weaker signals and lower rPPG amplitude. In contrast, NIR cameras capture only the infrared
portion of the incident light, which is less sensitive to ambient illumination changes and penetrates
deeper into the skin. This enables more stable signal acquisition in low-light conditions and reduces
reflectance disparities across different skin tones. HR estimation methods based on NIR cameras and
infrared illumination exhibit advantages in such settings [9]. However, due to the limited sensitivity of
NIR light to blood volume changes, NIR-based methods generally result in less accurate HR estimation
than RGB-based methods [10].
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Figure 1: The whole framework of our multimodal video-based HR estimation network.

To address these limitations, integrating RGB and NIR modalities shows promise for achieving a
balance between illumination robustness and sensitivity to blood flow signals. By leveraging the com-
plementary strengths of both modalities, multimodal fusion has the potential to improve the accuracy
and generalizability of rPPG estimation in diverse and complex environments. To explore the potential
of multimodal data fusion in rPPG, the 4th Remote Physiological Signal Sensing (RePSS) Challenge was
launched in conjunction with the International Joint Conference on Artificial Intelligence (IJCAI 2025).

In this challenge, we propose an end-to-end multimodal fusion method based on the temporal
difference transformer (TDT) [11]. First, separate 3D convolutional encoders extract modality-specific
spatio-temporal representations from the RGB and NIR input streams. The TDT module then enhances
quasi-periodic features while adaptively aligning and fusing cross-modal RGB and NIR representations.
Furthermore, a composite loss function enforces simultaneous supervision in both temporal and spectral
domains to optimize feature learning. By effectively integrating features from both modalities and
domains, the proposed method enhances the robustness of HR estimation under challenging scenarios.
On the official challenge test dataset, the proposed method achieved the root mean square error (RMSE)
of 12.32, ranking second among all participating teams. These results demonstrate the effectiveness and
competitiveness of the proposed approach in multimodal HR estimation tasks.

2. Methodology

As shown in Fig. 1, our method consists of three main components: modality-specific spatio-temporal
encoding, multimodal feature fusion, and rPPG prediction. Furthermore, a composite loss function is
designed to provide supervision in both the time and frequency domains. In the following sections, we
provide a detailed description of each component.

2.1. Modality-specific Spatio-temporal Encoding

Given a sequence of facial video frames from two modalities (RGB denoted as Xggp and NIR as Xyr),
each modality is independently processed through a 3D convolutional encoder to extract spatio-temporal
features specific to that modality. The RGB input has three channels, while the NIR input has one
channel, with both sharing the same temporal and spatial dimensions.

Each encoder is composed of multiple stacked blocks, where each block includes a 3D convolutional
layer followed by batch normalization, ReLU activation, and 3D max pooling. To improve training
stability and maintain feature quality, residual connections are introduced within each block by adding
the input features to the output of the transformation.

Through this encoding process, we obtain modality-specific feature representations: Frgp €
RPXTXHIxWi and Fyg € RPXT0XHXWi both sharing the same shape in terms of temporal and
spatial resolution after downsampling, but carrying distinct semantic information from their respective
inputs.



2.2. Multimodal Feature Fusion

In temporal difference multi-head self-attention (TD-MHSA) [11], we utilize a temporal difference
convolution (TDC) operator to explicitly encode temporal dynamics into attention computations. Given
an input sequence & € R2PxT2xH2xW2 the TDC operation is formally defined as:

TDC(z) = Y w(pa)-@(po +pn) +0- (—a(po) - Y w(pn)) (1)

Pn€ER pr€R’

where pg denotes the current spatio-temporal location, R is the local 3 x 3 X 3 receptive field, and R’
represents the adjacent temporal neighborhood.
For each attention head i, we compute the query/key/value matrices by:

Qi = S(TDC (LN(z)) ), K; = S(TDC (LN(z)) ), V; = S(Conv3D (LN(z)) ), (2)

where LN(-) is layer normalization, S(-) denotes the reshaping operation from video to sequence
format, and Q;, K;, V; € R(T2-H22W2)x2D Thjg design explicitly injects temporal change patterns into
the attention mechanism through differential operators.

The self-attention for each head is then computed using the scaled dot-product:

KT
SA; = softmax <%§; > Vi (3)

where D), = % is the dimensionality of each attention head, h represents the number of attention
heads.

The outputs from all / heads are concatenated and linearly projected, then reshaped back to the
original video format via V(-), yielding the final TD-MHSA output:

TD-MHSA = V(Concat(SA1,SAs, ...,SA) - U), (4)

where U is a learnable output projection matrix, and V() is the inverse reshape operator (sequence to
video).

To enhance local feature consistency and positional awareness, a spatio-temporal feed-forward
(ST-FF) module is employed in place of standard linear layers. The module consists of a 1 x 1 x 1
pointwise convolution for channel expansion, a 3 x 3 x 3 depthwise-separable 3D convolution to model
spatio-temporal interactions, and a second 1 x 1 x 1 pointwise convolution for dimensionality reduction.
Each stage is followed by batch normalization and ELU activation to promote training stability and
non-linearity.

2.3. rPPG Prediction

After the TDT module completes modality fusion and temporal modeling, the model employs a two-stage
upsampling process to progressively restore temporal resolution while reducing channel dimensionality
to extract key sequential features. Spatial average pooling is then applied to integrate local information
and produce a more compact temporal representation. Finally, a regression module maps the temporal
features into a rPPG signal sequence.

To obtain the final HR, the fast Fourier transform (FFT) is applied to the predicted rPPG signal and
identify the dominant frequency component within the physiological range (0.7-4 Hz). The frequency
with the highest amplitude is selected as the pulse frequency fpeak-

2.4. Loss Function

To enable the model to effectively reconstruct the rPPG waveform and accurately estimate HR, we
design a composite loss function consisting of three components, providing supervision from both the
time and frequency domains.



KL Divergence Loss [12]: This loss provides soft supervision in the frequency domain. Given the
ground truth HRy, a Gaussian distribution centered at HRy; with standard deviation o is used as the
target distribution py, over the discretized frequency bins [11]:

1 . (k — (HRg — HRpin))?
p— X —_
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where HR i, denotes the theoretical minimum HR. Let p represent the softmax-normalized result of
the power spectral density (PSD) of the predicted rPPG signal. The KL divergence loss is defined as:

L—1
Lxi, = Zpk -log (?) . (6)
k

k=0

(5)

Cross-Entropy Loss [13]: Let Zj, represent the spectral energy at frequency bin k in the PSD of the
predicted rPPG, where y is the index of the bin closest to the HRyy. The cross-entropy loss is then:

exp(z
Lcg = —log T(Z/)A . (7)
k=0 exp(Zk)
Negative Pearson Correlation Loss [14]: This loss optimizes temporal similarity between the
predicted signal and ground truth. Given predicted signal x and ground truth y, the loss is defined as:

Cov(z,y
EPearson =1- #7 (8)
040y

where Cov(z, y) represents the covariance between x and y, and 0, o, are the standard deviations of
the predicted signal and ground truth, respectively.
Overall Loss: The final training objective combines the three losses with weighting coefficients:

‘Ctotal = Q- EPearson + B : (LKL + ‘CCE)a (9)

where « and /3 control the relative importance of the temporal and frequency-domain losses.

3. Experiments

3.1. Datasets

The training data comes from the VIPL-HR [15, 16] dataset, which includes paired RGB and NIR videos
from 107 subjects, along with synchronized ground truth PPG signals. It covers diverse real-world
scenarios such as talking, body movement, and varying lighting conditions.

The test set consists of paired RGB-NIR clips from 100 subjects in the VIPL-V2 [15] dataset and 100
subjects from the OBF [17] dataset. All videos are divided into 10 s segments for evaluation. VIPL-V2
provides diverse lighting conditions, while OBF includes subjects with varied skin tones, enabling a
comprehensive assessment of the model’s generalization ability.

3.2. Implement and evaluation metric

The model proposed in this study is implemented using the PyTorch framework and trained on a
high-performance computing system equipped with eight NVIDIA GeForce RTX 4090 GPUs. Each input
sample consists of a facial video segment containing 160 frames, with each frame resized to a resolution
of 128 x 128 pixels. During training, the batch size is set to 8, and the total number of training epochs
is 50. The model is optimized using the Adam optimizer, with a weight decay coefficient of 5 x 107°.
The initial learning rate is set to 1 x 10™%, and a StepLR learning rate scheduler is employed, which
halves the learning rate every 25 epochs.



Table 1
The final leaderboard of the 4th RePSS Challenge’s top five teams.

Ranking Team Name Captain Affiliation RMSE (bpm)
1 HFUT-VUT  Hefei University of Technology 11.89505
2 IST (Ours) Nanjing University 12.31846
3 xjgroupscu Sichuan University 12.70790
4 NJU_TEAM Nanjing University 14.51449
5 Sgt.Pepper’s  Hefei University of Technology 14.69105

Table 2

Comparison of different models and input modalities for HR estimation. PhysFormer (RGB-NIR) denotes a
variant where the corresponding RGB and NIR frames are directly concatenated and used as the input to the
PhysFormer model. The best result is highlighted in bold.

Method RMSE (bpm)
PhysFormer (RGB-only) 12.95383
PhysFormer (RGB-NIR) 12.92008

Ours (RGB-NIR) 12.31846

The evaluation metric used to evaluate the prediction accuracy is the RMSE, which is defined as
follows:

N
' (HR,,eq. — HRy; )2
RMSE — \/Z’L—l( Predl gtz) (10)

N )
where N denotes the number of video segments, HRy;. represents the ground truth HR of the i-th video
segment, and HR;;eq, denotes the predicted HR of the i-th video segment.

3.3. Results

As shown in Table 1, our team, IST (Nanjing University), achieved the RMSE of 12.31846 bpm in the HR
estimation task, ranking second in the final leaderboard of the 4th RePSS Challenge. Compared to the
winning team, HFUT-VUT, which achieved the RMSE of 11.89505 bpm, our result is only approximately
0.42 bpm higher, demonstrating the strong performance and competitiveness of our proposed method.

Table 2 compares our method with PhysFormer under different input settings. PhysFormer achieved
the RMSE of 12.95383 bpm with RGB input, and a slightly improved 12.92008 bpm when using con-
catenated RGB and NIR frames. In contrast, the proposed method, with a more effective RGB-NIR
fusion strategy, achieved a significantly lower RMSE of 12.31846 bpm, reflecting a relative improvement
of about 4.9% over the RGB-only PhysFormer. This demonstrates the importance of both modality
integration and effective fusion design to fully leverage the complementary information from RGB and
NIR inputs.

4. Conclusion

This paper presents a multimodal HR estimation method that fuses RGB and NIR video information
using a TDT architecture. Modality-specific spatio-temporal encoders are first applied to extract robust
spatio-temporal features, providing a strong foundation for subsequent fusion. The TDT enables the
model to capture subtle physiological variations in facial regions while effectively fusing RGB and NIR
features. To further improve prediction accuracy, the model is trained with a composite loss function
combining time-domain and frequency-domain components, guiding it to focus on both dominant
frequency localization and waveform shape consistency. In the 4th RePSS Challenge, the proposed
method achieved second place on the official test set, demonstrating its effectiveness and competitiveness
in multimodal HR estimation. We believe that future improvements could lead to even better outcomes.
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