CEUR-WS.org/Vol-4099/ER25_industrial_Vieira.pdf

CEUR
E Workshop
Proceedings

published 2025-11-17

Multi-driven and LLM-assisted Analytical Modeling:
Evaluation in an Industrial Case

Cristiana Vieira**, Vania Sousa’?, Pedro Guimaraes’?, Diogo Rodrigues’, Antonio Vieira®!
and Maribel Y. Santos?!

'CCG/ZGDV Institute, University of Minho, Campus de Azurém, 4800-058 Guimardaes, Portugal
? ALGORITMI Research Center, University of Minho, Campus de Azurém, 4800-058 Guimardes, Portugal
7 Colep Packaging, 3730-423 Vale de Cambra, Portugal

Abstract

Decision-making in industrial environments increasingly depends on the ability to align operational data with
strategic goals. Data-driven approaches often focus on the available data while overlooking the specific informa-
tional needs of decision makers. To bridge this gap, this paper proposes a multi-driven approach that integrates
both data-driven and requirements-driven perspectives, supported by the use of Large Language Models (LLMs).
Through prompt-based interactions, LLMs generate conceptual and analytical models from metadata and user
requirements, accelerating the modeling process while ensuring relevance and coherence through the integration
of both data and analytical requirements. The approach is applied to a real-world industrial case characterized by
operational complexity, high variability, and technological heterogeneity. The results show how the combined
use of LLMs and a structured modeling approach can support the development of analytical systems that are
technically feasible and strategically aligned.
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1. Introduction

In industrial environments, decision-making processes increasingly rely on the ability to extract ac-
tionable insights from operational data. Modern manufacturing settings employ advanced analytics to
monitor operations in real time, detect anomalies, and optimize workflows - with Industry 5.0 studies
reporting improvements in decision outcomes of up to 46% following the implementation of data-driven
methods [1]. This data-driven approach focuses on analyzing event logs and transactional records to
build analytical models that can inform business decisions. While effective in many scenarios, this
perspective often neglects an essential component: the actual informational needs of decision-makers
(i.e., a requirements-driven perspective). This paper proposes an approach that combines both, hereafter
referred to as ‘multi-driven’. Consequently, analytical systems may reconstruct available data but fail to
address the key questions that truly matter to users.

To address this gap, this paper proposes an approach that combines a multi-driven perspective,
integrating the strengths of both data-driven and requirements-driven approaches. The goal is to align
what data reveals with what users need, ensuring that the resulting analytical models are both feasible
and meaningful. This dual orientation enables organizations to capture not only the structure of the
available datasets but also the strategic, decision, and information goals of stakeholders. Although
such alignment can be performed manually, it is often labor-intensive and error-prone, particularly
in complex industrial contexts characterized by diverse, fragmented data sources. To overcome this
challenge, we propose leveraging Large Language Models (LLMs) to assist in constructing analytical
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models. Hence, a major contribution of this work is the proposal and evaluation of a multi-driven
and LLM-assisted analytical modeling approach. This contribution have been grounded in a research
process guided by the Design Science Research Methodology for Information Systems [2].

Recent work has demonstrated that LLM agents can automate multiple stages of industrial ana-
lytics, including process understanding, concept extraction, and iterative self-refinement, effectively
accelerating the end-to-end data-to-dashboard pipeline [3]. In our approach, LLMs use metadata and
user-specified requirements to produce initial versions of conceptual and analytical models, which are
then validated and refined by data engineers. This hybrid process accelerates model development while
preserving alignment with decision needs.

This paper applies a structured approach that combines process modeling, conceptual and analytical
data modeling, and requirements analysis, supported by prompt-based interactions with an LLM. It is
applied to a real-world industrial case known for high variability, technological diversity, and constant
adaptive challenges. The results show how this multi-driven approach supports targeted and effective
decision-making by aligning business objectives with data.

This paper is structured as follows. Section 2 analyzes related works. Section 3 describes the use
case where the proposed approach will be applied. Section 4 details the steps of the proposed approach.
Section 5 shows an instantiation of the use case. Section 6 presents the conclusions and future work.

2. Related Work

The increasing complexity of modern industrial environments poses significant challenges for effective
decision-making. Frequent changes in operational settings, safety constraints, and regulatory require-
ments demand iterative cycles of requirements engineering, process modeling, and data alignment.
In such settings, aligning the semantics of available data with user information needs is essential but
difficult to automate - particularly in the conceptual design of Data Warehouses (DWs) or domain
models [4, 5].

Recent studies have explored the use of LLMs to assist engineers in automating or accelerating parts
of this process. Nouri et al. [6] developed a prompt-based LLM prototype to support the specification of
safety requirements in autonomous driving systems. Their approach significantly reduced the time
required for hazard analysis and risk assessment (HARA) but highlighted limitations in domain expertise,
hallucination risks, and difficulties in interpreting non-textual input. Zhao et al. [7] proposed LlmRe,
a method for zero-shot relation extraction from unstructured text, using in-context learning and a
three-stage decomposition strategy. Their framework demonstrated good adaptability across domains,
which helped reduce the dependence on labeled data, a valuable trait for industrial scenarios with
heterogeneous information sources.

Domain modeling has been another area of interest. Yang et al. [5] introduced an iterative, multi-step
LLM-based framework to extract modeling elements and identify higher-level patterns. Their results
showed improvements in F1-scores for class and relation identification, though issues with abstraction
and complex pattern detection remain. Similarly, Chen et al. [8] compared several prompt engineering
strategies and found that, while LLMs achieved high precision in model generation, they often missed
key elements and struggled with modeling best practices.

Other works have focused on supporting conceptual modeling tasks. Camara et al. [9] assessed the
ability of ChatGPT to assist in generating UML class diagrams and OCL constraints. They reported that
models generated were often syntactically valid but semantically inconsistent and required significant
human refinement. Rizzi [4] explored LLM-based multidimensional model refinement in DW design,
achieving improved results with carefully designed instructions but still requiring manual validation,
especially for tasks involving shared hierarchies and functional dependencies.

Overall, while LLMs have shown potential in helping with requirements engineering and model
creation, studies consistently indicate that human involvement is necessary to ensure that the meanings
are correct and fit with specific industry standards. This supports the development of hybrid, human-
in-the-loop approaches — as explored in this paper — where LLMs accelerate the initial modeling effort,



but outputs are validated and refined collaboratively.

Unlike previous works, which often focus on isolated modeling tasks, our approach integrates
both data-driven and requirements-driven perspectives in a unified pipeline that explicitly targets the
alignment of user requirements with available industrial data, supported by LLMs.

3. Industrial Use Case: Colep Packaging

Colep Packaging', a company of the RAR Group?, is the Iberian leader in general line packaging and an
important European supplier of aerosols. With production in Portugal, Spain, Poland, and Mexico, and
more than 700 employees, it operates with a vertical integration model, developing metal and plastic
solutions for several markets [10]. With over five decades of experience, Colep Packaging operates
in an industrial environment marked by high operational complexity, both at the technological and
managerial levels. The main raw material used in the production of metal packaging is tinplate, a
low-carbon steel sheet coated with tin, selected according to strict technical specifications (thickness,
strength, surface treatment). This material arrives at the factory in coils and undergoes a structured
production process involving multiple stages, from printing (lithography) and cutting to printing,
assembly, quality control, and final dispatch.

The core production flow is represented in Fig. 1, using a BPMN (Business Process Model and
Notation) diagram. This visual model details each stage of the process and explicitly highlights key
decision points and sub-processes. For example, depending on the type of product or volume, different
printing technologies (offset or digital) may be selected, each with its own implications in terms of setup
time, cost, and flexibility. The diagram helps clarify the operational logic while also making visible
the possible paths and conditional branches that increase the complexity of execution and planning. It
also makes it easier to identify which parts of the process are more sensitive to variability and where
analytical support is more critical, since BPMN explicitly models alternative paths and decision points
(e.g., the choice between offset and digital printing), highlighting where execution may diverge.

The company combines offset and digital printing technologies, each with distinct operational trade-
offs. Offset printing is more suitable for large production volumes and ensures high color consistency,
while digital printing, although slower and more limited in print quality, allows for quick adjustments,
minimal setup time, and greater flexibility in small or customized batches. Managing this hybrid setup
requires the coordination of materials, design files, and production schedules, increasing the need for
adaptable and responsive planning systems.
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Figure 1: BPMN Representation of the Production Process.

Beyond the technological setup, the complexity of the use case becomes more evident when con-
sidering the dynamic nature of the industrial scenario. The company faces constant changes that
affect production and decision-making processes, such as the integration of new equipment, frequent
reconfiguration of the shop floor layout, supply chain disruptions, coordination between multiple
work centers, adaptation to new labor models (e.g., shift systems or four-day weeks), and compliance
with sustainability and energy efficiency targets. These factors create a high-variability environment
that challenges traditional planning approaches and requires flexible, data-driven systems capable of
integrating information from multiple sources.

'https://colep-pk.com/pt-pt
*https://www.rar.com/pt/
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Figure 2: Approach for Multi-driven Analytical Modeling Supported by LLMs.

To support decision-making under these conditions, Colep Packaging relies on digital tools such as
Manufacturing Execution Systems (MES) and industrial simulation models, which allow for real-time
monitoring, predictive analysis, and optimization of production flows. However, even with such systems
in place, the integration between business objectives and operational processes remains a challenge.
The variability and heterogeneity of data sources, combined with evolving user needs, highlight the
need for approaches that can simultaneously consider what the data reveal (data-driven) and what the
decision-makers require (requirements-driven). This context of high complexity justifies the relevance
of applying a multi-driven decision-making approach, as proposed in this paper.

4. Multi-driven and LLM-assisted Analytical Modeling

To address the challenges of aligning business goals with complex data environments, this paper applies
a structured, LLM-supported approach that integrates process and data modeling and requirements
analysis. This section presents the approach in two stages: the first describes the overall approach that
combines data and user requirements to build a multi-driven analytical model; the second details the
structured prompts used to guide each interaction with the LLM.

4.1. Proposed Approach

Although different implementations can be followed, this paper adopts the analytical data model as a
DW system [11] with fact and dimension tables.

As mentioned, two analytical data models can be identified, one derived from the data and the other
from the requirements, both considering the identified conceptual data model of the domain. In the
several tasks, an LLM supports this approach with increased efficiency (the models can be obtained in a
short period of time) and handling the complexity that is usual in complex industrial settings, with a
high diversity of data sources and data sets. These models are later integrated by the LLM. Along all
the steps, the data engineer validates the proposals and makes the necessary suggestions/corrections
towards the model to be implemented. Following this two-fold path ensures that the data available for
analysis guides the identification of the analytical data model, but this model is then refined considering
the user’s needs. In case of a lack of data for specific user requirements, this approach ensures that the
data engineer and the organization are aware of it, taking proper actions to collect such data in the
future.

With the multi-driven analytical data model, the LLM supports the identification of useful visualiza-
tions. To be possible, this work considers that the user requirements are specified in iStar [12], as this
allows the specification of the strategic, decision, and information goals [13]. Strategic Goals (SGs) are
related to the main objectives of the business process that are being enhanced, representing a desired
change from a current situation to a future one. Decision Goals (DGs) represent decisions that use



information to provide benefits for the organization, operationalizing the SGs into actions by answering
the question, "How can a strategic goal be achieved?". Decisions can be explained in terms of objectives
or tasks. Information Goals (IGs) are linked to the question "How can decision goals be achieved in terms
of information required?". IGs outline the data that must be gathered, usually through analysis. As a
result, they can be described in terms of goals or in terms of the analysis process. With the IGs, and
as suggested in the work of Lavalle et al. [14], the analytical dashboards can be organized by the SG
and the supporting DGs and IGs. This proposal of analytical visualization can be refined by the data
engineer, validating the dashboards that are made available for the users.

4.2. Prompt Strategy

Besides the data and user requirements as input, another key component of the approach is the prompt
strategy to interact with the LLM. To obtain useful results and avoid hallucination [15], the prompts
must detail the input of each step and the expected output. For the input, this work considers:

« Data: include the activities of the business processes and the different events associated with
those activities. Activities usually relate different entities of the domain, such as Customer and
Order for place order, with a set of time-series events. To avoid mixing entities, activities, and
events, the prompt must clarify the several concepts present in the input data.

+ User requirements: include the SGs to be addressed and the way they are supported by the
DGs and IGs. These concepts should be clarified in the prompt, which must also highlight that
the IGs commonly point to business or process indicators associated with the main entities of the
domain or with the supporting activities, respectively.

« Visualization tasks: useful visualizations must align the analytical task, the type of data, and the
cardinality of the data, among other characteristics. Pointing to or adopting a specific taxonomy
or classification for visualization tasks enhances the resulting visualizations.

For data, only the metadata needs to be made available (ensuring confidentiality, since no sensitive
values are shared). This is important given privacy and confidentiality concerns. This metadata includes
the available tables and the corresponding attributes. The proposed prompts are next detailed.

4.2.1. From the Event Data to the Data-driven Conceptual Model

Here, the metadata of the available data is used as input to obtain the data-driven conceptual model.
The prompt is as follows:

7

Consider a dataset with the following tables and the associated attributes. With this metadata, infer the several relationships
between the entities of the domain, and propose an entity-relationship diagram that represents the conceptual model of the
domain. This conceptual model must include the entities and their attributes, as well as the relationships among these entities.
The conceptual model can only include entities, attributes, and relationships inferred from the available metadata. Also, consider
that the entities of the domain have events that are occurrences of the activities that affect entities over time. These events or
activities cannot be considered entities of the domain. The tables and their attributes are: «to be defined».

4.2.2. From the Data-driven Conceptual Model to the Data-driven Analytical Model

The conceptual data model obtained in the previous step is used as input to infer an analytical data
model. The prompt is as follows:

Consider the conceptual data model obtained in the previous prompt. Assume we want to create a data warehouse system for the
analysis of that data. Adopt a constellation schema if multiple fact tables are needed, integrating the several fact tables through
shared dimensions. For each star schema of the constellation, describe the fact table, the dimension tables, and the attributes of
these tables. For each fact table, list the measurable indicators (metrics).




4.2.3. From the User Requirements and the Data-driven Conceptual Model to the
Requirements-driven Analytical Model

Here the conceptual model guided by the data and the user requirements is used to derive an analytical
model with fact and dimension tables. The prompt is as follows:

Consider user requirements specified using the iStar extension for Data Warehouses. In it, Strategic Goals (SG), Decision Goals
(DG), and Information Goals (IGs) are used. SGs are related to the main objectives of the business process that are being enhanced,
representing a desired change from a current situation to a future one. DGs represent decisions that use information to provide
benefits for the organization, operationalizing the SGs into actions by answering the question, "How can a strategic goal be
achieved?" IGs guide the information needed to achieve a DG by responding to the question, "How can decision goals be achieved
in terms of information required?" IGs outline the data that must be gathered, usually through analysis. As a result, they can be
described in terms of goals or in terms of the analysis process. The requirements are: «to be defined» Based on the conceptual
data model obtained from the data and the user requirements mentioned above, propose an analytical data model suitable for a
data warehouse system that addresses the entities of the domain. Identify one or more fact tables that meet the IGs, and define
the dimension tables needed to provide the relevant contextual information. Use a constellation schema if needed. For each fact
table, list the measurable indicators (metrics), and for each dimension, list the attributes required to support filtering or grouping.
Clearly indicate how each G is supported by the analytical data model.

4.2.4. From the Data- and Requirements-driven Analytical Models to the Multi-driven
Analytical Model

Now the LLM must merge the two previous analytical models, maintaining the alignment between
available data and requirements. The prompt is as follows:

Given the two analytical data models — one derived from the available data and the other from user requirements in the context of
the entities of the domain - integrate both into a unified, multi-driven analytical model. Use a constellation schema if multiple fact
tables are needed. When dimensions or facts overlap, unify them; when they diverge, include both with appropriate relationships.
Highlight where the models complement each other or where gaps in data exist.

4.2.5. From the Multi-driven Analytical Model to the Analytical Visualizations

Based on the final model, the LLM should propose useful visualizations for users based on the IGs. The
prompt is as follows:

Based on the multi-driven analytical model and the IGs, suggest analytical dashboards or visualizations that can support decision-
making. For each visualization, specify: i) the SG and DG it supports; ii) the data it uses (fact and dimension tables); iii) the type of
chart (e.g., time series, bar chart, heatmap); and iv) the recommended aggregation and filtering dimensions. Whenever possible,
organize the visualizations by SG, showing how each IG contributes to it.

5. Instantiation to the Colep Industrial Use Case

This section presents the step-by-step application of the multi-driven decision-making approach. The
LLM used in the instantiation was the ChatGPT language model®. All prompts were detailed in the
previous section. For reproducibility, the used prompts and obtained results are available at [16].

5.1. Data-driven Conceptual Model

The first step identified a conceptual data model based on the structure of the available industrial
dataset (Fig. 3). Only metadata with the tables names and their attributes was made available. The
resulting model identifies key entities within the production domain, such as Customer, Order, Material,
Operation, and WorkCenter, and outlines the relationships between them. For instance, it shows that
customers place orders, which in turn triggers the production process. Each order uses a specific set of
materials required for the production of the ordered items. Orders include a sequence of operations
that are performed at a particular work center (physical or logical area of the industrial setting, such as

*ChatGPT-4, released by OpenAl in May 2025, available at https://chat.openai.com
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Figure 3: Data-driven Conceptual Data Model.

lithography or cutting, where a specific type of operation takes place). The model also incorporates
energy consumption data, linking each work center to its associated gas and electricity usage through
the entities ConsumptionGas and ConsumptionElectricity.

It is important to note that this conceptual model does not represent process sequences or execution
flow; rather, it describes the static relationships among the core business entities relevant to the
domain. This conceptual structure provides a consistent and realistic representation of the production
environment and serves as a solid foundation for analytical modeling in the following steps. This model
(Fig. 3) was already validated by the data engineer, who disregarded a redundant relationship between
orders and work centers identified by the LLM, as operations already relate these two entities.

5.2. Data-driven Analytical Model

After the conceptual data model, the LLM suggested three main fact tables: one focused on order
analysis (Fact_Orders), another on operation execution (Fact_Production), and a third on energy
consumption (Fact_EnergyConsumption). These fact tables are connected to dimension tables, such as
Date (Dim_Date), Time (Dim_Time), Customer (Dim_Customer), Work Center (Dim_WorkCenter), and
Operation (Dim_Operation). This model is discussed in subsection 5.4.

5.3. Requirements-driven Analytical Model

Considering the concepts of the domain and the user requirements specified in iStar (Figure 4), the LLM
suggested a structured mapping between the IGs and the existing analytical data model. It should be
noted that the iStar model was designed by the authors, based on requirements elicited in collaboration
with the industrial partner. Each IG was linked to the relevant fact and dimension tables, confirming
that the previously defined constellation schema could support all analytical needs derived from the
SGs and DGs.

The result confirmed the need for a constellation schema, but centered on two fact tables:
Fact_Production, capturing detailed records of operational execution (e.g., duration, idle time, and
energy per operation); and Fact_EnergyConsumption, summarizing energy usage per time period and
work center. These are linked to dimensions such as WorkCenter, Operation, Material, Date, and Time,
depending on the case, enabling flexible filtering and aggregation.

It is important to highlight that: i) a traceability matrix was proposed by the LLM, identifying the
metrics and dimensions required to support each IG. This ensured that the analytical model covers the
full set of user requirements defined in iStar and clarified how each element of the schema contributes
to addressing specific decision-making needs; ii) no fact table for orders was suggested by the LLM,
which makes sense as the user requirements are focused on operational concerns, such as reducing
shelf time and energy consumption, and not on more business-oriented objectives, such as increasing
the number of orders over time.

5.4. Multi-driven Analytical Model

Considering both analytical data models, Figure 5 depicts the integrated data model, highlighting the
differences between them when applicable.

As Figure 5 shows, most of the fact and dimension tables were suggested by both data- and
requirements-driven perspectives (tables with headers represented in a white color). The requirements-
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Figure 4: User Requirements Specified in iStar.

driven perspective suggested mainly additional metrics to include in the fact tables, addressing the
different IGs and computing the indicators for answering the user’s requirements (these indicators are
represented in a light-grey color). The data-driven perspective, with the tables suggested only by this
perspective represented with the header in a dark-grey color, is related to information present in data
that is not needed to answer this specific set of user requirements. However, these can be useful for
further analysis, as mentioned previously in subsection 5.3, as the use case only included a limited
set of user requirements with operational concerns. With organizational decision-making in mind,
the integrated analytical model provides a comprehensive analysis of different business and process
indicators, making available the proposal of a DW that is not devised for current informational needs
but prepared to answer to future analyses.

5.5. Analytical Visualizations

The final step of the approach consists in translating the multi-driven analytical model into visualizations
that directly support decision-making. From the dashboards suggested by the LLM (with a semi-
automatic alignment process, where the LLM proposes and a data engineer validates), we selected the
one associated with the DG “Optimize Work Centers” (Figure 6) of the SG "Reduce Energy Consumption,’
allowing the analysis of IG3, 1G4, and IG5.

First, a DW system was physically instantiated in the industrial setting, following the multi-driven
analytical model. Afterwards, a dashboard that includes the visualization of energy consumption by
work center and time period was implemented, addressing 1G4 and IG5. For IG3, a key limitation was
found. Although the production type exists in the dataset, it contains only a single value - offset. This
lack of variability prevents any meaningful comparison between different production types, which
is precisely what the goal requires. As a result, while IG3 is formally represented in the dashboard,
the findings fall short. As illustrated in Figure 6, the bar showing the “offset” production type visually
highlights this limitation. Meaningful analyses would require collecting energy consumption data
across multiple distinct production types. Pointing these findings is important for future data collection
tasks, suggesting the definition of a data policy regarding current and future information needs.

Despite this limitation, the dashboard reveals valuable insights regarding 1G4 and IG5. For example,
as shown in the average consumption chart, work centers CS08 and CS13 stand out with the highest
average electricity consumption. While in some cases high consumption aligns with longer operation
durations, the dashboard also reveals exceptions - such as certain work centers with long duration but
comparatively lower energy consumption - highlighting the importance of analyzing both dimensions
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Figure 5: Multi-Driven Analytical Model.

jointly. Additionally, the heatmap related to IG5 reveals clear temporal patterns, with consumption
peaking at 9:00am on Wednesdays and 8:00am on Thursdays. Such patterns may reflect production
scheduling practices and highlight potential areas for optimization, such as load balancing or energy
cost reduction strategies during peak hours. Therefore, the dashboard not only operationalizes the
analytical objectives but also provides concrete evidence to guide energy-aware decision-making.

Moreover, one of the distinctive advantages of the multi-driven approach is that it not only reveals
what can be done, but also what cannot. A clear example is DG3, "Prioritize Low-Energy Production
Routes". While highly relevant from both operational and environmental perspectives, this goal could
not be addressed analytically due to the absence of data on routing between work centers. IG6 would
require detailed logs of inter-work center transitions, including operation sequences, timestamps, and
energy consumption per route - information that is not currently captured in the available datasets.
Nonetheless, this requirement was anticipated in the design of the analytical model, as suggested by the
LLM, and the model was structured to accommodate such data in future iterations. As a result, while the
data analysis is not possible yet, the model is already structured to incorporate it as soon as the necessary
data becomes available. Still, the implemented dashboard shows the practical value of the multi-driven
approach by transforming analytical objectives into visual tools that inform decision-making and expose
data gaps that matter.

6. Conclusions and Future Work

This paper proposed a multi-driven approach to industrial decision-making that combines data-driven
and requirements-driven perspectives, supported by LLMs. By leveraging LLMs to analyze metadata and
user requirements through prompt-based interactions, we demonstrated how it is possible to accelerate
the generation of conceptual and analytical models while maintaining alignment with strategic business
objectives. The approach was applied to a real-world industrial case at Colep Packaging, an environment
marked by operational complexity and variability. The results showed that, although validation and
refinement by a data engineer are still necessary, LLMs can anticipate a significant portion of the
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Figure 6: Dashboard of SG Reduce Energy Consumption, 1G3, 1G4 and 1G5.

modeling work, reducing the initial manual effort and improving the alignment between available data
and actual decision-maker needs. The approach proved especially valuable in revealing not only what
can be analyzed with existing data but also the analytical limitations caused by information gaps.

In the context of the ongoing digital transition, the integration of LLMs into industrial modeling
workflows exemplifies how advanced Al technologies can enhance data utilization and accelerate
informed decision-making processes. Moreover, by enabling more efficient and targeted analyses, this
approach supports green transition objectives by optimizing resource use, identifying inefficiencies,
and guiding sustainable operational strategies. Thus, the proposed approach contributes to both digital
innovation and environmental responsibility within industrial ecosystems.

Beyond these results, the case study revealed key learning points: LLMs accelerate model creation but
require expert validation; prompt design is critical to avoid ambiguities; metadata alone can be enough
preserving data confidentiality; and, the multi-driven approach both aligns data with requirements and
exposes analytical gaps.

As future work, we could explore the use of alternative LLMs to assess their efficiency and effectiveness
across the different modeling stages. Furthermore, the approach needs to be applied to different industrial
use cases, addressing validity concerns since the current evaluation relies on a single case and a specific
LLM version. Broadening the scope will strengthen the generalizability and reliability of the approach.
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