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Abstract

Remote photoplethysmography (rPPG) enables non-contact heart rate (HR) monitoring and holds great promise
for applications in health monitoring, emotion recognition, and beyond. However, motion introduces substantial
noise within the HR frequency band, which is a primary cause of rPPG performance degradation. To enhance
the robustness of rPPG in complex scenarios, we propose a signal-processing-based framework for remote HR
estimation. First, variational mode decomposition (VMD) is introduced to achieve effective separation of noise
and pulse components in the rPPG signal. Then, the main sources of motion artifacts are analyzed, and motion
information is derived based on the positional variations of the lip landmark in the video frames. By leveraging
time-delay analysis, motion-induced noise components in the rPPG signals are accurately removed. Finally,
principal component analysis (PCA) is applied to reconstruct the heartbeat component from the remaining signal
set, and HR estimation is further refined by exploiting the temporal continuity of physiological parameters. Using
the proposed method, we achieved third place in the 4™ Remote Physiological Signal Sensing (RePSS) Challenge.
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1. Introduction

HR is a fundamental indicator of human physiological status. Traditional HR monitoring methods mainly
include electrocardiography (ECG) and photoplethysmography (PPG), both of which require direct
contact with the skin. However, long-term use of such contact-based methods may cause discomfort
or skin irritation, making them unsuitable for sensitive populations such as infants or patients with
skin damage. As a result, rPPG technology, which enables non-contact HR measurement, has attracted
increasing attention in recent years.

Human heartbeat causes fluctuations in blood volume within blood vessels, and these fluctuations
affect the light absorption characteristics of the vessels, which manifest as rhythmic changes in skin
color. The rPPG technology extracts the pulse signal based on changes in skin color. This technique
enables unobtrusive and long-term monitoring of varied physiological parameters[1, 2], making it
suitable for daily personal health management. However, a major obstacle to the practical deployment of
rPPG technology is its high sensitivity to illumination changes and human motion, which significantly
degrades its measurement accuracy.

In the early stages of rPPG technology development, commonly used methods included blind source
separation (BSS), signal decomposition, and color space transformation. Poh et al. [3] employed
independent component analysis (ICA) to separate the pulse component from RGB channel signals.
Song et al. [4] applied ensemble empirical mode decomposition (EEMD) to decompose rPPG signals
from several facial sub-regions. Wang et al. [5] introduced the Plane-Orthogonal-to-Skin (POS) method
to suppress illumination variations and specular reflection interference. Nevertheless, these traditional
methods generally overlooked the importance of accurate signal decomposition and explicit extraction
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Figure 1: Overall framework of the proposed algorithm. C1-C5 represent the NIR-RGB, CHROM, POS, Green,
and NIR color channels, respectively. DA denotes delay analysis, and NR indicates noise removal.
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of noise source information, making them susceptible to noise interference and performance degradation
in practical applications.

In recent years, deep learning methods have rapidly advanced and have been increasingly studied in
the field of rPPG. Bousefsaf et al. [6] employed a 3D convolutional neural network (3D CNN) to extract
features directly from raw video and used a multilayer perceptron to regress HR. Lokendra et al. [7]
incorporated facial action units (AUs) along with temporal signals from various triangular ROIs into
a multi-channel temporal convolutional network (TCN) to denoise and enhance estimation accuracy.
However, these deep learning—based approaches rely on large-scale annotated datasets and suffer from
limited interpretability.

We propose an algorithmic framework that integrates multi-color space signal decomposition, noise
removal, pulse reconstruction, and HR refinement. The main contributions of this work are as follows:

1) We introduced VMD into the rPPG field, which significantly improved the accuracy of rPPG signal
decomposition and laid the foundation for subsequent accurate noise removal and pulse reconstruction.

2) For the first time, motion reference noise is extracted based on the positional variations of lip
landmarks, and motion-induced noise is accurately identified in complex scenarios by exploiting the
common source characteristics shared between the motion components in rPPG signals and the reference
noise.

3) A temporal continuity constraint of physiological parameter variation is incorporated into the HR
estimation process, further enhancing the stability of the estimated HR.

2. Method

The proposed algorithm consists of four main steps, as illustrated in Fig. 1. First, the regions of interest
(ROIs) are segmented, and the raw rPPG signals are extracted. Second, the ROI signals are transformed
into multiple color spaces. Third, each color-space signal is decomposed using VMD. Time-delay
analysis is then performed between the decomposed components and the reference noise to eliminate
motion artifacts. Finally, PCA is applied to reconstruct the pulse waveform, and a temporal continuity
constraint is used to refine the HR estimation.

2.1. Regions of Interest Segmentation and Raw rPPG Signal Extraction

We employed the open source MediaPipe Face Mesh [8] to obtain facial landmarks. Four ROIs were then
defined on areas of the face rich in capillaries, as shown in Fig. 1. We perform spatial pixel averaging
within each ROI of every frame to obtain the corresponding raw rPPG signals.



2.2. Color Space Conversion

In this study, we employed five color spaces that are favorable for pulse extraction, including CHROM [9],
POS [5], Green, and NIR. In addition, we proposed a fusion scheme that integrates NIR and RGB.

The variations in light intensity at the facial ROI locations are simultaneously reflected in both the
visible and NIR channels. Based on the derivation in Ref. [5], we propose projecting the normalized
RGB and NIR data onto a direction orthogonal to the illumination variation, as shown in Eq. (1).

Sf=3xNIR, - R, — G, — B, (1)

where NIR,, R, G,, and B, represent the normalized NIR and RGB channel signals, respectively, and
S¢ denotes the fused signal. Based on Eq. (1), the RGB and NIR data can be effectively fused while
suppressing illumination variations.

2.3. Motion Noise Removal
2.3.1. Variational Mode Decomposition

VMD is a fully non-recursive signal decomposition method that decomposes a signal by formulating
and solving a constrained variational problem. It decomposes the input signal into k intrinsic mode
functions (IMFs), and it effectively avoids mode mixing. The details of the VMD algorithm can be found
in Ref. [10]. VMD decomposes the signals from multiple color spaces into a set containing both pulse
and motion noise components. Therefore, it is necessary to remove the motion components.

2.3.2. Motion Noise Extraction

Human motion can be categorized into rigid and non-rigid movements: rigid motion is associated with
large-scale head movements, while non-rigid motion relates to deformations of local facial regions. From
a signal processing perspective, if reference noise correlated with these movements can be identified, it
becomes possible to accurately remove motion components from the rPPG signal.

Non-rigid movements are typically associated with mouth motion, while rigid movements can also
be reflected in the displacement of the mouth. Therefore, we extract facial motion information based
on the relative positional changes of lip landmarks in the image. In this study, we select the landmark
located at the center of the upper lip. For a given video sequence, a time series related to the distance
between the landmark and the origin can be obtained, which we refer to as reference noise.

For motion noise in the rPPG signal, it shares a common source with the reference noise. Therefore,
their waveform variations exhibit a high degree of similarity, i.e., they have a small time delay. Based
on this, we analyze the time delay 7 between each VMD-decomposed signal and the reference noise
to identify motion-related components. Due to noise interference or system errors, the time delay =
between the motion component in the rPPG signal and the reference noise may exhibit slight deviations
around zero. Based on experiments, this paper considers decomposed components with cross-correlation
peaks satisfying |r| < 0.2 s as motion noise and removes them accordingly.

2.4. Pulse Signal Reconstruction and HR Refinement

After motion noise removal, the signal set S, is considered to primarily contain pulse components along
with some random noise. PCA is capable of extracting the common signal components shared across
multiple channels into the first principal component, while suppressing weakly correlated random noise.
Based on this, we apply PCA to S, to reconstruct the dominant pulse component. For the reconstructed
pulse signal, the HR frequency fi,, can be calculated using the FFT, and then multiplying f;,, by 60 yields
the HR value.

To further improve the accuracy of HR estimation, we developed a refinement scheme based on the
continuity of HR variation. Since physiological changes in the human body occur gradually, the HRs
estimated from three consecutive temporal segments are expected to exhibit relatively small differences.



Assuming the estimated HRs for these three segments are hry, hry, and hrs, the condition specified in
Eq. (2) should be satisfied.

Vi € {1, 2}, |hri+1 — hr,-| < thl (2)

In the proposed algorithm, the interval between two signal segments is 0.2 seconds, and the threshold
thy is set to 10 beats per minute (bpm). In addition, if the HR exceeds 122.6 bpm or falls below 35.6 bpm,
we introduce an additional constraint for HR refinement. Specifically, the three signal segments are slid
with a step size of one frame. If the HR difference between each segment and its corresponding initial
segment is less than 5 bpm, the obtained three signal segments will be used for the final HR estimation.

3. Experiments

3.1. Datasets

The training set for this challenge is a subset of the VIPL-HR dataset [11], containing data from 42
subjects. To match the test set, we selected modality (b) and modality (c) for our experiments, which
consist of paired RGB and NIR videos recorded using a RealSense F200 camera. The RGB images have
a resolution of 960x540, while the NIR images are 640x480; both are recorded at 25 fps. We used 10
seconds as the signal length for HR estimation in the training set.

The test set includes portions of the VIPL-HR and OBF datasets [12]. The VIPL-HR test set consists of
RGB and NIR videos from 100 subjects, with an average video length of 9.74 seconds. The OBF dataset
also includes RGB and NIR videos from 100 subjects, with each video segment lasting 10 seconds.

3.2. Performance Metrics

We use mean absolute error (MAE), root mean square error (RMSE), mean error (ME), and Pearson
correlation coefficient (PCC) to evaluate the performance of the algorithm.

4. Results

We conducted experiments on the challenge training set. Taking the motion scenario as an example, the
raw rPPG signal extracted from the face is presented in the upper subfigure of Fig. 2(a). The original
rPPG signal is severely interfered by motion noise. Then, the NIR and RGB channels are fused using
Eq. (1), and the filtered signal is shown in the lower subfigure of Fig. 2 (a). This signal is decomposed
using VMD and compared with the results of EEMD and wavelet decomposition, as shown in Fig. 2(b),
(c), and (d). In Fig. 2(d), wavelet decomposition is disturbed by high-frequency noise (IMF1 at 11.3 Hz).
Obvious mode mixing occurs in IMF2, and IMF3 contains only 1.2 Hz noise. This method fails to
separate the 1.4 Hz pulse component. In Fig. 2(c), EEMD shows severe mode mixing in IMF2, with
multiple signal components blended together, while IMF1 and IMF3 correspond to 1.2 Hz noise. In
contrast, VMD avoids mode mixing, with each mode displaying a distinct, sharp frequency peak that
enables accurate separation of noise and pulse signals.

Using the method described in Section 2.3.2, reference noise is extracted from the lip landmark, and
the filtered result is shown in Fig. 3(a). This reference noise has the same frequency as IMF3 in Fig. 2(b).
Then, the cross-correlation function between the reference noise and IMF3 is calculated, as shown in
Fig. 3(b). The highest correlation occurs at a time delay close to zero, approximately -0.2 s. Therefore,
IMF3 is identified as motion noise and removed. PCA is then used to reconstruct the pulse signal, and
the result is shown in Fig. 3(c). The reconstructed pulse signal exhibits a rhythm consistent with the
ground truth, and the estimated HR is 84 bpm, matching the ground truth.

HR estimation was performed on the entire training set and compared with conventional methods
(EEMD and wavelet) and the end-to-end method from the relevant challenge, as shown in Table 1.
Conventional methods decompose the green channel signal and estimate HR using the component with



o IMF 1 FET IMF 1 FFT JIMEF 1 . FFT
© 6 - - = 8 01 003 F 4 15
ERU Raw rPPG signal [5) [5) 1oHz [} © 0025 | 12Hz [5) o 11.3 Hz
E 2 -g —g 6 —g 0.05 vg - —g 2 —g . "
= 002}
g o -ﬂ/\—/‘—\/\\—f :; 0 %-4 % 0 ‘:—immv % 0 :;
< -20 - - - " 7 £ 0005 =) g £ oo} =) g os
0 50 100 150 200 250 < ool < 2 < -0.05 < o005 | < -2 <
Frames L
15 o ‘”5“ 125 2;0 ]U 5 10 [H(l 125 250 “U 5 10 4(7 \55 250 0(1 5 10
L
= 0.2Hz Frames Frequency (Hz) Frames Frequency (Hz) Frames Frequency (Hz)
= IMF 2 - FFT IME 2 W FFT IMF 2 W FFT
g 0.5 Hz 003 s ) > - 0 f
, 4 Hz 51Hz
< 0 g o —8 Heartbeat % | —E—,’ 15 9.8 Hz —8 0.01 % 3
0 5 10 15 = 001 = 001 = = = =
= 2 2 2 2 2
Frequency (Hz) = o = = =0 = =,
a. o o o o o,
£ oo £ 0005 =) =) =) =)
o A T p - v‘ < s < < -1 < 0.5 < -0.01 < 1
2 o1l |——NIR-RGB fusion s1gna1‘ o
= -0.03 0 -2 - 0 -0.02 - 0 n
.E A - . 0 1 250 0 5 10 0 125 250 0 5 10 0 125 250 0 5 10
g '~V \/ v Frames Frequency (Hz) Frames Frequency (Hz) Frames Frequency (Hz)
< o1 - - — - IMF 3 FFT IMF 3 FFT IMF 3 FFT
0 50 100 150 200 250 0.06 - 1 0.03 - - 0.1 - 0.03 - - 0.1 - 0.03 y -
1.2 Hz 12 1.2 HZ
Frames © 00 © 0025 . o o oos| [CL2Hz) . © 005
o 004 =™ '% 002 '% o 'S 002 '% ! 2
2 2 2 2 2 2
S “—12Hz = = oo = Z oo 2 = sos
= 0.02 £ o g oo =) g ool =) g oo
£ L4tz < o < s < < s < < oms
< 006 0 01 0 01 LA A o
0 S 10 15 0 s 20 0 5 w0 0 15 0 0o 5w o s 2% ST
Frequency (Hz) Frames Frequency (Hz) Frames Frequency (Hz) Frames Frequency (Hz)
(a) (b) (©) (d)

Figure 2: (a) The raw rPPG signal and the NIR-RGB fusion signal. (b), (c), and (d) show the decomposition
results of VMD, EEMD, and wavelet, respectively. FFT represents the result of the Fast Fourier Transform applied
to the corresponding time-domain signal.
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Figure 3: (a) Reference noise (b) Cross-correlation function between reference noise and IMF3 (c) Pulse signal
reconstructed by the rPPG-based method (red) and the ground truth signal (dark blue).

the highest dominant frequency amplitude. The results verify that the proposed method effectively
reduces HR estimation errors and improves PCC.

Table 1
HR estimation results of VIPL-HR training set.
Methods MAE ME RMSE PCC
End-to-end method [13] 10.97 - 13.24 0.06
EEMD 9.13 -5.32 11.64 0.07
Wavelet 9.24 -5.64 11.77 0.07
Proposed 7.50 -3.44 10.45 0.22

5. Conclusion

Methods based on EEMD and wavelet decomposition are prone to mode mixing, whereas VMD can more
effectively separate noise and pulse components, making it more suitable for rPPG tasks. Conventional



methods often regard the lips as non-rigid motion regions to be excluded, overlooking the noise
information related to the rPPG signal contained in this region. In this work, we analyze the sources
of motion noise and establish a link between variations in lip landmark positions and motion noise
in the rPPG signal. We propose a time-delay analysis-based method to identify motion noise, and
successfully locate the motion component in the VMD-decomposed signals. This provides new insight
for improving the signal-to-noise ratio (SNR) of the rPPG signal in related research. As shown in Table 1,
the experimental results indicate that the proposed algorithm achieves better performance than both
the end-to-end method and the conventional methods. Finally, our algorithm achieved third place in
the 4™ RePSS challenge with a score of 12.7079.
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