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Abstract
Remote heart rate estimation from video still faces three main challenges in real-world scenarios: (1) the absence
of adaptive, frequency-selective modeling allows low-frequency physiological rhythms to be overwhelmed by
noise; (2) single-modality inputs suffer from instability under varying illumination, occlusions, or device changes;
and (3) conventional temporal encoders are computationally expensive and lack long-sequence generalization.
To address these limitations, we propose FSMamba, a frequency-selective multimodal perception system built
upon the Mamba state-space framework. FSMamba employs a dual-branch feature extractor for RGB and NIR
streams and a Joint Cross Attention (JCA) module to enable bidirectional, multi-head cross-modal interaction. In
its encoder, we combine the standard MambaBlock with a parallel Frequency-Selective Filter (FSFilter) that uses a
learnable time step—derived from trainable heart-rate bounds—and an SSMKernel-based causal recurrence to
implicitly generate a band-pass convolution kernel. A channel-wise gating further refines the heart-rate-focused
features. The decoder fuses raw temporal and frequency-enhanced representations via joint classification and
class-wise regression to predict the final heart rate. Experiments on VIPL-HR demonstrate that FSMamba achieves
competitive RMSE performance across the majority of diverse conditions, and ablation studies confirm the
effectiveness of each module.
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1. Introduction

Remote photoplethysmography (rPPG) is a non-contact technique for estimating physiological indicators
such as heart rate and respiration from facial video. It has gained significant attention in recent years for
applications in health monitoring and emotion recognition [1, 2, 3]. Classical methods like CHROM [4]
and POS [5] rely on color space transformation and fixed bandpass filters, which perform reliably under
ideal conditions but are sensitive to lighting changes, head movement, and occlusions [6].

To enhance robustness, recent research has turned to deep learning models such as DeepPhys,
PhysNet, MTTS-CAN, and PhysFormer [7, 8, 9, 10], which leverage CNNs or Transformer-based
architectures [11] for end-to-end modeling and achieve promising results. However, these models
still suffer from sensitivity to input quality variations and limited generalization to unseen devices or
challenging environments [12].

Multimodal fusion has emerged as a practical approach to address these limitations, especially
through the integration of near-infrared (NIR) signals, which provide more stable skin reflectance
under low-light or occluded conditions. While some studies have attempted to combine RGB and NIR
modalities [13], most fusion strategies rely on early fusion or simple concatenation, lacking mechanisms
to model the dynamic and complementary relationships between modalities.
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From a spectral perspective, rPPG signals are primarily concentrated in the frequency band of 0.7
– 2.5 Hz. Traditional bandpass filters are fixed and not adaptive to individual or context variations.
Learnable filter approaches such as SincNet [14] have shown great potential in related domains like
speech processing and physiological signal estimation.

Transformer-based models[11] offer strong global modeling capabilities but suffer from quadratic
complexity, making them less suitable for long sequences and edge deployment. In contrast, state-space
models (SSMs), including S4 and Mamba [15, 16], provide a more efficient and interpretable way to
model long-term dependencies in temporal signals.

On the training side, recent works have explored multi-objective loss formulations—combining
regression, interval classification, and distributional alignment—to mitigate label noise and account for
sample uncertainty, thereby improving model robustness and generalization [17].

In summary, the current development of rPPG systems is oriented toward three key directions: multi-
modal fusion, frequency-aware modeling, and efficient sequential modeling. A major challenge remains
in balancing model complexity, accuracy, and deployability, particularly for real-world applications.

2. Modifications

2.1. System Introduction

Figure 1: Overview of the proposed FSMamba framework. The system consists of four key modules: (1) a
dual-branch Feature Extractor that generates spatiotemporal features from RGB and NIR video inputs; (2) a
Joint Cross Attention (JCA) module that models cross-modal interactions and outputs fused features; (3) the
FSMamba Encoder, which integrates state-space modeling and frequency-selective filtering to extract both global
and heart-rate-specific representations; and (4) an HR Decoder that combines temporal and spectral features
through MLP and SincConv, and predicts the heart rate via joint classification and class-wise regression.

Traditional rPPG systems face significant challenges, such as sensitivity to lighting variations, motion
artifacts, and limited modeling of long-term temporal dependencies. To address these issues, we
propose a modular end-to-end frequency-selective multimodal framework with four key modules:
(1) a dual-stream feature extractor that encodes spatiotemporal dynamics from RGB and NIR inputs;
(2) a Joint Cross Attention (JCA) module for cross-modal interaction and feature alignment; (3) an
FSMamba encoder that combines state-space modeling with frequency-aware filtering to capture global
and heart-rate-focused representations; and (4) a spectrum-aware decoder that fuses temporal and
frequency features for robust heart rate prediction through joint classification and regression.

2.2. Feature Extraction Module

This module employs a dual-branch design based on inter-frame differencing and lightweight convolu-
tional encoding to extract spatiotemporal features from RGB and NIR sequences.

(1) Temporal Difference Construction (STMap) Following PhysFormer [10], we compute inter-
frame differences to construct spatiotemporal maps (STMap), which highlight subtle pulse-induced



variations between frames:
X𝑡 = I𝑡+1 − I𝑡, 𝑡 = 1, … , 𝑇 − 1 (1)

where I𝑡 denotes the 𝑡-th frame of the input video sequence, and X𝑡 is the resulting difference map that
emphasizes temporal color fluctuations caused by blood flow.

(2) Spatial Encoder Each temporal difference map X𝑡 is processed through a 5-layer CNN, where
each layer consists of a 3 × 3 convolution, ReLU activation, and Batch Normalization:

F𝑖 = BN(ReLU(Conv3×3(F𝑖−1))) (2)

where F𝑖 denotes the intermediate feature map at the 𝑖-th layer. The channel dimension doubles
progressively across layers. After temporal stacking, the final output Ffinal ∈ ℝ𝑇×𝑑 is obtained by
applying global average pooling (GAP) across spatial dimensions, where 𝑇 is the number of frames and
𝑑 is the feature dimension.

(3) Dual-Modality Processing Both RGB and NIR video streams undergo independent STMap
generation and spatial encoding. The process for each modality is defined as:

Xrgb = SpatialEncoder(STMap(Irgb)), Xnir = SpatialEncoder(STMap(Inir)) (3)

where Irgb and Inir are the original RGB and NIR frame sequences, respectively. The outputsXrgb,Xnir ∈
ℝ𝑇×𝑑 represent temporally encoded features for each modality, with 𝑇 as the sequence length and 𝑑 the
feature dimension.

This dual-stream structure ensures that both modalities preserve their complementary spectral
information while enabling robust downstream multimodal fusion.

2.3. Multimodal Fusion Mechanism: Bidirectional Cross-Modal Attention

Figure 2: Overview of the Joint Cross Attention (JCA) module. RGB and NIR features are fused via bidirectional
multi-head cross-attention, where each modality attends to the other. Each branch includes linear projections,
multi-head attention, and residual connections with LayerNorm. The outputs (JCA-RGB and JCA-NIR) are
concatenated and refined via an MLP to produce the final fused representation.

To model the interaction between RGB and NIR modalities, we introduce the Joint Cross Attention
(JCA) module based on the Transformer architecture [11, 13]. Given the sequence features:

Xrgb,Xnir ∈ ℝ𝐵×𝑇×𝑑 (4)

For each attention head ℎ, we compute the attention flow as follows. The attention mechanism is
based on the scaled dot-product attention, where we compute the attention for each head using different
queries (Q), keys (K), and values (V).
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rgb are the corresponding
matrices for the reverse attention.

The attention function is defined as:

Attention(𝑄, 𝐾, 𝑉 ) = softmax (
𝑄𝐾𝑇

√𝑑
) 𝑉 (6)

where 𝑑 is the dimensionality of the query and key vectors.
After calculating each attention head for both directions, we concatenate the outputs of all heads.

Let 𝐻 be the number of heads, and denote the concatenation of all heads as:

Frgb→nir = Concat (F1rgb→nir, F
2
rgb→nir, … , F𝐻rgb→nir) (7)

Fnir→rgb = Concat (F1nir→rgb, F
2
nir→rgb, … , F𝐻nir→rgb) (8)

Then, we update each stream via residual connection:

X′
rgb = Xrgb + Fnir→rgb, X′

nir = Xnir + Frgb→nir (9)

Here, X′
rgb and X′

nir represent the attended features after cross-modal integration.
Finally, we concatenate and project the updated features from both modalities:

Xfused = MLP (X′
rgb ‖ X

′
nir) (10)

2.4. FSMamba Encoder: Frequency-Selective State-Space Modeling

To overcome the limitations of conventional encoders in frequency selectivity and long-range modeling,
we propose the FSMamba encoder, which combines the Mamba state-space framework [16] with a
frequency-guided path that focuses on the heart rate band (0.7 ∼ 2.5 Hz).

(1) Overall Architecture Given an input sequence X0 ∈ ℝ𝐵×𝑇×𝐷, FSMamba employs a layered
encoder structure where the first layer is a standard MambaBlock, followed by 𝐿 − 1 layers of
Frequency-Enhanced MambaBlocks

Each enhanced layer processes input as:

Yssm
ℓ = MambaBlockℓ(LN(Xℓ)), Yhr

ℓ = FSFilterℓ(LN(Xℓ)) (11)

where Xℓ is the input to layer ℓ, Yssm
ℓ and Yhr

ℓ are the outputs of the MambaBlock and FSFilter, respec-
tively.

Xℓ+1 = LN (Xℓ +MLP (Yssmℓ ‖ Yhrℓ )) (12)

where Xℓ+1 is the residual-updated output of the current layer, with feature fusion performed via an
MLP.

Houtput = LN(X𝐿), Hhr =
1

𝐿 − 1

𝐿−1
∑
ℓ=1

Yhr
ℓ (13)

where X𝐿 is the final output of the encoder, which passes through 𝐿 layers of MambaBlock and
Frequency-Enhanced MambaBlock, and Houtput = LN(X𝐿) is the final encoder representation after
layer normalization. Additionally, Hhr aggregates heart-rate-enhanced features from all FSFilter layers
by averaging them across layers.



(2) State-Space Path in MambaBlock: Local Convolution and Global Temporal Modeling The
state-space path follows the standardMambaBlock [16], which models both short-term and long-range
temporal dependencies through a combination of local convolution and global state recurrence. Given
input Xℓ ∈ ℝ𝑇×𝐷, the block first applies a depthwise 1D convolution to capture local motion patterns
across time. The result is then passed through a dynamic gating unit and projected into a state-space
model (SSM) for global modeling.

The SSM core operates via a linear recurrence:

s𝑡+1 = As𝑡 + Bx𝑡, y𝑡 = Cs𝑡 + Dx𝑡 (14)

where x𝑡 is the input at time 𝑡, s𝑡 is the latent state, and y𝑡 is the output. The matrices A,B,C,D are
learnable and define a causal filter with global temporal receptive field.

The output is fused with the input via a residual connection and normalized. This design enables
MambaBlock to efficiently learn hierarchical temporal features by combining local convolution, global
recurrence, and data-driven gating in a lightweight and scalable architecture.

(3) Frequency-Enhanced MambaBlock: Learning Frequency-Focused Representations To
enhance sensitivity to periodic physiological dynamics such as heart rate oscillations, we augment the
MambaBlock with a parallel Frequency-Selective Filter (FSFilter). This module is implemented via a
modified state-space kernel, denoted as SSMhr_band, which introduces frequency-domain awareness by
dynamically modulating its temporal resolution.

We first define a learnable time step:

Δ𝑡 = 2
𝑓 hrmin + 𝑓 hrmax

, (15)

where 𝑓 hrmin, 𝑓
hr
max > 0 are trainable scalars initialized to 0.7 and 2.5 Hz respectively. During training, Δ𝑡

adapts to shift the effective center frequency of the filter.
The FSFilter applies the following causal state-space recurrence for each time step 𝑘:

𝑠𝑘+1 = 𝐴Δ𝑡 𝑠𝑘 + 𝐵Δ𝑡 𝑥𝑘, 𝑦𝑘 = 𝐶 𝑠𝑘, (16)

where

• 𝑥𝑘 ∈ ℝ𝐷 is the input at time 𝑘,
• 𝑠𝑘 ∈ ℝ𝐻 is the latent state,
• 𝐴Δ𝑡, 𝐵Δ𝑡 ∈ ℝ𝐻×𝐻 are transition matrices modulated by Δ𝑡,
• 𝐶 ∈ ℝ𝐷×𝐻 is the output projection.

By unrolling the recurrence, this is equivalent to a causal convolution

𝑦𝑘 =
𝑘
∑
𝑛=0

ℎ𝑛 𝑥 𝑘−𝑛, ℎ𝑛 = 𝐶 (𝐴Δ𝑡)𝑛 𝐵Δ𝑡, (17)

where {ℎ𝑛} is the implicit filter kernel whose effective bandwidth is controlled by Δ𝑡.
Finally, we apply a channel-wise gating to the filter output:

Yhrℓ = SSMhr_band(Xℓ; Δ𝑡) ⊙ whr, whr ∈ ℝ𝐷 (18)

where whr is a trainable vector and ⊙ denotes element-wise multiplication. This gating further empha-
sizes or suppresses specific channels according to their relevance to the heart-rate frequency band.

Through (i) learnable frequency bounds via Δ𝑡, (ii) state-space – derived kernel ℎ𝑛, and (iii) channel-
wise gatingwhr, the FSFilter functions as a data-driven band-pass filter centered on the heart rate range,
providing explicit frequency-domain selectivity in the FSMamba encoder.



2.5. Heart Rate Decoder Module

To address both interval discrimination and frequency sensitivity, the decoder integrates temporal and
frequency-aware features with joint classification and regression objectives [14, 17].

(1) Feature Extraction and Spectral Enhancement: The features from the FSMamba encoder are
processed in two branches:

- Raw Feature Processing: The temporal features are passed through an MLP to extract raw
features:

Fraw = MLP(Houtput) (19)

where Houtput is the global representation from the FSMamba encoder.
- Frequency Feature Enhancement: The heart-rate focused features Hhr are processed through a

Sinc convolutional layer followed by an MLP to enhance frequency-specific features:

Ffreq = SincConv1d(MLP(Hhr)) (20)

where Hhr is the heart-rate focused representation from the FSMamba encoder. The SincConv1d layer
is a learnable filter designed to enhance the relevant frequency components for heart rate estimation.
(2) Feature Fusion and Regression: After extracting raw and frequency-enhanced features, they

are fused as:
Ffused = MLP (Fraw ‖ Ffreq) (21)

Here, the raw temporal features Fraw and the frequency-enhanced features Ffreq are concatenated and
fused using an MLP.

Finally, the heart rate prediction ̂𝑦final is computed using a softmax function for classification and a
regression head to output the final estimation:

̂𝑦final =
𝐶
∑
𝑖=1

softmax(Ffused)𝑖 ⋅ Reg𝑖(Ffused) (22)

where 𝐶 represents the number of interval classes, and Reg𝑖 denotes the regression output for class 𝑖.
This design enhances both frequency focus and interval-level adaptation, yielding robust heart rate

predictions even under challenging conditions.

2.6. Loss Function Design

We adopt a multi-objective loss function to jointly optimize prediction accuracy, classification sensitivity,
and distributional stability [17]:

ℒtotal = 𝜆reg ⋅ ℒreg + 𝜆cls ⋅ ℒcls + 𝜆dist ⋅ ℒdist, (23)

where 𝜆reg = 1.0, 𝜆cls = 1.0, and 𝜆dist = 0.5.
Specifically, the three components are defined as follows:

ℒreg = 1
𝑁

𝑁
∑
𝑖=1

SmoothL1(𝑦𝑖 − ̂𝑦final,𝑖) (24)

ℒcls = − 1
𝑁

𝑁
∑
𝑖=1

log(𝑝𝑖,𝑐𝑖) (25)

ℒdist = (𝜇 ̂𝑦 − 𝜇𝑦)2 + (𝜎 ̂𝑦 − 𝜎𝑦)2 (26)

Here, ̂𝑦final denotes the predicted heart rate, 𝑦 is the ground truth, 𝑝𝑖,𝑐𝑖 is the probability assigned
to the true interval class, and 𝜇, 𝜎 are the empirical mean and standard deviation. This formulation
improves both accuracy and robustness under uncertainty [17].



3. Experimental Design and Result Analysis

We evaluate the proposed FSMamba system through comprehensive comparative and ablation experi-
ments on the VIPL-HR dataset [12], with detailed analysis to validate the effectiveness and contribution
of each module.

3.1. Datasets

VIPL‐HR contains 2,378 RGB and 752 NIR facial video sequences from 107 subjects under varied
conditions (rest, motion, illumination), with synchronized PPG, heart rate, and SpO₂ annotations [12].
Oulu Bio Face Database (OBF) comprises videos from 100 healthy volunteers and 6 AF patients

(two 5-minute sessions per subject in RGB + NIR), along with simultaneous ECG, PPG, and respiration
signals, for heart rate, respiratory rate, and AF detection benchmarking [18].

3.2. Experimental Settings and Evaluation

We adopt the Root Mean Square Error (RMSE) as the primary evaluation metric to assess model
robustness under outlier predictions, defined as:

RMSE =
√

1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (27)

All experiments are conducted on VIPL-HR using the subject-independent protocol [12], with
684/68/198 samples for training, validation, and testing. The model is trained for 15 epochs with
Adam optimizer (lr = 1 × 10−4, batch size = 2) on 180-frame segments.

The architecture includes four modules: a feature extractor, a cross-modal fusion block (4-head
attention, 64 dim/head), a 6-layer FSMamba encoder (𝑑model = 256, 𝑑state = 128, 30 Hz), and a heart rate
decoder (16 SincConv layers, kernel size = 33, band = 0.7 – 2.5 Hz, regression head dim = 128) [16, 14].
Inputs are resized to 128 × 128, and all features are 256-dimensional. This setup ensures a good trade-off
between temporal modeling and frequency selectivity for accurate rPPG estimation.

3.3. Results

As shown in Table 1, the proposed FSMamba system achieves consistent performance across diverse
VIPL-HR scenarios. In typical settings (e.g., sitting, talking, bright lighting), RMSE stays within 11 –
13 BPM. Even under low light, long distance, or mobile capture (v4, v6, v8/v9), it remains below 15
BPM, demonstrating robustness to noise and input variation. The highest RMSE (24.17 BPM) appears in
the post-exercise recovery scenario (v7), suggesting future improvement is needed for modeling rapid
physiological changes. The solid performance in mobile cases further indicates strong potential for
real-world deployment.

Ablation results (Table 2) demonstrate the importance of each loss component and system module.
Removing ℒreg, cross-modal attention, or the NIR modality notably degrades RMSE, confirming their
complementary roles. Despite limited NIR data, its inclusion enhances low-light robustness. Overall,
FSMamba’s design effectively balances accuracy, generalization, and real-world applicability through
frequency-aware modeling and multimodal fusion.

As shown in Table 3, our proposed system (Team: xiuxejia, Hefei University of Technology) ranked
6th on the official RE-PSS leaderboard, evaluated on the VIPL-HR and OBF test sets, with an RMSE of
16.25 BPM.

Due to local resource constraints, we submitted a lightweight version without pre-trained weights
or extensive hyperparameter tuning. However, the system still performed well, demonstrating its
robustness and potential for deployment.



Table 1
Performance evaluation across different scenarios on the VIPL-HR dataset (unit: BPM)

Scenario #Samples RMSE↓ MAE↓ Mean Error Std. Dev.↓ Max Error↓

v1 22 13.120 10.568 7.042 11.070 28.073
v2 22 12.873 9.891 4.408 12.095 27.821
v3 22 11.943 9.565 2.527 11.672 21.699
v4 22 12.605 10.394 1.551 12.510 28.531
v5 22 10.977 8.807 0.080 10.977 24.656
v6 22 14.578 12.425 1.595 14.490 28.028
v7 22 24.173 18.135 −17.118 17.068 59.033
v8 22 9.743 8.324 −1.592 9.612 24.094
v9 22 10.448 8.763 −3.589 9.812 27.198

Table 2
Ablation Study on VIPL-HR: Module and Loss Impact (RMSE, BPM)

Model Configuration Loss Terms RMSE↓ (BPM)

RGB+NIR+JCA ℒreg +ℒcls +ℒdist 13.98
Without ℒreg ℒcls +ℒdist 15.45
Without ℒcls ℒreg +ℒdist 14.15
Without ℒdist ℒreg +ℒcls 14.22
Without JCA ℒreg +ℒcls +ℒdist 14.81
RGB-only Modality ℒreg +ℒcls +ℒdist 15.32

Table 3
Top 6 challenge team results ranked by RMSE (unit: BPM) on the official VIPL-HR and OBF evaluation set

Ranking Team Name Captain Affiliation Score (RMSE↓)

1 HFUT-VUT Hefei University of Technology 11.89505
2 IST Nanjing University 12.31846
3 xjgroupscu Sichuan University 12.70790
4 NJU_TEAM Nanjing University 14.51449
5 Sgt. Pepper’s Hefei University of Technology 14.69105
6 xiuxejia Hefei University of Technology 16.25080

4. Conclusion

We propose FSMamba, a frequency-selective multimodal framework for heart rate estimation based on
the Mamba architecture. It combines RGB – NIR fusion, frequency-aware encoding, and multi-branch
loss to enhance robustness. Experiments on VIPL-HR show strong generalization, with future work
focusing on adaptability and deployment efficiency.
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