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Abstract
Remote physiological sensing using Frequency Modulated Continuous Wave (FMCW) radar has emerged as
a promising alternative to contact-based methods due to its non-intrusive nature and privacy preservation.
However, existing signal-processing and CNN-based approaches suffer from phase wrapping ambiguities, noise
sensitivity, and limited ability to capture long-range dependencies in heartbeat dynamics. In this work, we
propose a novel CNN-Transformer framework for supervised radar-based heartbeat measurement. The CNN
component extracts local temporal features, while the transformer encoder models long-range dependencies
critical for periodic cardiac motion. To further enhance performance, we design a hybrid loss function that
integrates Negative Pearson Loss, Signal-to-Noise Ratio (SNR) Loss, and Sparsity Loss, effectively balancing
temporal fidelity, noise robustness, and physiologically meaningful frequency representation. We additionally
introduce RadHR, a new FMCW radar dataset with recordings from 50 participants, providing a high-quality
benchmark for non-contact heartbeat estimation. Extensive experiments on both the public EquiPleth dataset
and RadHR demonstrate that our method consistently outperforms existing baselines, achieving state-of-the-art
accuracy and robustness under realistic conditions.
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1. Introduction

Radar-based heartbeat sensing has attracted increasing attention as a promising non-contact physiolog-
ical monitoring technique. Compared with traditional contact-based methods such as electrocardiogra-
phy (ECG) and photoplethysmography (PPG), radar sensing provides unique advantages in privacy
preservation, environmental robustness, and suitability for continuous long-term monitoring. The
underlying principle is to detect subtle chest wall vibrations (typically 0.1–0.5 mm) induced by cardiac
activities [1]. Frequency Modulated Continuous Wave (FMCW) radars are widely employed due to
their ability to precisely track motion by measuring relative phase variations in received chirp signals.

In recent years, radar-based physiological monitoring has developed into a highly active research field,
with applications ranging from healthcare to safety and smart environments. Several review studies
have systematically summarized these advances. For instance, comprehensive surveys on Doppler radar
technology highlight its potential for continuous healthcare monitoring without requiring physical
contact, enabling early diagnosis and chronic disease management in clinical and home-care settings
[2]. Similarly, microwave radar sensing systems have been investigated in the context of search-and-
rescue operations, where non-contact monitoring of vital signs in complex and cluttered environments
can support timely detection of survivors [3]. In parallel, biomedical MIMO radar systems have
been extensively studied for their ability to achieve both vital sign detection and fine-grained human
localization, offering a promising avenue for multi-person monitoring scenarios [4]. Collectively, these
reviews establish radar sensing as a versatile modality capable of addressing challenges that are difficult
to solve with traditional sensors.
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Beyond reviews, numerous radar architectures and signal processing pipelines have been explored
for real-world vital sign detection. Impulse-radio ultra-wideband (IR-UWB) radar, owing to its fine
temporal resolution, has been widely applied to monitor heartbeat and respiration. Early systems
demonstrated non-contact heart rate monitoring using IR-UWB signals under controlled conditions
[5], while subsequent preclinical studies validated simultaneous monitoring of respiration and carotid
pulsation, paving the way for clinical applicability [6]. IR-UWB radar has also been deployed in
challenging enclosed environments, such as inside vehicles, to detect and localize passengers while
extracting vital signs through non-line-of-sight measurements [7].

In addition to IR-UWBmethods, self-calibrating radar systems have been proposed to improve stability
and adaptability across different users and scenarios. These approaches automatically adjust system
parameters to mitigate the effects of channel variation and hardware non-idealities, thereby enhancing
robustness for long-term monitoring [8]. Meanwhile, mm-wave FMCW radars have been validated for
remote monitoring of human vital signs, showing strong resilience to environmental interference and
enabling compact, low-power implementations suitable for pervasive healthcare systems [9].
Another emerging application domain is radar-based vital sign monitoring in automotive environ-

ments. Detecting passenger presence and health conditions inside vehicles is particularly challenging
due to vibrations and motion artifacts. Recent studies have conducted both theoretical investigations
[10] and practical experiments [11], demonstrating the feasibility of extracting respiration and heartbeat
information even in the presence of strong vehicle vibrations. These findings extend the applicability
of radar sensing from controlled laboratory settings to highly dynamic real-world conditions.

Despite these advancements, conventional radar-based heartbeat sensing approaches typically rely on
extracting and unwrapping signal phases to recover heartbeat dynamics [9, 12, 13]. However, such meth-
ods remain highly susceptible to motion artifacts, multipath interference, and low signal-to-noise ratio
(SNR) conditions. Phase wrapping ambiguities and noise sensitivity often lead to significant performance
degradation, particularly in realistic environments where subjects are not perfectly stationary.

To overcome these limitations, recent advances in supervised deep learning have demonstrated the
ability to learn complex spatiotemporal representations directly from radar signals [14, 15, 16]. By
bypassing explicit phase unwrapping, these methods achieve greater robustness under noise and motion.
Nevertheless, most existing deep learning frameworks are dominated by convolutional neural networks
(CNNs), which are effective at capturing local temporal features but struggle to model long-range
dependencies that are critical for representing periodic heartbeat dynamics.
In this work, we propose a supervised FMCW radar-based heartbeat measurement framework that

combines CNNs with Transformers. Our main contributions are summarized as follows:

• We design a novel framework for radar heartbeat sensing, which integrates 1DCNN layers for local
feature extraction with Transformer encoders for modeling long-range temporal dependencies,
addressing the limitations of CNN-only baselines.

• We collected a new radar dataset (RadHR) containing 50 individuals for heartbeat sensing bench-
mark, and the dataset will be made public upon request.

• The proposed model demonstrates superior resilience against motion artifacts, multipath in-
terference, and low-SNR conditions, which commonly degrade the performance of traditional
signal-processing and CNN-based methods.

• We conduct extensive experiments on FMCW radar data, showing that our approach consistently
outperforms state-of-the-art CNN-based baselines in heartbeat sensing accuracy and robustness.

2. Methodology

2.1. Preliminaries

A range matrix is obtained from FMCW radar raw data to facilitate subsequent analysis and processing.
Specifically, the procedure of constructing a range matrix is as follows. In each chirp loop, the FMCW
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Figure 1: The framework of our CNN-Transformer method.

radar transmits a chirp signal 𝑠(𝑡) and simultaneously receives the corresponding reflected chirp signal
𝑢(𝑡). Both 𝑠(𝑡) and 𝑢(𝑡) are linear frequency modulation signals, commonly referred to as chirp signals.
In particular, the received signal 𝑢(𝑡) is mixed with the in-phase and quadrature (IQ) components of the
transmitted signal, denoted as 𝑠𝐼(𝑡) and 𝑠𝑄(𝑡), to produce the complex intermediate frequency (IF) signal
𝑝(𝑡) ∈ ℝ𝐷, which can be expressed as:

𝑝(𝑡) ∝ LPF[𝑠𝐼(𝑡) ⋅ 𝑢(𝑡)] + 𝑗, LPF[𝑠𝑄(𝑡) ⋅ 𝑢(𝑡)] ∝ exp(𝑗(2𝜋𝑓 𝑡 + 𝜑)), 𝑓 = 2𝑘𝑑/𝑐, 𝜑 = 4𝜋𝑑/𝜆 (1)

where LPF denotes the low-pass filter, 𝑘 is the frequency slope of the FMCW signal, 𝑑 is the distance,
𝑐 is the speed of light, and 𝜆 is the wavelength associated with the FMCW starting frequency. The
frequency 𝑓 of the IF signal 𝑝(𝑡) corresponds to the frequency difference between the transmitted signal
𝑠(𝑡) and the received signal 𝑢(𝑡). Consequently, 𝑓 is directly proportional to the signal round-trip time
and the distance 𝑑 between the radar and the target. Likewise, the phase 𝜑 is also proportional to the
distance, but it is inherently wrapped within the interval [−𝜋, 𝜋].
To capture heartbeat dynamics continuously, the radar sequentially transmits 𝑁 chirps

[𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑁(𝑡)] and receives the corresponding reflected signals [𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑁(𝑡)]. Accord-
ingly, 𝑁 IF signals [𝑝1(𝑡), 𝑝2(𝑡), … , 𝑝𝑁(𝑡)] are obtained, where each 𝑝𝑛(𝑡) ∈ ℝ𝐷. Since the frequency of
each IF signal 𝑝𝑛(𝑡) is a function of the target distance, a fast Fourier transform (FFT) is applied to each
𝑝𝑛(𝑡) to generate the corresponding range profile 𝑃𝑛[𝑓 ]. Finally, by concatenating all 𝑁 range profiles,
the range matrix is constructed as:

𝑃 = [𝑃1[𝑓 ], 𝑃2[𝑓 ], … , 𝑃𝑁[𝑓 ]] ∈ ℝ𝑁×𝐷, (2)

where 𝑁 represents the number of chirps and 𝐷 denotes the number of range bins. This range matrix
serves as the foundation for subsequent feature extraction and heartbeat estimation in our framework.

2.2. CNN-Transformer Module

As described in Section 2.1, the raw FMCW radar signals are converted into a range matrix 𝑃 ∈ ℝ𝑁×𝐷,
where 𝑁 is the number of chirps and 𝐷 is the number of range bins. This range matrix captures both
the distance-related amplitude and phase variations, serving as the input for subsequent heartbeat
estimation. Before feeding into the neural network, we take a window of the range matrix 𝑃𝑤 ∈ ℝ𝑁×𝐷

around the central range bin 𝑑 to get the windowed heartbeat matrix 𝑃𝑤(⋅, 𝑑 ± Δ𝑑) ∈ ℝ𝑁×(2Δ𝑑+1) as the
input following the previous work [14].

The first stage of our model is a 1D CNN-based feature extractor, which operates along the temporal
dimension of the range matrix. Specifically, for each range bin 𝑑𝑤 ∈ [1, 𝑑 ± Δ𝑑], the corresponding



temporal sequence 𝑃𝑤[∶, 𝑑𝑤] is processed by stacked convolutional layers with small kernel sizes. These
layers aim to capture local temporal patterns corresponding to heartbeat-induced chest movements.
Formally, the CNN feature extraction can be expressed as:

𝐹𝐶𝑁𝑁 = 𝐶𝑁𝑁(𝑃𝑤), 𝐹𝐶𝑁𝑁 ∈ ℝ𝑁×𝐶 (3)

where 𝐶 is the number of feature channels output by the CNN. We adopt ReLU activations, batch
normalization, and dropout to improve training stability and prevent overfitting.

While CNNs effectively capture local patterns, heartbeat signals exhibit long-range temporal depen-
dencies that CNNs alone may fail to model. To address this, we incorporate a Transformer encoder after
the CNN stage. The Transformer employs self-attention mechanisms to model interactions between
distant time steps, allowing the network to capture the periodicity and subtle dynamics of cardiac
motion. Given the CNN features 𝐹CNN ∈ ℝ𝑁×𝐶, the Transformer computes:

𝐹𝑇 𝑟𝑎𝑛𝑠 = 𝑇 𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟(𝐹𝐶𝑁𝑁), 𝐹𝑇 𝑟𝑎𝑛𝑠 ∈ ℝ𝑁×𝐶 (4)

where 𝐹Trans encodes both local and global temporal information. We adopt multi-head attention to
allow the model to focus on multiple temporal patterns simultaneously, followed by a feed-forward
network with residual connections and layer normalization.

3. Losses

In this work, we design a composite loss function that combines Negative Pearson Loss, Signal-to-Noise
Ratio (SNR) Loss[14], and a Sparsity Loss[17] to optimize the supervised heartbeat measurement task
using FMCW radar. This hybrid design allows the model to achieve accurate estimation, suppress noise,
and encourage physiologically meaningful spectral representations.

3.1. Negative Pearson Loss

The Negative Pearson Loss evaluates the linear correlation between the predicted signal and the ground
truth. The Pearson correlation coefficient ranges from −1 to 1, with higher values indicating stronger
correlations. To maximize similarity, we minimize the negative Pearson coefficient:

𝐿𝑃𝑒𝑎𝑟𝑠𝑜𝑛 = −𝑃𝑒𝑎𝑟𝑠𝑜𝑛( ̂𝑦 , 𝑦) (5)

where ̂𝑦 and 𝑦 denote the predicted and reference heartbeat signals, respectively. This loss function
encourages the model to preserve temporal waveform consistency with the ground truth.

3.2. Signal-to-Noise Ratio(SNR) Loss

To enhance robustness against noise and motion artifacts, we employ an SNR-based loss that emphasizes
spectral energy concentration around the true heartbeat frequency. Specifically, the loss is defined as:

𝐿𝑆𝑁𝑅(y, ŷ) =
∫𝑓0+𝑤𝑓0−𝑤 |Ŷ(𝑓 )|2𝑑𝑓

∫𝑓0−𝑤−∞ | ̂Y(𝑓 )|2𝑑𝑓 + ∫∞𝑓0+𝑤 |Ŷ(𝑓 )|
2𝑑𝑓

, 𝑓0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌 (𝑓 ) (6)

where 𝑌 (𝑓 ) and 𝑌̂ (𝑓 ) are the respective Fourier transforms of 𝑦 and ̂𝑦 and w is the chosen window size.

3.3. Sparsity Loss

We integrate Sparsity Loss with Negative Pearson Loss and SNR Loss motivated by the fact that in
FMCW radar-based heartbeat sensing, the heartbeat frequency typically manifests as the dominant



spectral peak within a physiologically plausible range (e.g., 45–250 bpm). The Sparsity Loss penalizes
predictions that fail to concentrate energy near the main peak within this frequency band:

𝐿𝑠 =
1

∑𝑏
𝑖=𝑎 𝑌𝑖

[
𝑌 ∗−Δ𝑌
∑
𝑖=𝑎

𝑌𝑖 +
𝑏
∑

𝑖=𝑌 ∗+Δ𝑌
𝑌𝑖] (7)

where 𝑌∗ = argmax(Y) and ∆𝑌 are the frequencies of the spectral peak and padding around the peak,
respectively. For all experiments ∆𝑌 = 6 beats per minute[18].

3.4. Overall Loss

The final loss function is a weighted combination of the three terms:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑃𝑒𝑎𝑟𝑠𝑜𝑛 + 𝐿𝑆𝑁𝑅 + 𝜆2𝐿𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (8)

where 𝜆1, 𝜆2 are hyperparameters balancing the contribution of each term.

4. Experiments

4.1. Datasets and Experimental Setup

4.1.1. Equipleth Dataset

The Equipleth radar dataset [14] comprises 550 paired facial video and FMCW radar recordings collected
from 91 participants. Skin tones are classified using the Fitzpatrick scale [19], with 28, 49, and 14 subjects
representing light, medium, and dark skin tones, respectively, for fairness evaluation. Each participant
contributed six 30-second recordings. Additional details are provided in the supplementary materials.

4.1.2. RadHR

Our self-collected radar heartbeat dataset (RadHR) consists of recordings from 50 participants, each
measured in a stationary condition to minimize motion artifacts. For every subject, FMCW radar signals
were continuously collected for 30 seconds at a sampling rate of 120 frames per second (fps), and
subsequently converted into range matrices following the standard FMCW signal processing pipeline.
This dataset provides high-temporal-resolution radar measurements of subtle chest wall movements,
serving as a reliable benchmark for supervised heartbeat estimation research.

4.1.3. Experimental Setup

Following prior work [14], we use 10-second windows for training and heart rate evaluation. For
the Equipleth and RadHR dataset, we use the same training protocol as [14]. The model is optimized
using the AdamW algorithm with a learning rate of 1 × 10−4 for 200 epochs, and the best-performing
checkpoint is selected based on validation set performance. For evaluation, we follow prior work
and report mean absolute error (MAE), root mean squared error (RMSE), and the Pearson correlation
coefficient (𝑟) as the primary metrics for heart rate estimation.

4.2. Comparison with State-of-the-Art method

Table 1 summarizes the intra-dataset heart rate estimation results using radar modality on both the
EquipIeth dataset and our proposed RadHR dataset. We compare our method with three baselines:
FFT-based Radar, EquipIeth Radar, and VitaNet. The evaluation metrics include mean absolute error
(MAE), root mean squared error (RMSE), and Pearson correlation coefficient (𝑟).

On the EquipIeth dataset, our approach achieves an MAE of 1.82, RMSE of 5.39, and correlation
𝑟 = 0.89, surpassing previous methods and demonstrating robust performance. Similarly, on the RadHR



Table 1
Intra-dataset heart rate results of radar modality on Equipleth dataset and our RadHR dataset. The best results
are in bold.

Method
Equipleth RadHR

MAE ↓ RMSE ↓ 𝑟 ↑ MAE ↓ RMSE ↓ 𝑟 ↑
FFT-based Radar[9] 13.51 21.07 0.24 12.23 18.33 0.21
Equipleth Radar[14] 2.18 6.12 0.89 3.15 7.13 0.84
VitaNet[15] 3.14 7.70 0.77 5.26 9.17 0.63
ours 1.82 5.39 0.89 2.11 2.73 0.92

Table 2
Ablation study of the overall loss on EquiPleth dataset. The best results are in bold.

Pearson Loss SNR Loss Sparsity Loss MAE↓ RMSE↓ r↑

3 8.52 14.12 0.33
3 3 1.92 5.33 0.89
3 3 3 1.82 5.39 0.89

dataset, our method achieves an MAE of 2.11, RMSE of 2.73, and correlation 𝑟 = 0.92, outperforming
all baselines by a clear margin. Notably, compared with the FFT-based Radar method, our approach
reduces the RMSE by more than 85% on RadHR, highlighting the effectiveness of combining CNN and
Transformer architectures with our tailored loss design.

4.3. Ablation Study

To investigate the contribution of each component in the overall loss function, we conduct an ablation
study on the EquiPleth dataset. The results are summarized in Table 2.
When only the Pearson Loss is used, the model achieves a relatively high MAE (8.52) and RMSE

(14.12), with a poor correlation coefficient (r = 0.33). This indicates that although Pearson Loss enforces
correlation, it alone is insufficient for stable reconstruction.

Introducing the SNR Loss significantly improves performance, reducing the MAE to 1.92 and RMSE to
5.33, while the correlation r increases to 0.89. This suggests that the SNR constraint effectively enhances
the signal fidelity by improving the signal-to-noise ratio.
Finally, when all three losses (Pearson Loss, SNR Loss, and Sparsity Loss) are combined, the model

achieves the best performance, with the lowest MAE (1.82), competitive RMSE (5.39), and the highest
correlation (r = 0.89). The improvement demonstrates that the Sparsity Loss further regularizes the
prediction, helping the model suppress redundant information and capture more discriminative features.

5. Conclusion

In this paper, we presented a CNN-Transformer framework for FMCW radar-based heartbeat estima-
tion, coupled with a novel hybrid loss design. By leveraging CNNs for local feature extraction and
Transformers for long-range dependency modeling, our approach effectively captures both fine-grained
and global temporal patterns of cardiac dynamics. The integration of Pearson Loss, SNR Loss, and
Sparsity Loss further enhances robustness by encouraging waveform fidelity, noise suppression, and
physiologically consistent spectral concentration. To support the community, we introduced RadHR, a
new radar heartbeat dataset comprising recordings from 50 subjects under stationary conditions. Exper-
imental results on both RadHR and the EquiPleth dataset demonstrated that our method outperforms
conventional signal-processing and deep learning baselines in terms of MAE, RMSE, and correlation
coefficient.
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