
LLM-Based Modeling Assistance for Textual
Ontology-Driven Conceptual Modeling
Matheus L. Coutinho1,∗, João Paulo A. Almeida1 and Giancarlo Guizzardi2

1Ontology & Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo (UFES), Brazil
2Semantics, Cybersecurity & Services (SCS), University of Twente, The Netherlands

Abstract
Large Language Models (LLMs) have already shown potentially significant capabilities in assisting users with
writing and coding tasks. In this paper, we explore how LLM-based assistance can be leveraged in a modeling
environment for textual Ontology-Driven Conceptual Modeling. We integrate the UFO-based textual language
‘Tonto’ with an LLM-powered assistant. We employ detailed UFO-based ‘guidance’ texts which are included by
the modeling environment automatically in the context of user prompts along with the current ontology coding
artifacts. The tool can take actions such as creating files, changing code, invoking Tonto syntax verification,
while still maintaining the modeler in the loop. Our initial exploration shows that a number of modeling tasks
can potentially be automated (such as suggesting new elements, summarizing the model, checking consistency of
usage of UFO concepts, model fixing, etc.). The tool is proposed as a testbed for empirical user studies.

Keywords
Ontology-Driven Conceptual Modeling, Large Language Models, Textual Modeling

1. Introduction

For more than two decades, the Unified Foundational Ontology (UFO) [1, 2] has been used in a number
of tasks in Ontology-Driven Conceptual Modeling. A key result of this research agenda has been the
OntoUML profile, which brings to UML class diagrams important ontological distinctions based on
UFO. OntoUML employs UFO’s concepts and axioms to enable the creation of high-quality reference
ontologies and is supported by a suite of advanced tools [3] for model editing, verification, simulation,
transformation, database schema generation, and anti-pattern detection.
Despite the benefits of using UML class diagrams as a basis, which allows OntoUML to leverage

UML’s well-known visual notation, there are also drawbacks associated with graphical modeling. These
include the manual effort of diagram layout, scalability issues with large diagrams, and the inability to
use mature text-based tools for tasks like version control, comparison, merging, and auto-completion.
Because of this, we have been exploring the use of textual notations for UFO-based conceptual modeling,
which has led to the development of the Tonto (Textual Ontologies) [4] language and tooling.

Tonto inherits its core concepts from UFO in line with OntoUML. The language is accompanied by a
fully-featured VS Code extension that performs syntax highlighting, auto-completion and real-time
syntactic verification against UFO rules. The Tonto extension is also integrated into the OntoUML
server [3], and, therefore, can benefit from full interoperability with the OntoUML ecosystem.

Tonto’s textual format facilitates its integration with tools based on Large Language Models (LLMs) [5,
6]. We explore this synergy to provide advanced modeling support for UFO-based ontologies. We
combine Tonto’s rigorous constraints, aimed at ensuring ontological robustness with the flexibility of
LLM-based assistance. The use of UFO concepts in Tonto allow us to provide rich context in prompts,
which guide automated task execution. We leverage the fact that LLMs incorporate significant empirical
linguistic knowledge acquired during their massive pre-training phase.

ER2025: Companion Proceedings of the 44th International Conference on Conceptual Modeling: Industrial Track, ER Forum, 8th
SCME, Doctoral Consortium, Tutorials, Project Exhibitions, Posters and Demos, October 20-23, 2025, Poitiers, France
∗Corresponding author.
Envelope-Open matheuslenke@gmail.com (M. L. Coutinho); jpalmeida@ieee.org (J. P. A. Almeida); g.guizzardi@utwente.nl (G. Guizzardi)
Orcid 0009-0003-1709-6336 (M. L. Coutinho); 0000-0002-9819-3781 (J. P. A. Almeida); 0000-0002-3452-553X (G. Guizzardi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-17

mailto:matheuslenke@gmail.com
mailto:jpalmeida@ieee.org
mailto:g.guizzardi@utwente.nl
https://orcid.org/0009-0003-1709-6336
https://orcid.org/0000-0002-9819-3781
https://orcid.org/0000-0002-3452-553X
https://creativecommons.org/licenses/by/4.0/deed.en


Our ultimate goal is to understand what kinds of ontology-driven conceptual modeling tasks can
be supported with pre-trained LLMs and (zero-shot or few-shot) prompting strategies. A common
barrier in assessing this sort of support empirically is the lack of usable tools for experimentation.
That is the object of this paper. We combine the existing Tonto extension with the AI Cursor tool
(https://cursor.com). Cursor integrates an extensible text-based coding environment with a variety
of LLMs in a seamless way. It allows us to define ‘guidance’ texts which are provided to the LLMs in
tandem with the current coding artifacts. These texts provide instructions to perform specific tasks;
the tool (in its ‘agent mode’) can take actions such as creating files, changing code, etc., while still
maintaining the modeler in the loop. (Similar functionality has recently been implemented in VS Code
natively, and hence, can also be explored with the approach discussed in this paper.)
We have defined a number of detailed UFO-based ‘guidance’ texts which are used as part of the

context of prompts for the LLMs in the following tasks: (i) enhancing an existing ontology by creating
new elements and relations (while adhering to UFO constraints); (ii) checking the consistency of the
ontology terminology; (iii) checking the usage of UFO concepts; (iv) understanding a package or the
entire ontology in a summarized explanation in natural language; (v) creating documentation for
existing elements in an ontology, labels and descriptions; (vi) adding multi-lingual terminology and
descriptions. Our initial exploration with the tool shows that it is capable of automating these tasks for
Tonto models. We plan to employ the tool as a testbed for empirical user studies.

This paper is further structured as follows: Section 2 describes the solution we employ, briefly
positioning Tonto and its editor in an overall architecture. Section 3 presents one of the examples used
for demonstration, and Section 4 provides some conclusions and outlines plans for future work.

2. Solution

Tonto The Tonto language was designed to be both human-readable and expressive [4]. Its syntax is
intentionally familiar to users of mainstream object-oriented languages. Tonto introduces keywords
to reflect the taxonomy of types in UFO. For example, there are keywords for kind, subkind, phase,
role, category, etc., reflecting the metaproperties of rigidity and sortality as well as other ontological
distinctions. There are also keywords to enable the reification of relations and aspects (relator, mode,
quality), event types (event) and to provide specialized semantics for associations (object participation
in events, aspect inherence, relator mediation, whole-part relations, etc.) [1].

Architectural Overview Figure 1 illustrates the basic workflow of Cursor’s ‘agent mode’ as used in
this project in integration with the Tonto extension. An agent is an artificial entity that perceives its
environment, makes decisions, and takes actions based on those perceptions in order to achieve specific
goals. Cursor implements an Agent that is able to execute a series of activities in the Code Workspace,
and it leverages an underlying Large Language Model (LLM) to operate within the code workspace,
where it can execute a series of tasks such as file access, folder navigation, and semantic search to
achieve specific modeling goals. The process begins when the user makes a request in the Cursor agent
chat. In response, Cursor prepares the initial input for the selected LLM. This input includes the main
system prompt, any custom rules defined by the user, and the actual content of any referenced Tonto
files. The agent then begins a step-by-step loop to complete the request. It invokes various actions such
as reading from files, writing new code, or running Tonto syntax verification. The result of each action
is used to decide the next steps. To ensure transparency, the user can see this entire process—including
the agent’s reasoning and tool usage—in the chat window. This interactive loop continues until the
agent concludes the task is finished or a technical limit is reached (such as the maximum LLM token
count). At the end of each cycle, the agent presents its proposed changes for user validation. The user
retains oversight by accepting or rejecting these modifications, thereby ensuring the model evolves in
alignment with their preferences. (Not unlike Cursor, VS Code also leverages an ‘agent mode’, with a
similar architecture.)

https://cursor.com


Figure 1: Architecture showing how a user query is processed by the Agent mode in Cursor

UFO-Based Task Guidance Rules are provided as markdown files to help the LLM understand and
work with Tonto. The following guidance files were defined (and are publicly available in the project
repository1): (i) Tonto Guidance: This is the core instruction set. It provides a concise orientation
for the LLM (establishing ’chains of thoughts’), covering the fundamentals of the Tonto language, its
project structure, and its key capabilities. (ii) LLM Guidance: This document acts as a ‘router’. It gives
the LLM a general workflow and tells it how to use the other more specialized guidance files to handle
specific user requests. (iii) Enhancing Guidance: This guide is for building and extending ontologies.
It instructs the LLM on how to add new classes, attributes, relations, and generalization sets while
maintaining the model’s ontological consistency with UFO’s axioms. (iv) Terminology Guidance:
This document helps the LLM act as a vocabulary expert. It guides the analysis of the names used for
classes, attributes, and relations, allowing the LLM to provide feedback for improving the ontology’s
clarity and precision. (v) Understanding Guidance: This guide helps the LLM summarize a model in
natural language. It is used to generate descriptions of a single package or an entire project to help users
quickly understand its contents. UFO notions are used, e.g., directing the LLM to prioritize ultimate
sortals (kinds) [1]. (vi) Documentation Guidance: This document provides guidelines for generating
high-quality documentation for elements in a Tonto ontology. It pushes the LLM to describe an element
and also to explain the underlying ontological choices based on UFO principles.

3. Demonstration

In this section, we illustrate the use of the UFO-based guidance files. Given an existing ontology about
the university domain, as shown in Figure 2, we have prompted the LLM agent as follows: “Your task is
to help me check the terminology of my ontology and fix semantic errors. Get the errors from @Linter Errors.
Take a look at all packages.” We ran this test under two conditions: with our custom guidance texts, and
without them, in order to establish a comparative baseline. The initial model uses the unspecific class
keyword (as shown in the screenshot shaded in a light red background). Further, it lacks documentation
in the form of labels and descriptions. The complete original and automatically modified specifications
are available on the aforementioned project repository.

Without guidance, the agent struggled to produce a valid model, and it did not use the best practices
from Tonto (this baseline output is also available in the project repository). The output contained
significant errors, such as: incorrect use of Tonto’s grammar and keywords; failure to apply appropriate

1https://github.com/matheuslenke/tonto-llm

https://github.com/matheuslenke/tonto-llm


Figure 2: Cursor IDE where user prompts Tonto agent to “check terminology” and “fix semantic errors”.

UFO concepts, syntactically incorrect specialization relationships, and labels and descriptions as code
comments instead of using the proper ‘label’ and ‘description’ syntax.
In stark contrast, when the same prompt was provided in the environment that was customized

with the Tonto guidance files, the agent generated a significantly more robust and ontologically sound
model. It correctly leveraged a wide range of UFO concepts (that correspond to Tonto keywords) and
successfully implemented complex structures, such as the powertype pattern, demonstrating clear
adherence to the well-founded modeling guidelines. In the screenshot shown in Figure 2, the generic
class keyword was properly replaced by the collective keyword; the generic aggregation relation
was properly replaced by the subCollectionOf relation. Space constraints prevent us from describing
other examples here, covering the various supported tasks. Instructions for download of the guidance
files and configuration of Cursor for use of Tonto are available in the project repository along with
example prompts for other tasks.

4. Conclusions

There is a plethora of research addressing the use LLMs for different aspects of ontology engineering
and conceptual modeling, as evidenced by a recent survey [7] and a discussion paper [8]. For example,
LLMs have been employed to to classify domain entities using top-level categories [9], generate SWRL
rules [10], support ontology development from datasets [11], etc. Here, our focus is on LLM assistance
for tasks in ontology capture and formalization [12]. We employ production-ready tools and leverage
foundational ontology distinctions both in guidance texts and in the language grammar verification.

This work is currently a proof of concept. While the initial results are promising, the LLM integration
is a prototype that requires further development and rigorous evaluation to measure its effectiveness.
Our immediate future work will focus on conducting controlled experiments to rigorously assess the
impact of the LLM-powered assistant. This study will be designed to measure not only the effect of
using an LLM but also the specific value added by our UFO-based guidance files. Participants will be
asked to perform ontology modeling tasks in Tonto under three different conditions: (i) with no AI
support, (ii) with a baseline LLM model, and (iii) with the guided assistant. We’ll measure success
across three key areas: efficiency, by measuring task completion time; model quality, by evaluating
the number of ontological errors and anti-pattern occurrences; and, finally, user satisfaction, measured
using standard usability surveys to gauge the user experience. We also intend to assess whether possible



benefits persist in projects of different levels of complexity and involving users with different profiles.
Finally, we plan to explore more sophisticated prompt engineering techniques and expand the range

of supported tasks. A long-term goal is to leverage LLMs to create natural language interfaces for
querying and manipulating ontologies, making them more accessible to a wider audience of domain
experts who may not be familiar with formal modeling languages. One challenge we anticipate is
domain sensitivity. In particular, we expect the agent to struggle with niche domains, which are
underrepresented in pre-training. Although we have observed good initial results in this exploratory
phase with the models Claude 3.7 Sonnet, Gemini 2.5 Pro, and OpenAI o3, an indepth study should
assess their particular merits in these tasks.

Acknowledgments

This research is funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001, FAPES (1022/2022) and CNPq (443130/2023-0, 313412/2023-5).

Declaration on Generative AI

During the preparation of this work, the authors have employed Gemini 2.5 Pro in refining the guidance
texts as well as in grammar and spelling check for the manuscript. The authors reviewed and edited the
content as needed and take full responsibility for the publication’s content.

References

[1] G. Guizzardi, Ontological foundations for structural conceptual models, Centre for Telematics and
Information Technology, Enschede, The Netherlands, 2005.

[2] G. Guizzardi, et al., UFO: Unified Foundational Ontology, Applied Ontology 17 (2022) 167–210.
[3] C. M. Fonseca, et al., Ontology-driven conceptual modeling as a service, in: Proc. Joint Ontology

Workshops 2021, CEUR Workshop Proceedings, 2021. URL: http://ceur-ws.org/Vol-2969/.
[4] M. L. Coutinho, J. P. A. Almeida, T. P. Sales, G. Guizzardi, A Textual Syntax and Toolset for

Well-Founded Ontologies, in: Frontiers in Artificial Intelligence and Applications, IOS Press, 2024.
[5] C. Raffel, et al., Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,

2023. URL: http://arxiv.org/abs/1910.10683.
[6] H. Touvron, et al., LLaMA: Open and Efficient Foundation Language Models, 2023. URL: http:

//arxiv.org/abs/2302.13971, arXiv:2302.13971 [cs].
[7] D. Garijo, et al., LLMs for Ontology Engineering: A landscape of Tasks and Benchmarking

challenges, in: ISWC 2024 Special Session on Harmonising Generative AI and Semantic Web
Technologies, 2024.

[8] V.C.Storey et al., Large language models for conceptual modeling: Assessment and application
potential, Data & Knowledge Engineering 160 (2025) 102480. doi:10.1016/j.datak.2025.102480.

[9] A. Lopes, et al., How to classify domain entities into top-level ontology concepts using large
language models: A study across multiple labels, resources, and languages, Applied Ontology
(2024) 1–29. doi:10.3233/AO-240032.

[10] A. Soularidis, K. Kotis, M. Lamolle, Z. Mejdoul, G. Lortal, G. Vouros, LLM-Assisted Generation
of SWRL Rules from Natural Language, in: 2024 International Conference on AI x Data and
Knowledge Engineering (AIxDKE), IEEE, Tokyo, Japan, 2024, pp. 7–12.

[11] M. Val-Calvo, et al., Ontogenix: Leveraging large language models for enhanced ontol-
ogy engineering from datasets, Information Processing & Management 62 (2025) 104042.
doi:10.1016/j.ipm.2024.104042.

[12] R. Falbo, SABiO: Systematic approach for building ontologies, in: Proc. 1st Joint Workshop
ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Information Systems Engineering,
volume 1301 of CEUR Workshop Proceedings, 2014. URL: https://ceur-ws.org/Vol-1301.

http://ceur-ws.org/Vol-2969/
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://dx.doi.org/10.1016/j.datak.2025.102480
http://dx.doi.org/10.3233/AO-240032
http://dx.doi.org/10.1016/j.ipm.2024.104042
https://ceur-ws.org/Vol-1301

	1 Introduction
	2 Solution
	3 Demonstration
	4 Conclusions

